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Abstract

This paper proposes a test syntheses method for datap-
aths. The proposed method goes on design-for-testability
while generating control sequences for justification and
propagation at register-transfer level. Since the method
fully utilizes functions of controllers as well as datapaths,
it achieves small area overhead.
Keywords: design-for-testability, RTL circuit, at-speed
testing, hierarchical test generation, non-scan design.

1. Introduction

Standard full scan design has the advantages of high fault
coverage and short test generation time for stuck-at faults,
while having many problems of large test data, long test
application time, large hardware overhead and difficulty of
at-speed testing. High level test synthesis is one approach to
resolve these problems. This includes hierarchical test gen-
eration, register-transfer level (RTL) design-for-testability
(DFT) and high level synthesis for testability. It has poten-
tiality to reduce test cost drastically by utilization of high
level information or abstraction.

This paper simultaneously considers DFT and test gen-
eration at RTL. Test generation is based on hierarchical test
generation[1] which combines test generation for combina-
tional modules at gate level and search for paths to con-
trol and observe the modules at RTL. The proposed method
finds control and observation paths for each module while
adding some DFT elements if it is difficult to establish such
paths. There are some related works. Makris et al.[2] pro-
posed an RTL analysis methodology that identifies the test
justification and propagation bottlenecks, and Ghosh, Jha et
al.,[3, 4, 5, 6] proposed a test synthesis method considering
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both test generation and DFT.
In the methods proposed by Ghosh and Jha et. al, con-

trol/data flows at normal mode are used for testing. They
analyze the control/data flows and use them to justify test
patterns to modules and to propagate the responses. If ad-
equate paths cannot be found, they add extra MUXs and
paths from the primary inputs to the MUXs to increase con-
trollability. The methods enables all the operational mod-
ules to be tested hierarchically with small area overhead.

Our group proposed another test synthesis methods
based on strong testability [7, 8, 9, 10, 11]. This testability
guarantees all the modules including multiplexors(MUXs)
in a datapath to be tested hierarchically. This robust prop-
erty is necessary to become an alternative to the scan de-
sign. We derived test plans, which are sequences of control
signals that form control and observation paths for modules
under test. We have an isolation approach and an integra-
tion approach. In the isolation approach, a datapath and
a controller are considered independently, and test plans
are provided from a test plan generator embedded for at-
speed testing[7, 10]. We proposed another DFT method[8]
for controllers that achieves 100% fault efficiency. Com-
bination of these methods[9] achieve 100% fault efficiency
for RTL circuits. Some part of our methods were further
improved after the technology transfer to industry[12, 13].
In the integration approach, we utilize function of a con-
troller to provide the test plans. Nagai et. al[11] proposed a
method that provides the test plans using the original func-
tion of the controller.

In this work, we propose another method for the inte-
gration approach. We augment functions of a controller
so that it can provide test plans as well as control signals
for normal operations. For a datapath, we also augment
functions if necessary. This method can enhance testabil-
ity with small cost, since the method fully utilizes functions
of controllers as well as datapaths. We propose a branch-
and-bound algorithm considering DFT overhead for both
controller and datapath. The algorithm finds control and
observation paths for all the modules with small overhead.
In addition, our method has many advantages of test syn-
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Figure 1. (a)violation,(b)preprocessing.

thesis methods based on the strong testability. We can use a
combinational ATPG and hence achieve high fault coverage
and complete fault efficiency. Test application time is much
shorter than scan design since we do not need scan shifting,
and furthermore, we can apply at-speed testing. Though our
method augments functions of controllers, we can apply the
DFT method [9] for controllers after applying our method,
and we can achieve 100% fault efficiency for RTL circuits.

2. Preliminary

We consider a register-transfer level(RTL) circuit com-
posed of a controller and a datapath. They are connected by
control signal lines from a controller to a datapath and status
signal lines from a datapath to a controller. A controller is
described by a finite state machine (FSM) and a datapath is
composed by the following hardware elements and data sig-
nal lines connecting them. Hardware elements include pri-
mary inputs(PIs), primary outputs(POs), registers, modules.
Modules are operational modules or multiplexors(MUXs).

In this paper, we assume the following restriction.

1. All the signal lines have the same bit width.

2. Each module has a data output port or status signal out-
puts. If a module has a data output, it is reachable to
some primary output.

3. A controller has a reset state reachable from all the
states.

4. For each module , there are paths
from primary inputs to data input ports
such that any pair of ( ) are disjoint or there
is a register appearing in only one of these paths.

The last condition is required to guarantee justification
of independent values at different (data) input ports of the
same module without adding any path. This is violated,
for example, if there is reconvergent paths without registers
like Fig1(a). In such a case, we modify a given circuit in
preprocessing, for example, like Fig1(b).

We propose a test synthesis method for datapaths. Our
method is based on hierarchical test generation[1]. In the
hierarchical test generation, we first generate tests for each
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Figure 2. A datapath of GCD.
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Figure 3. A controller of GCD.

module using a combinational ATPG, then find a test plan
at an RTL. A test plan is a sequence of control vectors that
specifies control paths which justify the obtained tests to
the module from primary inputs or control signal lines and
observation paths which propagate the test responses to pri-
mary outputs or status signal lines.

We consider a circuit GCD as an example. Figures
2 and 3 show its datapath and controller, respectively.
There are three status signal lines and one
primary input of a controller. Figure4 shows control
and observation paths where the circuits are expanded to
some time frames, where bold lines represent the control
and observation paths for a MUX at the second time
frame. In the control paths, the left input ports of
is controlled directly from a primary input and the
right input ports is controlled from whose input ports
are further controlled by paths and

. The observation path is from at the
second time frame to the primary output at the 5th time
frame where a dotted line means the register holds the value
in that time frame. In the first time frame, the left inputs
of are selected and registers
load values. These are controlled by a control vector. The
test plan is a sequence of such control vectors for these 5
time frames.
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Figure 4. Control and observation paths.

In [7], we defined strong testability of a datapath as testa-
bility for hierarchical test for combinational modules.

Definition 1 ([7]) A datapath is strongly testable iff there
exists a test plan for each module that makes it possible
to apply any pattern to and to observe any response of
.

A strongly testable datapath has the following advan-
tages. 1) Test pattern generation time is short since a com-
binational ATPG can be used, and 2) complete (100%) fault
efficiency is achieved for the whole datapath since each
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Figure 5. A mask element.

module is a small combinational circuit.

3. Test synthesis using datapath-controller
functions

We consider test plan generation and DFT at the same
time. We augment functions of an original controller so
as to provide test plans while making a datapath strongly
testable. We consider the following test synthesis problem.
Input: an RTL circuit (a datapath and a controller)
Output: an augmented RTL circuit (a strongly testable dat-
apath and a controller capable of providing test plans for
each module) and test plans
Objective: minimization of area overhead

We can augment functions of a controller by adding tran-
sitions, states, and primary inputs. For a datapath, we add
hold function to registers or thru function to modules. Thru
function of one input port of a module propagate any value
of the input port to its output port without modification.
Most of the popular operational modules (e.g. adder) can
realize the thru function by using a mask element which
generates a constant. Figure5 shows a mask element for an
adder.

3.2.1 Idea

We consider how to augment functions of a controller and a
datapath so that it can provide test plans like Fig4. Here we
consider GCD as an example. Figure3 shows a Mealy FSM
of its controller. An output value (i.e. a control vector) at-
tached to each transition specifies values of , ,

, , , , in this order. Let
denote a transition from a state to with an input and
an output . In the first time frame in Fig4, the left in-
puts of , and are selected and and

load values. This can be represented as a test vec-
tor “11x000x” where x means “don’t care”. If the origi-
nal controller has a transition that outputs a control vec-
tor compatible with this, we may be able to use the tran-
sition. For example, a transition has
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a compatible output with “11x000x”. However, we have
two more problems. First, we must generate a sequence
of control vector provided from a controller. Therefore,
if we adopt , the following transition
must start from . In our method, we check current and
next states as well as output control signals, and if there is
no compatible transition we add a new transition to the con-
troller. Second, some transition depends on status signals,
and it is difficult to control the status signals while generat-
ing test plans. To resolve this, we add transitions controlled
from outside (additional primary inputs) and independent
of status signals. We also augment functions of a datapath.
For example, if it is difficult to control all the input ports of
some operational module , we add thru function to one
input port of and try to control only .

Any augmentation requires some area overhead, and our
objective is to find the augmentation with the minimum area
overhead. For a datapath, we can easily estimate area over-
head required to augment thru function and hold function.
For a controller, we introduce a cost function to estimate
such area overhead. We propose a branch-and-bound al-
gorithm that implicitly searches any possible sequences of
transitions and finds the sequence that provides a test plan
with the minimum augmentation.

3.2.2 Cost function for controllers

In our method, we do not consider any additional transition
requires the same area overhead. For example, consider
the case where we add a transition .
If the original controller already has a similar transition

, we can consider this augmentation
requires small area overhead. We first define a distance be-
tween two transitions and define the augmentation cost for
a transition as the minimum distance between and all the
existing transitions.

First, we consider a distance of two transitions
and . Each transi-

tion requires a logic that generates the output
( and ) from the input ( and ). We estimate a differ-
ence between two logics by the difference between the input
and the output of these logics. We treat (“don’t care “) in
the different ways for the inputs and the outputs. If an input
has , it means that this transition occurs for both and .
On the other hand, in an output means this transition gen-
erates or . Figure6 shows distance functions of one bit

for inputs (Fig6(a)) and for outputs (Fig6(b)).
We can naturally expands these distance functions

for multi-bit. Let and be vectors
of bits. We define

and
.

For states, we estimate the difference at the worst case.
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Figure 6. Distance functions: (a) , (b) .
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Figure 7. Branch-and-bound search

Let be the number of states. In logic level, bit
value is assigned to each state. Therefore, we estimate a
difference between two difference states to be .

We define the cost function to add a transi-
tion to a controller with a state set and a transition set
as follows.

if
if

For example, consider a cost to add a transition
to a controller

in Fig3. A distance between an existing transition
is as follows. To add ,

we add a new primary input , and therefore, the
input of becomes . Since values un-
specified in the inputs are “don’t care”,

.
Since this is the minimum distance, the cost for is 4.

4



3.2.3 Branch-and-bound search

We propose a branch-and-bound search algorithm that gen-
erates test plans for modules while augmenting functions of
both controller and datapath. We will explain how to gen-
erate a test plan for one module. The search starts with a
tree consisting of one root node. We start the search from
the time frame where a test pattern is applied (e.g. the 2nd
time frame in Fig4). We consider all possible control and
observation paths for this time frame. In the case of
in Fig4, we can consider three cases for control paths: one
uses both and , the other two use
or and thru function of . In addition, we con-
sider every combination of the current and the next states.
For each combination of these paths and these states for one
time frame corresponds to a transition. Therefore, we can
calculate the cost to add the transition. We assign one node
for each of these transitions, and make it the child of the
root. Then we expand nodes according to a branch-and-
bound fashion. That is, in each stage of the search, we select
the node such that the total cost from the root to the node is
minimum, and generate the child nodes. We first generate
nodes corresponding to the preceding transition of control
paths as child nodes until all the control paths reach pri-
mary inputs, then generate the nodes corresponding to the
succeeding transition of observation paths. Once we reach a
node where observation path reaches a primary output, the
path from the root to the node represents one candidate of
a test plan. We then prune any node such that the total cost
from the root to the node exceeds the cost of the obtained
candidate. Figure7 shows a concept of the search tree, and
we omit the detail of the algorithm.

We generate test plans for modules one by one. If the
target module has control signals, we generate test plans for
each value of the control signal. For example, we generate
two test plans for one MUX that apply and for a test pat-
tern to the MUX. In such a case, we must apply the search
algorithm twice. However, the second search finishes very
fast, since our branch-and-bound algorithm searches nodes
with low cost first and the test plans obtained at the first
search can almost be reused with no cost.

3.2.4 Reduction of the number of test pins

In general, there is a restriction of the number of I/O pins,
and therefore, we may have a constraint on the number of
additional I/O pins for test (test pins). Though our method
requires new test pins to control additional transitions, we
can avoid the increase of test pins. Figure8 illustrates the
idea to keep the number of test pins. In Fig8(a), we consider
to add new transition from to and need an additional
test pin since two transitions are already added for test. We
avoid the increase by adding a new state and transitions
like Fig8(b), where a transition from to outputs the

(a) (b)

s0 s0'

s1 s2 s3

s0

s1 s2 s3

Figure 8. Reduction of the number of test
pins.

Table 2. Hardware overhead
area overhead(%) #test pin

circuit our method + controller DFT[8] full ours full
C DP C’ MUX total scan scan

GCD 9.2 0 1.1 7.5 17.8 39.7 4 3
JWF 3.4 2.9 0.4 4.7 11.4 28.4 4 3
LWF 2.2 6.1 0.8 4.0 14.1 42.3 3 3
Paulin 0.6 2.2 0.2 0.6 3.7 6.3 4 3

control vectors to hold all the registers. The above tech-
nique guarantees that our method is available if at least one
additional I/O pin can be used.

4. Experiments

We applied the proposed method to 4 benchmark circuits
GCD, 4th Jaumann Wave Filter(JWF), 3rd Lattice Wave Fil-
ter(LWF) and Paulin. We compared the results with full
scan design reported in [8]. Table1 shows the characteristic
of these circuits. The columns #state, #status, #control, #PI,
#PO, bit , #Reg. and #Mod. denote the numbers of states,
status signal lines, control signal lines, primary inputs and
primary outputs, the bit-width of a datapath, the numbers of
registers and modules, respectively. The experiments used a
logic synthesis tool AutoLogicII(Mentor Graphics) and an
ATPG tool TestGen(Synopsys) on SunBlade1000 (Sun Mi-
crosystems). The columns #gate denote the areas of circuits
in gates after logic synthesis.

Table2 shows hardware overhead, where C and DP de-
note area overhead of augmentation for controllers and dat-
apaths, respectively. After the test synthesis for datapaths,
we apply the DFT method for controllers proposed in [9].
The column C’ denote area overhead for this controller
DFT, and MUX denote area overhead for MUXs to isolate
controllers from datapath including MUXs to bring the val-
ues of status signals to the primary output of datapaths. The
combination of two methods enables test generation using
combinational ATPG for the whole RTL circuits.

For these circuits, our method achieves small area over-
head, especially for Paulin. We analyzed the result for
Paulin more, and found that our method added 7 thru func-
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Table 1. Circuit characteristics
controller datapath total

circuit #state #status #control #gate #PI #PO bit #Reg. #Mod. #gate #gate
GCD 4 3 7 169 32 16 16 3 1 1350 1524
JWF 8 0 38 199 80 80 16 14 3 6671 6875
LWF 4 0 8 57 32 32 16 5 3 1924 1986
Paulin 6 0 16 123 64 64 32 7 4 24833 24965

Table 3. Test generation
our method + controller DFT[8] full scan

C-ATPG test plan fault eff. test appl. test gen. test appl.
circuit (sec) gen. (sec) (%) (cycle) (sec) (cycle)
GCD 0.70 3.71 100.0 774 171.51 6629
JWF 0.54 156.62 100.0 2779 2.88 20519
LWF 0.51 0.96 100.0 394 0.47 4066
Paulin 1.80 252.82 100.0 2703 4.68 16187

tions to the datapath: one for control paths and 6 for obser-
vation paths. In our branch-and-bound algorithm, control
paths are searched from the target module to primary in-
puts, and therefore, we can avoid the augmentation of thru
function to some module by controlling the all input ports of
the module. On the other hand, we search observation paths
from the target module to primary output. In this case, we
add thru function to propagate the test response from an in-
put port to an output port of a module. This implies that
there is still room for improvement in the search algorithm.

Table3 shows the result of test generation and test plan
generation by our method and full scan design. We gen-
erated tests for both datapaths and controllers. Since
our method enables us to apply combinational ATPG for
each module, time for combinational ATPG is short while
achieving 100% fault efficiency. Test application time is
much shorter than full scan design. However, for some cir-
cuits, our search algorithm consumes time. This is because
our algorithm implicitly searches all possible paths.

5. Conclusions

We proposed a test synthesis method that simultaneously
considers DFT and test generation for RTL circuits. The
proposed method utilizes functions of controller and datap-
ath as much as possible. Therefore, we can achieve 100%
fault efficiency with small area overhead.
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