
Logic Testing and Design for Testability 
 

MIT Press,  Sept. 1985 
 
 
 

Hideo Fujiwara 



2 

The basis is necessary for development 

p  For a tree to grow larger, its root must grow bigger and 
deeper into the ground. 

 

 
p  The more enriched the fundamental research results 

become, the more enriched the practical research 
results become. 

p  Similarly, for test technologies (leaves) to develop, 
substantial results of the fundamental research (root) 
are necessary. 
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Fundamental problems of testing 

What are the fundamentals of testing?    Fundamentals  
of testing ??? 

I had the opportunity to ask myself  
the same question 
when I was requested to write a book. 

To educate the fundamentals of testing, I wrote a book. 
    Hideo Fujiwara, Logic Testing and Design for Testability, 

The MIT Press, 1985 
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Fundamental problems of testing 

What is the fundamentals of testing?    Fundamentals  
of testing ??? 

     I had the opportunity to ask myself  
the same question 25 years ago  
when I was requested to write a book. 

To educate the fundamentals of testing, I wrote a book. 
    Hideo Fujiwara, Logic Testing and Design for Testability, 

The MIT Press, 1985 

Fujiwara at the age of 38
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Fundamental problems of testing  

p  Design-for-test problem 
n   DFT 

Test Generation	
 Design for Testability	


p  Test generation problem 
n   ATPG (Automatic Test Program Generation) 
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H. Fujiwara, Logic Testing and Design for Testability,  
MIT Press, 1985 
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Practical items

Test Generation

Fault Simulation

Scan Design

Built-in Self-Testing

H. Fujiwara, Logic Testing and Design for Testability,  
MIT Press, 1985 
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Theoretical items

Boolean Difference

The Complexity of Testing

Design to Minimize the Cost of
 Test Application

Design to Minimize the Cost of
 Test Generation

H. Fujiwara, Logic Testing and Design for Testability,  
MIT Press, 1985 
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Fundamental problems of testing  

p  Test generation algorithms. 
n   Invent efficient algorithms to provide high fault efficiency. 

 
p  Analysis of test generation complexity. 

n  Clarify the complexity of test generation algorithms. 

Practical synthesis problems 

Theoretical analysis problems 

 
p  Classification of sequential circuits.  

n  Class of combinational test generation complexity. 
n  Class of acyclic test generation complexity. 

p  Design-for-testability methods. 
n   Optimize the DFT under various constraints. 
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Theory is the mother of practice 

Theoretical research   

   Polynomial Time 
Class ??? 

Practical ideas 

Analysis of test generation complexity 

Classification of sequential circuits 

Efficient  ATPG 

Optimal design for testability 

Theoretical research / fundamental research are necessary  
                             for practical research. 

Necessity is the mother of  invention 

FAN algorithm	
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Complexity of test generation   
 NP-completeness       [Fujiwara, MIT Press, 1985] 

p  A Boolean expression is satisfiable iff there exists some assignment 
of zeros and ones to the variables that gives the expression the 
value 1. 

p  Theorem 2 [Fujiwara 1982]: U-SAT is solvable in time O(L)  
             where L is the length of an expression. 
 

 
p  SAT (Satisfiability): Is a Boolean expression satisfiable? 
  
p  Theorem 1 [Cook 1971]:  SAT is NP-complete. 

 
p  U-SAT: Satisfiability problem for unate expression 
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p  Fault detection (FD):  Is a given single stuck-at fault detectable? 
       kM-FD:  Fault detection problem for k-level monotone circuits 
       kU-FD:  Fault detection problem for k-level unate circuits 

p  Theorem 3 [Fujiwara 1982]:  
       3M-FD is NP-complete.     
       Hence,  
       3U-FD and FD are NP-complete. 
 

Complexity of test generation   
 NP-completeness       [Fujiwara, MIT Press, 1985] 
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SAT is NP-complete. FD is NP-complete. 

U-SAT is solvable in O(L). U-FD is NP-complete. 

M-SAT is solvable in O(L). M-FD is NP-complete. 

p  Observation 

Complexity of test generation   
 SAT versus FD         [Fujiwara, MIT Press, 1985] 
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p  A combinational circuit C is said to be k-bounded if there exists a 

partition Π={B1, B2, …, Bt}  such that 
         (1) the number of inputs of each block Bi is at most k, and 
         (2) graph G Π has no cycle. 

B1 B4 

B2 B5 

B3 

G Π

Complexity of test generation   
 Polynomial time class       [Fujiwara, MIT Press, 1985] 
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p  Theorem 4 [Fujiwara 1982]:  Let C be a k-bounded circuit.  
Then there is an algorithm of time complexity O(16km) to 
find a test for a single stuck-at fault in C, where m is the 
number of lines in C. 

 

3-bounded circuit 6-bounded circuit 

Complexity of test generation   
 k-bounded circuits       [Fujiwara, MIT Press, 1985] 
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p  k-FL-FD:    Fault detection problem for k-fanout-limited circuits 
p  k-FPB-FD:  Fault detection problem for k-fanout-point-bounded       
                     circuits 

k-fanout-limited k-fanout-point-bounded 

Complexity of test generation   
    k-fanout-limited vs. k-fanout-point-bounded        

[Fujiwara, MIT Press, 1985] 

p  Theorem 5 [Fujiwara 1982]:  
     k-FL-FD is NP-complete if k>2. 
     k-FPB-FD is solvable in O(4km) where m is the number of lines in C. 
 

 
In the proof of this theorem, an algorithm is 
presented which requires the enumeration of at 
most 4k combinations of values (0,1,D,D’) on 
fanout-points.     
 
This algorithm is the origin of the FAN algorithm. 
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p  Observation:   
     k-FL-FD is NP-complete even if k is a constant. 
     k-FPB-FD is solvable in O(m) if k is a constant. 
 

k-fanout-limited k-fanout-point-bounded 

 
p  The complexity of test generation is affected  

 not by the number of fanout branches from a fanout point 
 but by the number of fanout points. 

Complexity of test generation   
    k-fanout-limited vs. k-fanout-point-bounded        

[Fujiwara, MIT Press, 1985] 
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   Polynomial Time 
Class ??? 

Analysis of test generation complexity Efficient  ATPG 

The algorithm shown in the proof of the theorems is 
the origin of the FAN algorithm. 

Complexity of test generation   
      Theory is the mother of practice 

[Fujiwara, MIT Press, 1985] 

FAN algorithm	
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 

p  Strategy 2:  Assign a fault signal D or D’ that is uniquely determined or 
implied by the fault in question. 
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 

p  Strategy 2:  Assign a fault signal D or D’ that is uniquely determined or 
implied by the fault in question. 

 
p  Strategy 3:  When the D-frontier consists of a single gate, apply a unique 

sensitization. 

D-frontier becomes empty and 
backtrack occurs later 

Unique assignment can reduce backtracks  
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 

p  Strategy 2:  Assign a fault signal D or D’ that is uniquely determined or 
implied by the fault in question. 

 
p  Strategy 3:  When the D-frontier consists of a single gate, apply a unique 

sensitization. 
 
p  Strategy 4:  Stop the backtrace at a head line, and postpone the line 

justification for the head line to later. 
 

This can reduce 
backtracks  
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 

p  Strategy 2:  Assign a fault signal D or D’ that is uniquely determined or 
implied by the fault in question. 

 
p  Strategy 3:  When the D-frontier consists of a single gate, apply a unique 

sensitization. 
 
p  Strategy 4:  Stop the backtrace at a head line, and postpone the line 

justification for the head line to later. 
  
p  Strategy 5:  Multiple backtracing (concurrent backtracing of more than one 

path) is more efficient than backtracing along a single path. 
 

This can reduce computation of 
backtrace as well as backtracks  
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p  Strategy 1:  In each step of the algorithm, determine as many signal 
values as possible that can be uniquely implied. 

 

Heuristics of the FAN algorithm 
     [Fujiwara, MIT Press, 1985] 

p  Strategy 6:  In the multiple backtrace, if an objective at a fanout point p 
has a contradictory requirement, stop the backtrace so as to assign a 
binary value to the fanout point. 

p  Strategy 2:  Assign a fault signal D or D’ that is uniquely determined or 
implied by the fault in question. 

 
p  Strategy 3:  When the D-frontier consists of a single gate, apply a unique 

sensitization. 
 
p  Strategy 4:  Stop the backtrace at a head line, and postpone the line 

justification for the head line to later. 
  
p  Strategy 5:  Multiple backtracing (concurrent backtracing of more than one 

path) is more efficient than backtracing along a single path. 
 

PODEM assigns a binary value only to primary inputs.    
So, backtracks occur at primary inputs. 
 
 
FAN assigns a binary value only to head lines and fanout points.   
So, backtracks occur at headlines and fanout points. 
 
        This is effective to reduce the number of backtracks. 
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History of test generation algorithms 
Combinational ATPG 
1966 

D-algorithm 
(Roth, IBM) 

1981 

PODEM 
(Goel) 

1983 

    FAN 
(Fujiwara) 

1985 

ISCAS-85  
Benchmarks  
(Fujiwara & Brglez) 

1988 

SOCRATES 
(Schulz, 
 et al.) 

1990 

Recursive  
Learning 
(Kunz,et al.) 

1999 

ITC-99 
benchmarks 

2001 

  SPIRIT 
(Gizdarski  
& Fujiwara) 

1993 

NEMESIS 
(Larrabee) 

1992 

     TRAN 
(Chakradhar, 
      et al.) 

2000 

IGRAINE 
(Tafertshofer, 
    et al.) 
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History of test generation algorithms 
Combinational ATPG 
1966 

D-algorithm 
(Roth, IBM) 

1981 

PODEM 
(Goel) 

1983 

    FAN 
(Fujiwara) 

1985 

ISCAS-85  
Benchmarks  
(Fujiwara & Brglez) 

1988 

SOCRATES 
(Schulz, 
 et al.) 

1990 

Recursive  
Learning 
(Kunz,et al.) 

1999 

ITC-99 
benchmarks 

2001 

  SPIRIT 
(Gizdarski  
& Fujiwara) 

1993 

NEMESIS 
(Larrabee) 

1992 

     TRAN 
(Chakradhar, 
      et al.) 

2000 

IGRAINE 
(Tafertshofer, 
    et al.) 

The first ATPG  
able to achieve  

100% fault efficiency  
for ISCAS’85  

SAT-based ATPG  

The first ATPG  
able to achieve  

100% fault efficiency  
for ITC’99  
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History of test generation algorithms 
Combinational ATPG 
1966 

D-algorithm 
(Roth, IBM) 

1981 

PODEM 
(Goel) 

1983 

    FAN 
(Fujiwara) 

1985 

ISCAS-85  
Benchmarks  
(Fujiwara & Brglez) 

1988 

SOCRATES 
(Schulz, 
 et al.) 

1990 

Recursive  
Learning 
(Kunz,et al.) 

1999 

ITC-99 
benchmarks 

2001 

  SPIRIT 
(Gizdarski  
& Fujiwara) 

1993 

NEMESIS 
(Larrabee) 

1992 

     TRAN 
(Chakradhar, 
      et al.) 

2000 

IGRAINE 
(Tafertshofer, 
    et al.) 

Sequential ATPG 
1968 

Extended 
D-algorithm 
(Kubo, NEC) 

1976 

9-Valued 
(Muth) 

1989 

        ISCAS-89  
        Benchmarks  
(Brglez,Agrawal,Fujiwara) 

    GENTEST 
  (Cheng &      
 Chakraborty) 

1991 

  HITEC 
(Niermann & 
   Patel) 

1999 

ITC-99 
benchmarks 

1971 

        Extended 
        D-algorithm 
(Putzolu & Roth, IBM) 

1997 

STRATEGATE 
(Hsiao, et al.) 
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Hideo Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985 

https://mitpress.mit.edu/index.php?q=books/logic-testing-and-design-testability	


Paperback	
Hardback	
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Thank you 


