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The basis 1s necessary for development

o For a tree to grow larger, its root must grow bigger and
deeper into the ground.

o Similarly, for test technologies (leaves) to develop,
substantial results of the fundamental research (root)
are necessary.

O The more enriched the fundamental research results
become, the more enriched the practical research
results become.



Fundamental problems of testing

What are the fundamentals of testing?
S/
3 ; I had the opportunity to ask myself

the same question
when I was requested to write a book.

To educate the fundamentals of testing, I wrote a book.

Hideo Fujiwara, Logic Testing and Design for Testability,
The MIT Press, 1985



iss

Computer Systems s Institute of Technology
Series Ssachusetts 02142

\g and Design for ¥
jiwara

nputers must perform more and
ly. And reliability depends to a
on whether a circuit has been
2d properly and behaves cor-
1ver, the greater circuit density
1its and systems has made
2 difficult and more costly.
estability techniques offer one
ward alleviating this situation:
of enough extra circuitry to a
ip to reduce the complexity of

Fundamen 4 i\

3 the cost of testing rises,

3 % owing interest in the use of
f 1'3311 ng ? 1 Jaen ; s ques with VLSI circuits.
1 o  of the book focuses on test
P fault simulation, and com-

sting. The second half takes
\chniques to minimize the cost
cation and/or test generation;
for sequential logic circuits;
ting; built-in testing; and var-
techniques for testable

ara is an associate professor

Testing and Design for Testability is in-
cluded in the Computer Systems series,
edited by Herb Schwetman.

The MIT Press

To educate the fundamentals of testing, I wrote a book.

Hideo Fujiwara, Logic Testing and Design for Testability,
The MIT Press, 1985



Fundamental problems of testing

Test Generation Design for Testability
O

O o
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O Test generation problem
m ATPG (Automatic Test Program Generation)

o Design-for-test problem
m DFT
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Fundamental problems of testing

Practical synthesis problems

O Test generation algorithms.
m Invent efficient algorithms to provide high fault efficiency.

o Design-for-testability methods.
m  Optimize the DFT under various constraints.

Theoretical analysis problems

o Analysis of test generation complexity.
m Clarify the complexity of test generation algorithms.

o Classification of sequential circuits.
m Class of combinational test generation complexity.
m Class of acyclic test generation complexity.



Theory is the mother of practice

Necessity 1s the mother of invention

Theoretical research / fundamental research are necessary
for practical research.

Theoretical research :> Practical ideas

Polynomial Time FAN algorit
297
Class ??: ;, &

QB J

Analysis of test generation complexity :> Efficient ATPG

Classification of sequential circuits :> Optimal design for testability
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Complexity of test generation

NP-completeness [Fujiwara, MIT Press, 1985]

O A Boolean expression is satisfiable iff there exists some assignment
of zeros and ones to the variables that gives the expression the
value 1.

O SAT (Satisfiability): Is a Boolean expression satisfiable?

o Theorem 1 [Cook 1971]: SAT is NP-complete.

o U-SAT: Satisfiability problem for unate expression

o Theorem 2 [Fujiwara 1982]: U-SAT is solvable in time O(L)
where L is the length of an expression.
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Complexity of test generation

NP-completeness

|Fujtwara, MIT Press, 1985]

O Fault detection (FD): Is a given single stuck-at fault detectable?
kM-FD: Fault detection problem for k-level monotone circuits
kU-FD: Fault detection problem for k-level unate circuits

o Theorem 3 [Fujiwara 1982]:
3M-FD is NP-complete.
Hence,
3U-FD and FD are NP-complete.
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Figure 4.1
A 3-level monotone circuit Q,



Complexity of test generation

SAT versus FD [Fujiwara, MIT Press, 1985]

O Observation

SAT is NP-complete. <:> FD is NP-complete.

U-SAT is solvable in O(L). <:> U-FD is NP-complete.

M-SAT is solvable in O(L). <:> M-FD is NP-complete.
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Complexity of test generation

Polynomial time class [Fujiwara, MIT Press, 1985

o A combinational circuit C is said to be k-bounded if there exists a
partition II={B,, B, ..., B,} such that

(1) the number of inputs of each block Bi is at most k, and
(2) graph G ; has no cycle.

By B
4

@

\B.3<
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Complexity of test generation

k-bounded circuits [Fujiwara, MIT Press, 1985]

O Theorem 4 [Fujiwara 1982]: Let C be a k-bounded circuit.
Then there is an algorithm of time complexity O(16*m) to
find a test for a single stuck-at fault in C, where m is the

number of lines in C.

a, b a, b a, b
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s s 1 . s 1
0 ] Sp-1 0 1 52 Sp-1
. Figure 4.4
Figure 4.3 Gate-minimum p-bit adder

Ripple-carry adder

3-bounded circuit 6-bounded circuit

15



Complexity of test generation

k-fanout-limited vs. k-fanout-point-bounded
[Fujtwara, MIT Press, 1985]

In the proof of this theorem, an algorithm is

k-fanout-li presented which requires the enumeration of at

4 mbin ns of val 1,D,D) on
o0 k-FL-FD:  Fault d oo pg?nts'?' O OFVELLES (b BHEY)

o k-FPB-FD: Fault d
circuity This algorithm is the origin of the FAN algorithm.

o Theorem 5 [Fujiwara 1982
k-FL-FD is NP-complete if :
k-FPB-FD is solvable in O(4km) where m is the number of lines in C.
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Complexity of test generation

k-fanout-limited vs. k-fanout-point-bounded

[Fujtwara, MIT Press, 1985]
<
<

k-fanout-limited k-fanout-point-bounded

o Observation:
k-FL-FD is NP-complete even if k is a constant.
k-FPB-FD is solvable in O(m) if k is a constant.

o The complexity of test generation is affected

not by the number of fanout branches from a fanout point
but by the number of fanout points.

17



Complexity of test generation

Theory 1s the mother of practice

[Fujiwara, MIT Press, 1985]

The algorithm shown in the proof of the theorems is
the origin of the FAN algorithm.

Analysis of test generation complexity :> Efficient ATPG

Polynomial Time FAN algorit
Class ???
> o, °9

Qo
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Heuristics of the FAN algorithm

[Fujtwara, MIT Press, 1985]

o Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

19



Heuristics of the FAN algorithm

[Fujtwara, MIT Press, 1985]

o Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

O Strategy 2: Assign a fault signal D or D’ that is uniguely determined or
implied by the fault in question.

20



Unique assignment can reduce backtracks

1

c=1 o
B=0 } : 83 Hep
E=D / Y Py

(a) Unique sensitization and implication

implied by the fault in question. N

o Strategy 3: When the D-frontier consists of a single gate, apply a unique

sensitization. %

D-frontier becomes empty and
backtrack occurs later

et e e T I

(b) PODEM
21
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o Strategy 1
values as j

O Strategy 2
implied by

o Strategy 3

{(a) Illustrative circuit

sensitization.

1985]
y signal

rmined or

ply a unique

o Strategy 4: Stop the backtrace at a head line, and postpone the line
justification for the head line to IatM

This can reduce
backtracks

(b) PODEM (¢) Backtracking at head lines
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O

uristics of the FAN aloorit
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backtrace as well as backtracks

'T Press, 1985]

e as many signal

uely determined or

gate, apply a unique

byostpone the line

justification for the heahﬁto later.

Strategy 5: Multiple backtracing (concurrent backtracing of more than one

path) is more efficient than backtracing along a sing

le path.
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Heuristics of the FAN algorithm

[Fujtwara, MIT Press, 1985]

o Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

o Si
inn  PODEM assigns a binary value only to primary inputs.

So, backtracks occur at primary inputs.

o Si
S6

FAN assigns a binary value only to head lines and fanout points.

H Jsd So, backtracks occur at headlines and fanout points.

o S This is effective to reduce the number of backtracks. !
P, N = =

o Strategy 6: In the multiple backtrace, if an objective at a fanout point p

has a contradictory requirement, stop the backtrace so as to assign a
binary value to the fanout point.
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History of test generation algorithms

Combinational ATPG

1966 1981 1983 1985 1988 1990 1992 1993 1999 2000 2001
} } i } i } }
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FAN RecUbs TRAN
i ecursive
(Fujiwara) Learning  (Chakradhar, IGRAINE
ISCAS-85 (Kunz,et al.) et al.) (Tafertshofer,
Benchmarks et al.)

ITC-99

(Fujiwara & Brglez) benchmarks
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100% fault efficiency

The first ATPG
able to achieve

The first ATPG
able to achieve
100% fault efficiency

Comb for ISCAS’85 for ITC'99
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History of test generation algorithms

Combinational ATPG

1966 1981 1983 1985 1988 1990 1992 1993 1999 2000 2001
} } } } } i } }
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(ROth, IBM) (Goel) (SChU'Z, (Larrabee) (GIZdarSkI
FAN et al.) & Fujiwara)
(Fujiwara) Recursive TRAN
Learning (Chakradhar, IGRAINE
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