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Abstract-In this paper, an easily testable machine is defined as
one which possesses: 1) a distinguishing sequence of lengthI log2 nI
which forces the machine into a specific state Si, and 2) transfer
sequences of length at most [10g2 n] to carry the machine from state
S1 to state Si for all i. A design procedure is presented in which an
arbitrary machine is augmented to an easily testable machine by
adding two special input symbols to the original machine. An efficient
procedure is also described for designing checking experiments for
the easily testable machines. For an n-state, m-input symbol ma-
chine, this procedure gives a bound on the length of the checking
experiment that is approximately mn[og, n]. Furthermore, the total
checking experiments are preset.

Index Terms-Checking experiments, distinguishing sequences,
easily testable machines, fault detection, sequential machines, shift
register, transition checking.

I. INTRODUCTION

FOR sequential machines several authors [1]-[6] have
considered the fault detection problem as an identifica-

tion problem of sequential machines, that is, finding an
input-output sequence which describes a given machine
uniquely. A number of these papers are based on a method
given by Hennie [2] for designing checking experiments,
called the transition checking approach. His method yields
good results for machines that possess a distinguishing
sequence, and for machines that are reduced, strongly
connected, and such that the actual machine has no more
states than the correctly operating machine. However,
for machines which do not have any distinguishing se-
quences, Hennie's procedure yields very long experi-
ments, which makes it impractical. Therefore, several
methods have been proposed for modifying a given se-
quential machine into a new one for which a short check-
ing experiment can easily be found [3], [7]-[13]. These
include: 1) a method of adding extra outputs [7], [8],
and 2) a method of adding extra inputs [9]-[11]. For an
n-state m-input symbol machine, the former gives a bound
on the length of checking experiments that is approxi-
mately mn3, and the latter gives a bound of mn2.

This paper describes a method to augment an arbitrary
machine to an easily testable machine by adding two
special input symbols, and gives an efficient procedure to
construct a checking experiment for it. For an n-state,
m-input symbol machine, this procedure gives a good
bound on the length of checking experiments that is ap-
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proximately mn[log2 n], where the square brackets denote
"the smallest integer greater than or equal to the num-
ber inside the brackets." Furthermore, the total checking
experiment is preset and thus requires no adaptive initializ-
ing sequence that adaptively brings the machine under
test to the starting state.

II. NOTATION AND BASIC DEFINITIONS
The sequential machines considered in this paper are

assumed to be finite state, synchronous, and deterministic
Mealy machines, and are not required to be reduced,
strongly connected, or completely specified. The machine
M will be represented by a quintuple M = (S,I,O,A,X)
where S = {Sl,S2,-- ,SnI is a finite set of states, I =
{I I2,- JImw is a finite set of input symbols, 0 = {01,02,
. . . ,01I is a finite set of output symbols, B: S X I--+ S is
called the next state function, and X: S X I -+0 is called
the output function.
A checking experiment is an input-output sequence which

when the input sequence is applied to the tested machine,
an output sequence is produced which establishes whether
or not the tested machine is equivalent to the correctly
operating machine, subject to some fault assumptions.
An experiment is said to be adaptive or preset depending

on whether the next input signal to apply is or is not
based upon the output signals previously produced by
the machine.
A synchronizing sequence for a sequential machine is an

input sequence whose application is guaranteed to leave
the machine in a certain final state, regardless of the par-
ticular initial state of the machine.
A homing sequence for a sequential machine is an input

sequence whose application makes it possible to deter-
mine the final state of the machine by observing the cor-
responding output sequence that the machine produces.
A distinguishing sequence is an input sequence whose ap-
plication makes it possible to determine the initial state
of the machine by observing the corresponding output
sequence that the machine produces. A transfer sequence
from state Si to state Si is an input sequence which trans-
fers the machine from state Si to state Si.
A machine M' = (S',I',0',5',X') is a submachine of the

machine M = (S,I,O,6,X) if and only if S' C SJI' C I,
O' C 0,5' = a restricted to S' X I', and ' = X re-
stricted to S' X I'.
An easily testable machine is one for which a short

preset checking experiment can be found with a simple
algorithm. In order to obtain a short preset checking ex-
periment, it is desirable for the machine to have a short
distinguishing sequence, a short synchronizing sequence,
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and short transfer sequences. Therefore, we make the
following definition. An easily testable machine is a reduced
and strongly connected machine which possesses 1) a
distinguishing sequence Xd of length [0g2 n] which forces
the machine into a specific final state Si, i.e., Xd is also a
synchronizing sequence, and 2) transfer sequences T(i)
with a length that is at most [10g2 n] to move the machirne
from state Si to state Si for all i, where n is the number of
states of the machine and where Ex] denotes the smallest
integer greater than or equal to x.

Example: Consider the p-stage binary shift register
shown in Fig. 1. The p-stage binary shift register is a
serial connection of p-unit delays interconnected so that
at the occurrence of a shift signal the contents of the ith
delay is shifted into the (i + 1) st delay. Let Y1, Y2, .*,Y,
be the state variables, let X be the input variable, and let
Z be the output variable. For the p-stage binary shift
register, a p-tuple state assignment Y1Y2... Y, can be
found for each state such that

1) Yi(t + 1) = Yi_i(t), i = 2,3,.-. p

2) Y1(t + 1) = X(t)

and

3) Z(t) = Yp(t)
where Y1(t),Y2(t),.. ,Yp(t), X(t), and Z(t) are the val-
ues of Y1,Y2,... , Yp,X,Z at time t, respectively. Then it
is easily seen that any input sequence of length p will be
both a distinguishing sequence and a synchronizing se-

quence, and that Ypyp-1... Y1 is a transfer sequence of
length p which carries the p-stage binary shift register
to state Si with state assignment Y1Y2 *. Yp. Therefore,
the p-stage binary shift register is an easily testable
machine.

III. AUGMENTATION OF THE GIVEN
MACHINE

In this section we present a procedure to augment a

given machine by adding two extra input symbols so that
the augmented machine is an easily testable machine.

In the next section we will discuss the design of efficient
checking experiments under the assumption that faults
do not increase the number of states. For a machine
realized by binary devices, the probability of the occur-

rence of faults that can increase the number of states is
indeed rather small when the number of states n is an

integral power of 2, since physical creation of new state
variables would have been implied. However, when n is
not an integral power of 2, and/or more than [10g2 n]
state variables are used in the realization, such faults are

very likely to occur. From this point of view, it is desir-
able to augment the original n-state machine so that the
augmented machine has 2P = n' states where p = [log2 n].

Let M = (S,I,0,5,X) be a given machine, where S =

I S,S2, * ,Sn}, I = { I1,I2, jIm} and 0 = {01,02, ...**,
Then we can give a procedure for augmenting the given

INPUT OUTPUT

Fig. 1. The p-stage binary shift register.

machine M so that the augmented machine M* is easily
testable.

Augmentation Procedure
1) Add new states Sn+l1Sn+2. ,Sn I to M if n is not

an integral power of 2, where n' - 2P and p =
[log2 n].

2) Assign a p-bit binary code to all states such that
each state has only one assignment.

3) Add new input symbols Eo,Ej to M. The next state
function a and the output function X for the new
input symbols eo,El are defined as follows.
For each state Si, with state assignment Y1Y22.. Y,
6(S&co) = Sj, and 5(Si,s1) = Sk;

X (Si,fo) = X (Si,E) = 01, if Yp = 0

=02, if Yp = 1
where Sjand Sk have state assignments 0 Y1Y2... YP-
and 1YlY2...Yp-1, respectively.

The effect of this state transition is to shift the state
assignment one digit to the right and introduce a zero or a
one as new left most digit according to input so or el,
respectively. Thus, this 2-column submachine restricted
to inputs Eo,E1 is isomorphic to the p-stage binary shift
register. Since the p-stage binary shift register is an easily
testable machine, this 2-column submachine is also easily
testable, and hence the augmented machine M* is too.
Indeed, in the augmented machine M* obtained above,
any input sequence of length p = [log2 n] consisting of
eo and E, is both a distinguishing sequence and a synchro-
nizing sequence, and CypEyP_j- * *Ey22Ey1 is a transfer sequence
of length p which transfers M* from an arbitrary state to
state Si with state assignment Y1Y2... Yp. The augmented
machine M* has n' states and (m + 2) input symbols,
where log2 n' = [log2 n].
Example: Consider machine A given by Table I. Ma-

chine A is not strongly connected and does not have a
distinguishing sequence. By applying the above procedure,
we obtain the augmented machine A* shown in Table II.
A* has a distinguishing sequence EoEo which is also a syn-
chronizing sequence whose final state is Si. Transfer
sequences are shown in Table III. Hence the augmented
machine A* is an easily testable machine.

IV. CHECKING EXPERIMENTS FOR THE
EASILY TESTABLE MACHINES

In this section we consider checking experiments for
the easily testable machines. The principle idea of our
method is based mainly on those of Hennie [2] and
Hsieh [5], and we assume that readers are familiar with
the principle of those methods. Assume that the class of
allowable failures satisfies the following conditions.
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TABLE I
MACHINE A

nput
state \~.~ 0 1

S1 s2 (1) S1 (1)

s2 ~ s3 (0)

S3 S2 (0) - (1)

The dash means "DON T CARE."

TABLE II
AUGMENTED MACHINE A*

ipt
state 0 1 eo E

00 S1 S2 (1) S1 (1) SI (0) S3 (0)

01 S2 S3 (0) S1 (1) S3 (1)

10 S3 S2 (0) - (1) 2 (0) S4 (0)

11 S4 s2 (1) S4 (1)

TABLE III

"A" means the null sequence.

1) Any failure which occurs is assumed to occur
throughout the test.

2) Failures do not increase the number of states.
Let M = (S,I,O,5,X) be an n-state m-input easily

testable machine. Let Xd be an input sequence of length
[log2 n] which is both a distinguishing sequence and a
synchronizing sequence. Let Si be the final state resulting
from the application of Xd. The transfer sequence with a
length that is at most [10g2 n] to move M from state Si
to state Si is denoted by T(i).
The checking experiment consists of five parts. The

first part of the checking experiment is the initializing
part which brings the machine under test to the starting
state Si for the experiment. This can be done by a syn-
chronizing sequence Xd. Hence, the first part of the ex-
periment is preset and has the form:

Input: Xd

State: - S1 (1)
Output:

where the dash means "DON'T CARE."X
The second part of the checking experiment carries the

correctly operating machine through all its states, dis-
plays all the different responses to Xd, and thus verifies
that Xd is a distinguishing sequence. Thus, the second
part of the checking experiment has the form:

Input:

State:

Output:

Xd

Si Si

zi
(2)

for all states Si of M, where Zi = X(Si,Xd).
The third part of the experiment verifies, by using a

distinguished sequence Xd validated by the second part
of the experiment, that Xd is a synchronizing sequence
used to force the correctly operating machine into state Si.
Thus, this part has the form:

Input:

State:

Output:

Xd Xd

Si Si SI
Zi Z1

(3)

for all states Si of M.
The fourth part of the checking experiment verifies that

T(i) transfers the correctly operating machine from state
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Si to state Si. This can be done by using a distinguishing
sequence Xd as follows:

Input:

State:

Output:

Xd T(i)
_ SI

Xd

Si Si (4)
- Zlii z

for all states Si, where Zli = X(Si,T(i) ).
The fifth part of the checking experiment is to be de-

signed to check all the transitions and has the form

Input:

State:

Output:

Xd T(i)
- Si

[log2n] for i = 1,2,..-,n, where X I is the length of X.
From the organization of the checking experiment, it

can be seen that the total length of the checking experi-
ment is at most

n

I Xd'I + E T(i) + 2I Xd |)
i1

m n

+ , (I T(i) + I Ij I+ XdI)

Ij

Si

- Zii oij = x(Si,Ij)

for all states Si and inputs Ij.
Since the distinguishing sequence Xd and the transfer

sequence T(i) have been validated by the previous parts
of the checking experiment, Si is uniquely determined by
T(i) and Sij is recognized by Xd. Note that if both
.(Si, Ij) and X(Si,Ij) are unspecified, then such a transi-
tion from state Si under input Ij need not be checked.
Although the checking experiment is functionally sub-

divided into five parts, these parts need not be phys-
ically separated from each other. Parts 1-4 can be com-
pletely contained in the following sequences:

Input:
State:
Output:

Xd T(i)
_ Si

Xd Xd

Si Si Si
- Zli Zi z1

Xd

Sij = (Sl,j)
zij

Si (5)

- (2n+ 1) IXdI + E T(i)
i=l

+mn(IXdI + 1) + m T(i)
i1

< (2n + 1) [log2 n] + n[og2 n] + mn(Elog2 n] + 1)

+ mnElog2 n]
- (3n + 1) [log2 n] + mn(2[log2 n] + 1).

Thus, the upper bound on the length of the checking
experiment is

(3n + 1)[og2 nl] + mn(2[log2 n] + 1).

(6) For large m and n, this bound is smaller than the bound
for all states Si.

Thus, the total checking experiment is to be organized
from the subexperinments (5) and (6). Then we have the
following checking experiment:

(n+ [log2n])(1 +mn)
reported by Holborow [11], which is the best bound in
the previous methods [7]-E11].

T(l) XdXd T(2) XdXd
- Si Si Si S2 S

T(1) IlXd T(1) I2Xd ... Xd T(i) I,Xd ... Xd

Si Si

T(n) ImXd

Si Sn

In this checking experiment, the initializing part is
preset, hence the total checking experiment is preset, and
thus is easy to be applied to the tested machine.

Let us derive the bound on the length of the checking
experiment. Since the machine M is assumed to be an

easily testable machine, Xd = [l0g2 n] and T(i) _

Example: Let us construct a checking experiment for
machine A* given by Table II. Xd = EoEo is both a dis-
tinguishing sequence and a synchronizing sequence whose
final state is S. Transfer sequences T(i) from state Si to
each state Si are shown in Table III.
The total checkingwexperiment is:

Input:

State:

Xd

Xd T(n)
1

XdXd

Si s71 Si S1 Si Si Si
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(a)
EoEo T(l) co-o C-oEo

(c).
T (b) l-
T(2) CoEo foeo

- S1 SI Si S S2 .81 Si

-- A 00 00

(d)
T(3) fEOo COCO

S3 Si Si

00 1 0 00 0 0 1 00

(f)
(e) I

T(4) co-o C-oEo T(1) EoEO T(1) 1 coEo
(a')

TM1 so eoeo

Si S4 Si Si S1S2 Si S8S8 Si S8S8 Si
00 1 1 00 A 1 1

T(1) El E0EO T(2) 1 ooEo

A 1 00 A 0 00

T (C2)T
IT(2) eo EoEo T(2) El EOEO

S1 s1s3 S1 S2S3 Si S2S1 Si S2S3 -S

A 0 01 00 0 01

T(3) 0 Eo o T(3) 1 EoEo

00 1 00

TI (d') I-
T(3) co coco

00 1 01

T(r (e')-T(3) E'l (0Eo
S S3S2 Si S3- Si S3S2 SI S3S4 Si

0 0 10 0 1 --

r (f')
T (4) so foEo T(4) E1 EoEo

S1 S482 Si S4S4 Si.

00 1 10

0 0 10 0 0 1 1

00 1 11

In the above experiment, subexperiments (a)-(f) are

equivalent to (a')-(f'), respectively, and thus subexperi-
ments (a')-(f') can be deleted. Then we can obtain the
reduced checking experiment as follows:

procedure of designing checking experiments for such
easily testable machines. For an n-state m-input symbol
machine, this procedure gives a bound on the length of
checking experiments that is approximately mn[log2 n],

Input: EoEo T(1) eoeoeOEo T(2) EocO-oEo T(3) EoEOeOEo T(4) Eo:OEOEo

Output: -- A 0000 00 1000 0 0 100 00 1100

T(1) OEoeo T(1) lEoEo T(2) lEoEo T(2) EiEoEo T(3) 0Eoeo T(3) lcoeo T(4) ElEoeo

A 110 A 100 00 001 00 101 0 010 0 1-- 00 111.

V. CONCLUSION

In this paper, we have considered a method to construct
easily testable machines and have considered checking
experiments for such machines. An n-state easily testable
machine considered in this paper is one which possesses
1) a distinguishing sequence of length [og2 n] which
forces the machine into a specific state Si and 2) transfer
sequences of length at most 10g2 n] to carry the machine
from state Si to state Si for all i. We have shown that if
an original machine is not easily testable, then it can be
modified to an easily testable machine by adding two
extra input symbols. We have also presented an efficient

which is smaller than the best bound mn2 obtained in the
previous methods [7]-[11]. Furthermore, the total check-
ing experiment is preset.
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