
Logic Testing and Design for Testability

MIT Press, Sept. 1985

Hideo Fujiwara

2

The basis is necessary for development

p  For a tree to grow larger, its root must grow bigger and
deeper into the ground.

p  The more enriched the fundamental research results

become, the more enriched the practical research
results become.

p  Similarly, for test technologies (leaves) to develop,
substantial results of the fundamental research (root)
are necessary.

3

Fundamental problems of testing

What are the fundamentals of testing? Fundamentals
of testing ???

I had the opportunity to ask myself
the same question
when I was requested to write a book.

To educate the fundamentals of testing, I wrote a book.
 Hideo Fujiwara, Logic Testing and Design for Testability,

The MIT Press, 1985

4

Fundamental problems of testing

What is the fundamentals of testing? Fundamentals
of testing ???

 I had the opportunity to ask myself
the same question 25 years ago
when I was requested to write a book.

To educate the fundamentals of testing, I wrote a book.
 Hideo Fujiwara, Logic Testing and Design for Testability,

The MIT Press, 1985

Fujiwara at the age of 38

5

Fundamental problems of testing

p  Design-for-test problem
n  DFT

Test Generation	
 Design for Testability	

p  Test generation problem
n  ATPG (Automatic Test Program Generation)

6

H. Fujiwara, Logic Testing and Design for Testability,
MIT Press, 1985

7

Practical items

Test Generation

Fault Simulation

Scan Design

Built-in Self-Testing

H. Fujiwara, Logic Testing and Design for Testability,
MIT Press, 1985

8

Theoretical items

Boolean Difference

The Complexity of Testing

Design to Minimize the Cost of
 Test Application

Design to Minimize the Cost of
 Test Generation

H. Fujiwara, Logic Testing and Design for Testability,
MIT Press, 1985

9

Fundamental problems of testing

p  Test generation algorithms.
n  Invent efficient algorithms to provide high fault efficiency.

p  Analysis of test generation complexity.

n  Clarify the complexity of test generation algorithms.

Practical synthesis problems

Theoretical analysis problems

p  Classification of sequential circuits.

n  Class of combinational test generation complexity.
n  Class of acyclic test generation complexity.

p  Design-for-testability methods.
n  Optimize the DFT under various constraints.

10

Theory is the mother of practice

Theoretical research

 Polynomial Time
Class ???

Practical ideas

Analysis of test generation complexity

Classification of sequential circuits

Efficient ATPG

Optimal design for testability

Theoretical research / fundamental research are necessary
 for practical research.

Necessity is the mother of invention

FAN algorithm	

11

Complexity of test generation
 NP-completeness [Fujiwara, MIT Press, 1985]

p  A Boolean expression is satisfiable iff there exists some assignment
of zeros and ones to the variables that gives the expression the
value 1.

p  Theorem 2 [Fujiwara 1982]: U-SAT is solvable in time O(L)
 where L is the length of an expression.

p  SAT (Satisfiability): Is a Boolean expression satisfiable?

p  Theorem 1 [Cook 1971]: SAT is NP-complete.

p  U-SAT: Satisfiability problem for unate expression

12

p  Fault detection (FD): Is a given single stuck-at fault detectable?
 kM-FD: Fault detection problem for k-level monotone circuits
 kU-FD: Fault detection problem for k-level unate circuits

p  Theorem 3 [Fujiwara 1982]:
 3M-FD is NP-complete.
 Hence,
 3U-FD and FD are NP-complete.

Complexity of test generation
 NP-completeness [Fujiwara, MIT Press, 1985]

13

SAT is NP-complete. FD is NP-complete.

U-SAT is solvable in O(L). U-FD is NP-complete.

M-SAT is solvable in O(L). M-FD is NP-complete.

p  Observation

Complexity of test generation
 SAT versus FD [Fujiwara, MIT Press, 1985]

14

p  A combinational circuit C is said to be k-bounded if there exists a

partition Π={B1, B2, …, Bt} such that
 (1) the number of inputs of each block Bi is at most k, and
 (2) graph G Π has no cycle.

B1 B4

B2 B5

B3

G Π

Complexity of test generation
 Polynomial time class [Fujiwara, MIT Press, 1985]

15

p  Theorem 4 [Fujiwara 1982]: Let C be a k-bounded circuit.
Then there is an algorithm of time complexity O(16km) to
find a test for a single stuck-at fault in C, where m is the
number of lines in C.

3-bounded circuit 6-bounded circuit

Complexity of test generation
 k-bounded circuits [Fujiwara, MIT Press, 1985]

16

p  k-FL-FD: Fault detection problem for k-fanout-limited circuits
p  k-FPB-FD: Fault detection problem for k-fanout-point-bounded
 circuits

k-fanout-limited k-fanout-point-bounded

Complexity of test generation
 k-fanout-limited vs. k-fanout-point-bounded

[Fujiwara, MIT Press, 1985]

p  Theorem 5 [Fujiwara 1982]:
 k-FL-FD is NP-complete if k>2.
 k-FPB-FD is solvable in O(4km) where m is the number of lines in C.

In the proof of this theorem, an algorithm is
presented which requires the enumeration of at
most 4k combinations of values (0,1,D,D’) on
fanout-points.

This algorithm is the origin of the FAN algorithm.

17

p  Observation:
 k-FL-FD is NP-complete even if k is a constant.
 k-FPB-FD is solvable in O(m) if k is a constant.

k-fanout-limited k-fanout-point-bounded

p  The complexity of test generation is affected

 not by the number of fanout branches from a fanout point
 but by the number of fanout points.

Complexity of test generation
 k-fanout-limited vs. k-fanout-point-bounded

[Fujiwara, MIT Press, 1985]

18

 Polynomial Time
Class ???

Analysis of test generation complexity Efficient ATPG

The algorithm shown in the proof of the theorems is
the origin of the FAN algorithm.

Complexity of test generation
 Theory is the mother of practice

[Fujiwara, MIT Press, 1985]

FAN algorithm	

19

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

20

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

p  Strategy 2: Assign a fault signal D or D’ that is uniquely determined or
implied by the fault in question.

21

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

p  Strategy 2: Assign a fault signal D or D’ that is uniquely determined or
implied by the fault in question.

p  Strategy 3: When the D-frontier consists of a single gate, apply a unique

sensitization.

D-frontier becomes empty and
backtrack occurs later

Unique assignment can reduce backtracks

22

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

p  Strategy 2: Assign a fault signal D or D’ that is uniquely determined or
implied by the fault in question.

p  Strategy 3: When the D-frontier consists of a single gate, apply a unique

sensitization.

p  Strategy 4: Stop the backtrace at a head line, and postpone the line

justification for the head line to later.

This can reduce
backtracks

23

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

p  Strategy 2: Assign a fault signal D or D’ that is uniquely determined or
implied by the fault in question.

p  Strategy 3: When the D-frontier consists of a single gate, apply a unique

sensitization.

p  Strategy 4: Stop the backtrace at a head line, and postpone the line

justification for the head line to later.

p  Strategy 5: Multiple backtracing (concurrent backtracing of more than one

path) is more efficient than backtracing along a single path.

This can reduce computation of
backtrace as well as backtracks

24

p  Strategy 1: In each step of the algorithm, determine as many signal
values as possible that can be uniquely implied.

Heuristics of the FAN algorithm
 [Fujiwara, MIT Press, 1985]

p  Strategy 6: In the multiple backtrace, if an objective at a fanout point p
has a contradictory requirement, stop the backtrace so as to assign a
binary value to the fanout point.

p  Strategy 2: Assign a fault signal D or D’ that is uniquely determined or
implied by the fault in question.

p  Strategy 3: When the D-frontier consists of a single gate, apply a unique

sensitization.

p  Strategy 4: Stop the backtrace at a head line, and postpone the line

justification for the head line to later.

p  Strategy 5: Multiple backtracing (concurrent backtracing of more than one

path) is more efficient than backtracing along a single path.

PODEM assigns a binary value only to primary inputs.
So, backtracks occur at primary inputs.

FAN assigns a binary value only to head lines and fanout points.
So, backtracks occur at headlines and fanout points.

 This is effective to reduce the number of backtracks.

25

History of test generation algorithms
Combinational ATPG
1966

D-algorithm
(Roth, IBM)

1981

PODEM
(Goel)

1983

 FAN
(Fujiwara)

1985

ISCAS-85
Benchmarks
(Fujiwara & Brglez)

1988

SOCRATES
(Schulz,
 et al.)

1990

Recursive
Learning
(Kunz,et al.)

1999

ITC-99
benchmarks

2001

 SPIRIT
(Gizdarski
& Fujiwara)

1993

NEMESIS
(Larrabee)

1992

 TRAN
(Chakradhar,
 et al.)

2000

IGRAINE
(Tafertshofer,
 et al.)

26

History of test generation algorithms
Combinational ATPG
1966

D-algorithm
(Roth, IBM)

1981

PODEM
(Goel)

1983

 FAN
(Fujiwara)

1985

ISCAS-85
Benchmarks
(Fujiwara & Brglez)

1988

SOCRATES
(Schulz,
 et al.)

1990

Recursive
Learning
(Kunz,et al.)

1999

ITC-99
benchmarks

2001

 SPIRIT
(Gizdarski
& Fujiwara)

1993

NEMESIS
(Larrabee)

1992

 TRAN
(Chakradhar,
 et al.)

2000

IGRAINE
(Tafertshofer,
 et al.)

The first ATPG
able to achieve

100% fault efficiency
for ISCAS’85

SAT-based ATPG

The first ATPG
able to achieve

100% fault efficiency
for ITC’99

27

History of test generation algorithms
Combinational ATPG
1966

D-algorithm
(Roth, IBM)

1981

PODEM
(Goel)

1983

 FAN
(Fujiwara)

1985

ISCAS-85
Benchmarks
(Fujiwara & Brglez)

1988

SOCRATES
(Schulz,
 et al.)

1990

Recursive
Learning
(Kunz,et al.)

1999

ITC-99
benchmarks

2001

 SPIRIT
(Gizdarski
& Fujiwara)

1993

NEMESIS
(Larrabee)

1992

 TRAN
(Chakradhar,
 et al.)

2000

IGRAINE
(Tafertshofer,
 et al.)

Sequential ATPG
1968

Extended
D-algorithm
(Kubo, NEC)

1976

9-Valued
(Muth)

1989

 ISCAS-89
 Benchmarks
(Brglez,Agrawal,Fujiwara)

 GENTEST
 (Cheng &
 Chakraborty)

1991

 HITEC
(Niermann &
 Patel)

1999

ITC-99
benchmarks

1971

 Extended
 D-algorithm
(Putzolu & Roth, IBM)

1997

STRATEGATE
(Hsiao, et al.)

28

Hideo Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985

https://mitpress.mit.edu/index.php?q=books/logic-testing-and-design-testability	

Paperback	
Hardback	

29

Thank you

