

An Efficient Scan Tree Design for Test Time Reduction*

Y. Bonhomme1 T. Yoneda1 H. Fujiwara1 P. Girard2
1 Graduate School of Information Science,
Nara Institute of Science and Technology

Email: {bonhomme, yoneda, fujiwara}@is.naist.jp

2 LIRMM, UMR 5506 Université Montpellier II/CNRS, France
Email: girard@lirmm.fr

Abstract: We propose a new scan tree architecture
for test application time reduction. This technique
is based on a dynamic reconfiguration mode
allowing one to reduce the dependence between the
test set and the final scan tree architecture. The
proposed method includes two different
configuration modes: the scan tree mode and the
single scan mode. The proposed method does not
require any additional input or output.
Experimental results show up to 95% of test
application time saving and test data volume
reduction in comparison with a single scan chain
architecture.

Keywords: DfT, Scan Testing, Scan Tree

1. Introduction
 The controllability and the observability of
complex designs are nowadays guaranteed by DfT
techniques. The full scan design is the most popular
DfT technique [1] and it is very largely used in
integrated circuits (ICs) or in System on chip (SoC)
cores. Unfortunately, scan based architectures are
expensive in test power consumption [2] and in test
application time.
 The test application time depends on the scan
chain length. Indeed, the number of clock cycles
required to scan in/out the test data is equal to the
product of the number of test patterns by the scan
chain length. The test sequence cannot be reduced
without degrading the test quality. Thus, one
solution to save test application time is to lessen the
scan chain length.
 At present, multiple scan chain design is often
used to reduce the scan test shift time. This
technique consists of splitting the scan chain in
small scan sub-chains activated at the same time.
The size of the different scan segments can be fixed
[3,4] or variable [5,6]. Multiple scan chain design is
now a standard [1] often used in ICs and in SoC
cores (using the IEEE P1500 standard). The main
drawback of this technique is the increase of the
number of scan inputs and outputs dedicated to the
test. Different techniques allow one to reduce the

test application time with a low increase of the
number of scan inputs and outputs [7-18].
 Some solutions are based on test encoding [7-
13]. The use of these techniques requires extra DfT
logic. The hardware overhead of the decompressor
is directly linked to the compression ratio.
 Other solutions propose to reduce the test time
without encoding process [14,15] and with a single
scan input to drive several scan chains. The main
drawback is a reduction of the circuit controllability.
A dynamic reconfiguration can be used to improve
the circuit controllability [15], but an additional test
control input is then required.
 Scan tree design is often used to deal with
different scan DfT technique problems like test
power [19] or test time [17,18]. The idea of scan
tree design is that one scan cell drives other scan
cells. This technique is interesting for test time
reduction and it is a serial/parallel scan design with
a single scan input. The same test data must be
stored in different scan cells. The circuit
controllability is reduced and this method requires a
full compatibility between the parallel scan cells.
So the effectiveness of a scan tree architecture
depends on the correlation between the test data of
the different scan cells. The first technique [17]
proposes to reduce this dependence by increasing
the number of don’t care values of the test sequence.
But the solution effectiveness still depends on the
circuit structure. The second technique [18] adopts
a folding mode allowing one to increase the
parallelism of the scan tree architecture. However,
test sequence updating during the manufacturing
phase but also the circuit time life, is impossible
with both techniques.
 In this paper, we propose an optimal scan tree
architecture for test shift time reduction. The idea is
to use a dynamic reconfiguration during the test
application to switch from a scan tree mode to a
single scan mode. A part of the test sequence is
applied in scan tree mode to save test application
time and the other part is applied in single scan
mode. This procedure allows one to reduce the
dependence between the scan tree architecture and
the test sequence. With the proposed technique, it is
possible to update the test sequence. This procedure

* This work has been supported in part by 21st Century
COE Program"Ubiquitous Networked Media Computing".

9th IEEE European Test Symposium (ETS'04) , pp. 174-179, May 2004.

does not require additional test control input. A
MISR is used for the circuit response compaction.
 This paper is organized as follows. In section 2,
a preliminary about full compatible scan tree
architecture is presented and the proposed
technique is described. In section 3, the scan tree
generation of the proposed method is explained.
Section 4 shows some experimental results for
benchmark circuits and section 5 concludes the
paper.

2. Proposed scan tree architecture
2.1 Preliminary (full compatible scan

tree architecture)
 Recently, two scan tree architectures [17,18]
have been proposed to reduce the test application
time. The basic principle of these techniques is
described in figure 1. The idea is to store at the
same time the similar test data in different scan
cells. A computation of the test sequence is
required to form groups of compatible scan cells
that can receive the same test data.

 Figure 1. Example of scan tree architecture
generation

 Figure 1.a presents an example of a single scan
chain composed of 6 scan cells (FF1 to FF6) and the
associated test set. From this data, groups of
compatible scan cells are created {FF1, FF4 and
FF6}, {FF2 and FF3} and {FF5}. Scan cells of the
same group must receive the same test data. FF2
and FF3 can be placed in the same group as far as
they receive the same test data, respectively 0X1
and 011. FF5 is incompatible with all other scan
cells. From these groups, scan tree architecture is
generated and represented in figure 1.b. The test
shift time saving corresponds to the ratio of the
difference between L1 and L2 over L1, where L1
corresponds to the single scan chain length and L2
to the scan tree length. Moreover, a reduction of the
test data volume is obtained. This reduction is
equivalent to the test shift time saving.
 To generate scan tree architectures, full
compatibility between the FFs of the same group is
required. This full compatibility creates a high
dependence between the scan tree architecture and
the test sequence. To reduce this dependence, we
propose a new scan tree architecture.

 2.2 Proposed architecture

 In this part, we present the proposed scan tree
method. This method generates an optimal scan tree
design with a dynamic reconfiguration during test
application. The dynamic reconfiguration consists
in switching between two modes. The first mode is
the scan tree mode (ST mode) and the second one is
the single scan mode (SS mode). The idea is to
apply a part of the test sequence in ST mode and
the other part in SS mode. This technique allows
one to reduce the dependence between the scan tree
architecture and the test sequence and to improve
the test shift time reduction.

Figure 2. Proposed scan tree architecture

 Figure 2 describes the proposed scan tree
architecture. The switch functionality from ST
mode to SS mode is carried out by a pattern
recognition module, multiplexers and a flip-flop
driven by the scan enable signal (in grey color in
figure 2). The activation occurs when the last test
pattern of the scan tree mode has been applied. This
extra DfT logic has a low impact on the area
overhead. A MISR is used for the response
compression. Figure 3 presents the two
configurations of the architecture: in 3.a the ST
mode and in 3.b the SS mode. In both cases, there
is only one scan input and one scan output and a
single test control input.

Figure 3. Two modes: a/ scan tree mode b/ single
scan mode

1
1
X

0
X
1

0
1
1

X
X
1

1
0
1

X
1
X

t1
t2
t3

FF6FF5FF4FF3FF2FF1

FF1

FF4

FF6

FF2

FF3

FF5

scan
input

scan
input

scan
output

scan
output

(a)

(b)

L1

L2

1
1
X

0
X
1

0
1
1

X
X
1

1
0
1

X
1
X

t1
t2
t3

FF6FF6FF5FF5FF4FF4FF3FF3FF2FF2FF1FF1

FF1FF1

FF4FF4

FF6FF6

FF2FF2

FF3FF3

FF5FF5

scan
input

scan
input

scan
output

scan
output

(a)

(b)

L1

L2

M
I
S
R

Scan
input

Scan
output

Pattern Recognition

Scan enable

M
I
S
R

Scan
input

Scan
output

Pattern Recognition

Scan enable

M
I
S
R

Scan
input

Scan
output

M
I
S
R

Scan
input

Scan
output

(a)

(b)

Pattern Recognition

Scan enable

Pattern Recognition

Scan enable

M
I
S
R

Scan
input

Scan
output

M
I
S
R

Scan
input

Scan
output

(a)

(b)

Pattern Recognition

Scan enable

Pattern Recognition

Scan enable

 Concerning design constraints (fanout
limitation for the scan cells and routing), we shall
try to consider them in further work. Clustering
process already proposed in [20] may be used. The
configuration flexibility of the proposed scan tree
architecture should allow one to obtain a good
trade-off between test time reduction and design
constraints.
 To design the scan tree architecture, it is
necessary to find the optimal balance between the
part of the test sequence to apply in ST mode and
the other part to apply in SS mode. The next section
presents the adequate scan tree architecture
generation procedure.

3. Scan tree architecture generation
 Scan tree architecture generation consists in
finding the good balance between the part of the
test sequence to apply in ST mode and the other
part to apply in SS mode. The complexity of scan
tree architecture generation to find the optimal
solution depends on the number of test patterns and
scan cells. This problem is NP-complete. The
following section describes different heuristics to
reduce the problem complexity. Section 3.1
presents the adopted solution of scan tree
generation and section 3.2 details the solution to
determine the part of the test sequence to apply in
ST mode.

3.1 Scan tree generation
 Scan tree generation consists of finding groups
of compatible scan cells from a test set. We
construct the incompatibility graph from the test set
and adopt a vertex coloring process for the graph to
solve the problem of finding optimal groups of
compatible scan cells. In an incompatibility graph
for a test, a vertex corresponds to a scan cell, and
edge between two vertices exists if two scan cells
corresponding to the vertices are incompatible in
the test set.

Figure 4. a/ scan tree generation from a test
pattern and b/ scan tree generation from 2 test

patterns

 Figure 4 presents two examples of scan tree
generation. In both, the scan chain is composed of 6
scan cells. In figure 4.a, scan tree architecture is
generated via a coloring graph from the test pattern
t1. The FF1 is incompatible with the FF2, FF3 and
FF6. These incompatibilities are reported by edges
between (FF1, FF2), (FF1, FF3) and (FF1, FF6). The
complexity of the coloring graph algorithm is O(n2),
n corresponding to the number of scan cells. Figure
4.b corresponds to the addition of the test pattern t2
to the previous solution for t1. The addition of the
pattern t2 increases the number of incompatibilities
and coloring graph edges. In consequence, the
length of the scan tree grows to 3 cells instead of 2.
With this example, we show that the scan tree
architecture has a high dependence with the test
patterns. Test pattern selection must be achieved to
determine the part of the test sequence to apply in
ST mode.

Figure 5. Procedure of the test sequence
reduction

3.2 Test pattern selection
 The test pattern selection problem is reduced to
Traveling Salesperson Problem (TSP [21]). It is not
possible to find an exhaustive solution to determine
the part of the test sequence that should be applied
in ST mode. The complexity of the problem
resolution depends on the number of test patterns.
To reduce the complexity, a test sequence reduction
procedure is applied. This procedure is described in
figure 5. The first step is to compute the number of
incompatibilities for each test pattern. The number
of incompatibilities corresponds to the number of
edges in the coloring graph. The second step
consists in sorting the test sequence according to
the number of incompatibilities. The last step

FF1 FF2 FF3 FF4 FF5 FF6

1
1
X
X
X
X
0

0
X
1
1
0
1
1

0
1
1
0
X
X
1

X
0
1
0
1
X
X

X
0
0
X
1
0
X

0
1
X
1
0
0
1

t1
t2
t3
t4
t5
t6
t7

3
6
3
4
4
2
3

#imcomp.

FF1 FF2 FF3 FF4 FF5 FF6

X
1
X
0
X
X
1

1
0
1
1
1
0
X

X
0
1
1
0
X
1

X
X
1
X
0
1
0

0
X
0
X
X
1
0

0
0
X
1
1
0
1

t6
t1
t3
t7
t4
t5
t2

2
3
3
3
4
4
6

#imcomp.

FF1 FF2 FF3 FF4 FF5 FF6

X
1
X
X
X
1

1
0
1
1
0
X

X
0
1
0
X
1

X
X
1
0
1
0

0
X
0
X
1
0

0
0
X
1
0
1

t6
t1
t3
t4
t5
t2

2
3
3
4
4
6

#imcomp.

Test set

Sorted test set

Reduced test set

1

2

3

FF1 FF2 FF3 FF4 FF5 FF6

1
1
X
X
X
X
0

0
X
1
1
0
1
1

0
1
1
0
X
X
1

X
0
1
0
1
X
X

X
0
0
X
1
0
X

0
1
X
1
0
0
1

t1
t2
t3
t4
t5
t6
t7

3
6
3
4
4
2
3

#imcomp.

FF1 FF2 FF3 FF4 FF5 FF6

X
1
X
0
X
X
1

1
0
1
1
1
0
X

X
0
1
1
0
X
1

X
X
1
X
0
1
0

0
X
0
X
X
1
0

0
0
X
1
1
0
1

t6
t1
t3
t7
t4
t5
t2

2
3
3
3
4
4
6

#imcomp.

FF1 FF2 FF3 FF4 FF5 FF6

X
1
X
X
X
1

1
0
1
1
0
X

X
0
1
0
X
1

X
X
1
0
1
0

0
X
0
X
1
0

0
0
X
1
0
1

t6
t1
t3
t4
t5
t2

2
3
3
4
4
6

#imcomp.

Test set

Sorted test set

Reduced test set

1

2

3

t1: 100XX0 FF1

FF2

FF3 FF4

FF5

FF6
FF1

FF4

FF5

FF2

FF6

FF3
scan
input

scan
output

M
I
S
R

L1=2

(a)

Coloring graph Scan tree architecture

FF1

FF2

FF3 FF4

FF5

FF6
FF1 FF4

FF5

FF2

FF6

FF3

scan
input

scan
output

M
I
S
R

L1=3

(b)
Coloring graph

t1: 100XX0
t2: 1X1001

t1: 100XX0 FF1

FF2

FF3 FF4

FF5

FF6
FF1FF1

FF4FF4

FF5FF5

FF2FF2

FF6FF6

FF3FF3
scan
input

scan
output

M
I
S
R

L1=2

(a)

Coloring graph Scan tree architecture

FF1

FF2

FF3 FF4

FF5

FF6
FF1FF1 FF4FF4

FF5FF5

FF2FF2

FF6FF6

FF3FF3

scan
input

scan
output

M
I
S
R

L1=3

(b)
Coloring graph

t1: 100XX0
t2: 1X1001

Table 1. Experimental results on ISCAS`89 benchmark circuits

Table 2. Experimental results on ITC’99 benchmark circuits

Benchmark
reference

FFs

test
patterns

FC
(%)

clock
cycles for

single
scan
(1)

clock
cycles

for scan
tree (2)

clock
cycles for

the
proposed

method (3)

test
time

saving
(%)

(1)(2)

test
time

saving
(%)

(1)(3)

computation
time (sec)

b09 28 51 99.72 1,428 1,071 848 25 40.62 0.01
b10 17 102 100 1,734 918 712 47.06 58.94 0.01
b11 31 111 97.11 3,441 1,887 633 45.16 81.6 1
b12 121 183 99.96 22,143 6,954 4,441 68.6 79.94 15
b13 53 52 96.43 2,756 1,508 876 45.28 68.21 1
b14 245 906 97.07 22,1970 110,532 22,450 50.2 89.89 869

reduces the test sequence by removing the
equivalent test patterns defined as follows.

Definition: a test pattern is equivalent to another
test pattern if they have the same incompatibility
graph. In the example of figure 5, the two patterns
t1 and t7 can be applied with the same scan tree
design.

Figure 6. Test pattern selection procedure

To determine the part of the test sequence to
apply is ST mode, we use a greedy algorithm
whose complexity is equal to O(m2) (m
corresponding to the test sequence length). Figure 6
represents the test pattern selection procedure. The
nodes represent test patterns. The first node is the
pattern with the smallest number of
incompatibilities. From this first test pattern, a scan
tree architecture is obtained (step 1). We then try to
include another test pattern (step 2). For all the
possible nodes of the step 2 (node 1 to node 5) we
build the corresponding scan tree architecture
including the first node and the current node. We
choose to include in the solution the test pattern that

implies the lowest increase of the scan tree length.
This operation is repeated until all nodes are
included (steps 3 to 6). The final step (step 6)
corresponds to the full compatibility scan tree
including all the test sequence. At each step, the
number of clock cycles required to apply the test
sequence is computed. The final solution is given
by the step with the lowest number of clock cycles.
 Finally, the complexity of the complete scan
tree architecture generation is O(m2*n2). In further
work, we will try to find a solution to reduce the
complexity in order to save computation time.

4. Experimental results
 We have implemented the proposed method in
C language on a Pentium M 1.6 GHz with 512 MB
and have applied it to ISCAS’89 and ITC’99
benchmark circuits. The test sets used are provided
by Testgen tool [22] from Synopsys.
 Table 1 and 2 give the results respectively for
ISCAS’89 and ITC’99 benchmark circuits. The first
four columns of the tables describe the circuits
names, numbers of scan cells, lengths of test
sequences (without any compaction) and
corresponding fault coverages. The three following
columns report the number of clock cycles
(corresponding to the scan in/out operations only)
for the single scan chain, the full compatible scan
tree architecture and the proposed method
respectively. The next two columns correspond to
the test shift time savings (in percentage). The first
one is the test shift time saving between the single
scan chain and the full compatible scan tree

Benchmark
reference

FFs

test
patterns

FC
(%)

clock
cycles for

single
scan
(1)

clock
cycles

for scan
tree (2)

clock
cycles for

the
proposed

method (3)

test
time

saving
(%)

(1)(2)

test
time

saving
(%)

(1)(3)

computation
time (sec)

s1423 74 79 98.99 5,846 1,817 947 68.92 83.8 1
s5378 179 178 98.78 29,714 13,350 4,472 58.10 85.96 22
s9234 211 341 93.16 71,951 34,322 19,391 52.30 73.05 163

s13207 669 540 98.32 361,260 52,608 26,646 85.35 92.62 950
s15850 596 390 96.29 232,440 59,554 32,604 74.38 85.97 553
s38584 1426 1098 95.23 1,565,748 500,688 71,226 68.02 95.45 14,630

6

4

5

2

1

3 4

5

2

1 4

5

2

5

2

2

step 1 step 2 step 3 step 4 step 5 step 6

6

4

5

2

1

3 4

5

2

1 4

5

2

5

2

2

step 1 step 2 step 3 step 4 step 5 step 6

Figure 7. Evolution of the test shift time saving for ISCAS`89 benchmark circuits

Figure 8. Evolution of the test shift time saving for ITC`99 benchmark circuits

architecture. The second one gives the test shift
time savings between the single scan chain and the
proposed method. The last column reports the
corresponding computation time in seconds.
 The number of clock cycles is computed
considering the following expression:

() ()()12 ×+×= Lt#t#Lt#cycles_clock# sttts

where #tst is the number of test patterns applied in
ST mode, L2 is the length of the scan tree
architecture, #tt is the test sequence length and L1 is
the number of scan cells. For single scan chain, #tst
is equal to 0. For full compatible scan tree, #tst is
equivalent to #tt. For the proposed solution, #tst is
included between 0 and #tt.
 The test shift time saving using the full
compatible scan tree is equal to 52.3% in average
and to 78.9% at maximum in comparison with the
single scan architecture. The proposed method
improves significantly the test time reduction.
Indeed, the average test shift time saving is equal to
78% and reaches 95.45% for s38584. The
difference of time saving achievements clearly
shows the effectiveness of the proposed solution.
Moreover, an equivalent reduction of the test data
volume is obtained. Concerning the computation

time, it remains reasonable even though the results
have not been provided by a workstation.
 Figures 7 and 8 represent the evolution of the
test shift time saving along the amount in
percentage of patterns in the test sequence applied
in ST mode. A linear evolution of test shift time
saving can be observed in the first part of the
graphics. This linear evolution reveals that the test
patterns progressively included in the solution have
a low impact on the current scan tree architecture,
implying a beneficial reduction of the test time. Full
compatible scan tree architecture corresponds to the
last point on the curve (100% of the test sequence is
applied in scan tree mode)
 Concerning the effectiveness of the proposed
test sequence reduction to lessen the scan tree
architecture generation complexity, the table 3
summarizes the achieved results. The first column
reports the names of the circuits. The second and
third columns correspond respectively to the test
sequence length and to the reduced test sequence
length considered for the architecture generation
algorithm. The last column reports the
corresponding percentage of reduction. The results
show the effectiveness of this solution for some

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

b09

b10

b11

b12

b13

b14

Test time saving

Test
sequence

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

b09

b10

b11

b12

b13

b14

Test time saving

Test
sequence

-

s5378

s9234

s15850
s13207

s38584

s1423

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

Test time saving

Test
sequence

s5378

s9234

s15850
s13207

s38584

s1423

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

Test time saving

Test
sequence0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

Test time saving

Test
sequence

circuits. In future work, we will try to improve the
proposed solution to reduce thecomplexity of the
scan tree architecture generation.

Table 3. Optimization of the test sequence for
the scan tree architecture generation on

ISCAS’89 and ITC99 benchmark circuits

 5. Conclusion
 In this paper, a new scan tree architecture is
presented to reduce scan test shift time thanks to a
dynamic reconfiguration during the test application.
Experimental results for benchmark circuits show
that our proposed method can reduce scan test shift
time up to 95% of that for the single scan. In further
work, we shall consider design constraints and
reduce the scan tree generation complexity.
Another perspective is to use several scan tree
modes to improve the test time reduction.

Acknowledgments
 We would like to thank Prof. Michiko Inoue,
Prof. Satoshi Ohtake, and Dr. Mariane Comte of
Nara Institute of Science and Technology for their
valuable comments. This work was supported in
part by 21st Century COE (Center of Excellence)
Program "Ubiquitous Networked Media
Computing" and in part by JSPS (Japan Society for
the Promotion of Science) under Grants-in-Aid for
Scientific Research B(2) (No. 15300018).

References
[1] M.L. Bushnell and V.D. Agrawal, “Essentials of Electronic
Testing ”, Kluwer Academic Publishers, ISNB 0-7923-7991-8,
2000.
[2] P. Girard, “Survey of Low-Power Testing of VLSI Circuits”,
IEEE Design & Test of Computers, Vol. 19, N° 3, pp. 82-92,
May-June 2002.
[3] P.P. Fasang, J. P. Shen, M. A. Schuette and W. A. Gwaltney,
“Automated Design for Testability of Semicustom Integrated
Circuits”, IEEE Int. Test conf. pp. 558-564, November 1985.
[4] S. Kobayashi, M. Edahiro and M. Kubo, “Scan-Chain
Optimization Algorithms for Multiple Scan-Paths”, IEEE Asia
and South Pacific Design Automation Conf., pp. 301-306,
February 1998.
[5] S. Narayanan, R. Gupta and M. A. Breuer, “Optimal
Configuration of Multiple Scan Chains”, IEEE Trans. On
Computers, Vol. 42, N° 9, pp. 1121-1131, September 1993.

[6] S. Bhawmik and P. Palchaudhuri, “DFT Expert: Designing
testable VLSI Circuits”, IEEE Design Test, pp. 8-19, October
1989.
[7] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R.
Thompsom, K. H. Tsai, A. Hertwig, N. Tamarapalli, G.
Mrugalski, G. Eide and J. Qian, “Embedded Deterministic Test
For Low Cost Manufacturing Test”, IEEE Int. Test Conf., pp.
301-310, October 2002.
[8] A. Chandra and K. Chakrabarty, “Frequency-Directed Run-
Length (FDR) Codes with Application to System-on-a-chip Test
Data Compression”, IEEE VLSI Test Symp., pp. 42-47, April
2001.
[9] A. Jas, J.G. Dastidar and N.A. Touba, “Scan Vector
Compression /Decompression Using Statiscal Coding”, IEEE
VLSI Test Symp., pp. 114-120, April 2000.
[10] A. Jas, B. Pouya and N.A. Touba, “Virtual Scan Chains’ A
Means for Reducing Scan Length in Cores”, IEEE VLSI Test
Symp., pp. 73-78, April 2000.
[11] S. Sybille, H.G. Liang and H.J. Wunderlich, “A mixed
Mode BIST Scheme Based on Reseeding of Folding Counters”,
IEEE Int. Test Conf., pp. 778-784, October 2000.
[12] W.B. Jone, J.C. Rau, S.C. Chang and Y.L. Wu, “A Tree-
Structured LFSR Synthesis Scheme for Pseudo-Exhaustive
Testing of VLSI Circuits”, IEEE Int. Test Conf., pp. 322-330,
October 1998.
[13] I. Bayraktaroglu and A. Orailoglu, “Test Volume and
Application Time Reduction through Scan Chain concealment”,
Design Automation Conference, pp. 151-155, June 2001.
[14] I. Hamzaoglu and J. H. Patel, “Reducing Test Application
Time for Full Scan Embedded Cores”, Int. Symp. on Fault
Tolerance Computing, pp. 260-267, July 1999.
[15] A.R. Pandey and J. H. Patel, “Reconfiguration Technique
for Reducing Test Time and Test Data Volume in Illinois Scan
Architecture Based Designs”, IEEE VLSI Test Symp., pp. 9-15,
April 2002.
[16] K.L. Lee, J.J. Chen and C.H. Huang, “Using a Single Input
to Support Multiple Scan Chains”, ICCAD, pp. 74-78,
November 1998.
[17] k. Miyase and S. Kajihara, “Optimal Scan Tree
Construction with Test Vector Modification for Test
Compression”, IEEE Asian Test Symp., pp. 136-141, November
2003.
[18] H. Yotsuyanagi, T. Kuchii, S. Nishikawa, M. Hashizume
and K. Kinoshita, “Reducing Scan Shifts using Folding Scan
Trees”, IEEE Asian Test Symp., pp. 6-11, November 2003.
[19] D. Xiang , S. Gu, J. G. Sun and Y. Wu, “A Cost-Effective
Scan Architecture for Scan Testing with Non-Scan Test Power
and Test Application Cost”, Design Automation Conf., pp. 744-
747, June 2003.
 [20] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault and S.
Pravossoudovitch, “An Efficient Scan Chain Design for Power
Minimization During Scan Testing Under Routing Constraint”,
IEEE Int. Test Conf., pp. 488-493, October 2003.
[21] D.S. Johnson and L.A. McGeoch, “The Traveling Salesman
Problem : A Case Study in Local Optimization”, in Local Search
algorithms in Combinatorial Optimization, E.H.L. Aarts and J.K.
Lenstra, eds. John Wiley and Sons, 1996.
[22] TestGen, Version 5.3, Synopsys Inc., 1999.

Benchmark
reference

Test
sequence

length

Reduced test
sequence length

Reduction
(%)

s1423 79 68 13.92
s5378 166 166 -
s9234 341 341 -

s13207 540 538 0.03
s15850 390 390 -
s38584 1098 1088 -

b09 51 51 -
b10 102 87 14.7
b11 111 111 -
b12 183 173 5.78
b13 52 51 1.92
b14 906 893 1.43

