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Abstract: We propose a new scan tree architecture 
for test application time reduction. This technique 
is based on a dynamic reconfiguration mode 
allowing one to reduce the dependence between the 
test set and the final scan tree architecture. The 
proposed method includes two different 
configuration modes: the scan tree mode and the 
single scan mode. The proposed method does not 
require any additional input or output. 
Experimental results show up to 95% of test 
application time saving and test data volume 
reduction in comparison with a single scan chain 
architecture. 
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1. Introduction 
 The controllability and the observability of 
complex designs are nowadays guaranteed by DfT 
techniques. The full scan design is the most popular 
DfT technique [1] and it is very largely used in 
integrated circuits (ICs) or in System on chip (SoC) 
cores. Unfortunately, scan based architectures are 
expensive in test power consumption [2] and in test 
application time. 
 The test application time depends on the scan 
chain length. Indeed, the number of clock cycles 
required to scan in/out the test data is equal to the 
product of the number of test patterns by the scan 
chain length. The test sequence cannot be reduced 
without degrading the test quality. Thus, one 
solution to save test application time is to lessen the 
scan chain length. 
 At present, multiple scan chain design is often 
used to reduce the scan test shift time. This 
technique consists of splitting the scan chain in 
small scan sub-chains activated at the same time. 
The size of the different scan segments can be fixed 
[3,4] or variable [5,6]. Multiple scan chain design is 
now a standard [1] often used in ICs and in SoC 
cores (using the IEEE P1500 standard). The main 
drawback of this technique is the increase of the 
number of scan inputs and outputs dedicated to the 
test. Different techniques allow one to reduce the 

test application time with a low increase of the 
number of scan inputs and outputs [7-18]. 
 Some solutions are based on test encoding [7-
13]. The use of these techniques requires extra DfT 
logic. The hardware overhead of the decompressor 
is directly linked to the compression ratio.  
 Other solutions propose to reduce the test time 
without encoding process [14,15] and with a single 
scan input to drive several scan chains. The main 
drawback is a reduction of the circuit controllability. 
A dynamic reconfiguration can be used to improve 
the circuit controllability [15], but an additional test 
control input is then required. 
 Scan tree design is often used to deal with 
different scan DfT technique problems like test 
power [19] or test time [17,18]. The idea of scan 
tree design is that one scan cell drives other scan 
cells. This technique is interesting for test time 
reduction and it is a serial/parallel scan design with 
a single scan input. The same test data must be 
stored in different scan cells. The circuit 
controllability is reduced and this method requires a 
full compatibility between the parallel scan cells. 
So the effectiveness of a scan tree architecture 
depends on the correlation between the test data of 
the different scan cells. The first technique [17] 
proposes to reduce this dependence by increasing 
the number of don’t care values of the test sequence. 
But the solution effectiveness still depends on the 
circuit structure. The second technique [18] adopts 
a folding mode allowing one to increase the 
parallelism of the scan tree architecture. However, 
test sequence updating during the manufacturing 
phase but also the circuit time life, is impossible 
with both techniques. 
 In this paper, we propose an optimal scan tree 
architecture for test shift time reduction. The idea is 
to use a dynamic reconfiguration during the test 
application to switch from a scan tree mode to a 
single scan mode. A part of the test sequence is 
applied in scan tree mode to save test application 
time and the other part is applied in single scan 
mode. This procedure allows one to reduce the 
dependence between the scan tree architecture and 
the test sequence. With the proposed technique, it is 
possible to update the test sequence. This procedure 
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does not require additional test control input. A 
MISR is used for the circuit response compaction.  
 This paper is organized as follows. In section 2, 
a preliminary about full compatible scan tree 
architecture is presented and the proposed 
technique is described. In section 3, the scan tree 
generation of the proposed method is explained. 
Section 4 shows some experimental results for 
benchmark circuits and section 5 concludes the 
paper.  

2. Proposed scan tree architecture 
2.1 Preliminary (full compatible scan 

tree architecture) 
 Recently, two scan tree architectures [17,18] 
have been proposed to reduce the test application 
time. The basic principle of these techniques is 
described in figure 1. The idea is to store at the 
same time the similar test data in different scan 
cells. A computation of the test sequence is 
required to form groups of compatible scan cells 
that can receive the same test data.  

 Figure 1. Example of scan tree architecture 
generation 

 Figure 1.a presents an example of a single scan 
chain composed of 6 scan cells (FF1 to FF6) and the 
associated test set. From this data, groups of 
compatible scan cells are created {FF1, FF4 and 
FF6}, {FF2 and FF3} and {FF5}. Scan cells of the 
same group must receive the same test data. FF2 
and FF3 can be placed in the same group as far as 
they receive the same test data, respectively 0X1 
and 011. FF5 is incompatible with all other scan 
cells. From these groups, scan tree architecture is 
generated and represented in figure 1.b. The test 
shift time saving corresponds to the ratio of the 
difference between L1 and L2 over L1, where L1 
corresponds to the single scan chain length and L2 
to the scan tree length. Moreover, a reduction of the 
test data volume is obtained. This reduction is 
equivalent to the test shift time saving. 
 To generate scan tree architectures, full 
compatibility between the FFs of the same group is 
required. This full compatibility creates a high 
dependence between the scan tree architecture and 
the test sequence. To reduce this dependence, we 
propose a new scan tree architecture. 

  2.2 Proposed architecture 

 In this part, we present the proposed scan tree 
method. This method generates an optimal scan tree 
design with a dynamic reconfiguration during test 
application. The dynamic reconfiguration consists 
in switching between two modes. The first mode is 
the scan tree mode (ST mode) and the second one is 
the single scan mode (SS mode). The idea is to 
apply a part of the test sequence in ST mode and 
the other part in SS mode. This technique allows 
one to reduce the dependence between the scan tree 
architecture and the test sequence and to improve 
the test shift time reduction.   

Figure 2. Proposed scan tree architecture 

 Figure 2 describes the proposed scan tree 
architecture. The switch functionality from ST 
mode to SS mode is carried out by a pattern 
recognition module, multiplexers and a flip-flop 
driven by the scan enable signal (in grey color in 
figure 2). The activation occurs when the last test 
pattern of the scan tree mode has been applied. This 
extra DfT logic has a low impact on the area 
overhead. A MISR is used for the response 
compression. Figure 3 presents the two 
configurations of the architecture: in 3.a the ST 
mode and in 3.b the SS mode. In both cases, there 
is only one scan input and one scan output and a 
single test control input. 

Figure 3. Two modes: a/ scan tree mode b/ single 
scan mode
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 Concerning design constraints (fanout 
limitation for the scan cells and routing), we shall 
try to consider them in further work. Clustering 
process already proposed in [20] may be used. The 
configuration flexibility of the proposed scan tree 
architecture should allow one to obtain a good 
trade-off between test time reduction and design 
constraints. 
 To design the scan tree architecture, it is 
necessary to find the optimal balance between the 
part of the test sequence to apply in ST mode and 
the other part to apply in SS mode. The next section 
presents the adequate scan tree architecture 
generation procedure. 

3. Scan tree architecture generation 
 Scan tree architecture generation consists in 
finding the good balance between the part of the 
test sequence to apply in ST mode and the other 
part to apply in SS mode. The complexity of scan 
tree architecture generation to find the optimal 
solution depends on the number of test patterns and 
scan cells. This problem is NP-complete. The 
following section describes different heuristics to 
reduce the problem complexity. Section 3.1 
presents the adopted solution of scan tree 
generation and section 3.2 details the solution to 
determine the part of the test sequence to apply in 
ST mode. 

3.1 Scan tree generation 
 Scan tree generation consists of finding groups 
of compatible scan cells from a test set. We 
construct the incompatibility graph from the test set 
and adopt a vertex coloring process for the graph to 
solve the problem of finding optimal groups of 
compatible scan cells. In an incompatibility graph 
for a test, a vertex corresponds to a scan cell, and 
edge between two vertices exists if two scan cells 
corresponding to the vertices are incompatible in 
the test set. 

Figure 4. a/ scan tree generation from a test 
pattern and b/ scan tree generation from 2 test 

patterns  

 Figure 4 presents two examples of scan tree 
generation. In both, the scan chain is composed of 6 
scan cells. In figure 4.a, scan tree architecture is 
generated via a coloring graph from the test pattern 
t1. The FF1 is incompatible with the FF2, FF3 and 
FF6. These incompatibilities are reported by edges 
between (FF1, FF2), (FF1, FF3) and (FF1, FF6). The 
complexity of the coloring graph algorithm is O(n2), 
n corresponding to the number of scan cells. Figure 
4.b corresponds to the addition of the test pattern t2 
to the previous solution for t1. The addition of the 
pattern t2 increases the number of incompatibilities 
and coloring graph edges. In consequence, the 
length of the scan tree grows to 3 cells instead of 2. 
With this example, we show that the scan tree 
architecture has a high dependence with the test 
patterns. Test pattern selection must be achieved to 
determine the part of the test sequence to apply in 
ST mode.  

Figure 5. Procedure of the test sequence 
reduction 

3.2 Test pattern selection 
 The test pattern selection problem is reduced to 
Traveling Salesperson Problem (TSP [21]). It is not 
possible to find an exhaustive solution to determine 
the part of the test sequence that should be applied 
in ST mode. The complexity of the problem 
resolution depends on the number of test patterns. 
To reduce the complexity, a test sequence reduction 
procedure is applied. This procedure is described in 
figure 5. The first step is to compute the number of 
incompatibilities for each test pattern. The number 
of incompatibilities corresponds to the number of 
edges in the coloring graph. The second step 
consists in sorting the test sequence according to 
the number of incompatibilities. The last step 
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Table 1. Experimental results on ISCAS`89 benchmark circuits 

Table 2. Experimental results on ITC’99 benchmark circuits  

Benchmark 
reference 

 

# 
FFs 

# test 
patterns 

FC 
(%) 

# clock 
cycles for 

single 
scan 
(1) 

# clock 
cycles 

for scan 
tree (2) 

# clock 
cycles for 

the 
proposed 

method (3) 

test 
time 

saving 
(%) 

(1)(2) 

test 
time 

saving 
(%) 

(1)(3) 

computation 
time (sec) 

b09 28 51 99.72 1,428 1,071 848 25 40.62 0.01 
b10 17 102 100 1,734 918 712 47.06 58.94 0.01 
b11 31 111 97.11 3,441 1,887 633 45.16 81.6 1 
b12 121 183 99.96 22,143 6,954 4,441 68.6 79.94 15 
b13 53 52 96.43 2,756 1,508 876 45.28 68.21 1 
b14 245 906 97.07 22,1970 110,532 22,450 50.2 89.89 869 

reduces the test sequence by removing the 
equivalent test patterns defined as follows. 

Definition: a test pattern is equivalent to another 
test pattern if they have the same incompatibility 
graph. In the example of figure 5, the two patterns 
t1 and t7 can be applied with the same scan tree 
design. 

Figure 6. Test pattern selection procedure 

To determine the part of the test sequence to 
apply is ST mode, we use a greedy algorithm 
whose complexity is equal to O(m2) (m 
corresponding to the test sequence length). Figure 6 
represents the test pattern selection procedure. The 
nodes represent test patterns. The first node is the 
pattern with the smallest number of 
incompatibilities. From this first test pattern, a scan 
tree architecture is obtained (step 1). We then try to 
include another test pattern (step 2). For all the 
possible nodes of the step 2 (node 1 to node 5) we 
build the corresponding scan tree architecture 
including the first node and the current node. We 
choose to include in the solution the test pattern that  

 

implies the lowest increase of the scan tree length. 
This operation is repeated until all nodes are 
included (steps 3 to 6). The final step (step 6) 
corresponds to the full compatibility scan tree 
including all the test sequence. At each step, the 
number of clock cycles required to apply the test 
sequence is computed. The final solution is given 
by the step with the lowest number of clock cycles. 
 Finally, the complexity of the complete scan 
tree architecture generation is O(m2*n2). In further 
work, we will try to find a solution to reduce the 
complexity in order to save computation time. 

4. Experimental results 
 We have implemented the proposed method in 
C language on a Pentium M 1.6 GHz with 512 MB 
and have applied it to ISCAS’89 and ITC’99 
benchmark circuits. The test sets used are provided 
by Testgen tool [22] from Synopsys. 
 Table 1 and 2 give the results respectively for 
ISCAS’89 and ITC’99 benchmark circuits. The first 
four columns of the tables describe the circuits 
names, numbers of scan cells, lengths of test 
sequences (without any compaction) and 
corresponding fault coverages. The three following 
columns report the number of clock cycles 
(corresponding to the scan in/out operations only) 
for the single scan chain, the full compatible scan 
tree architecture and the proposed method 
respectively. The next two columns correspond to 
the test shift time savings (in percentage). The first 
one is the test shift time saving between the single 
scan chain and the full compatible scan tree

Benchmark 
reference 

# 
FFs 

# test 
patterns 

FC 
(%) 

# clock 
cycles for 

single 
scan 
(1) 

# clock 
cycles 

for scan 
tree (2) 

# clock 
cycles for 

the 
proposed 

method (3) 

test 
time 

saving 
(%) 

(1)(2) 

test 
time 

saving 
(%) 

(1)(3) 

computation 
time (sec) 

s1423 74 79 98.99 5,846 1,817 947 68.92 83.8 1 
s5378 179 178 98.78 29,714 13,350 4,472 58.10 85.96 22 
s9234 211 341 93.16 71,951 34,322 19,391 52.30 73.05 163 

s13207 669 540 98.32 361,260 52,608 26,646 85.35 92.62 950 
s15850 596 390 96.29 232,440 59,554 32,604 74.38 85.97 553 
s38584 1426 1098 95.23 1,565,748 500,688 71,226 68.02 95.45 14,630 
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Figure 7. Evolution of the test shift time saving for ISCAS`89 benchmark circuits 

Figure 8. Evolution of the test shift time saving for ITC`99 benchmark circuits 

architecture. The second one gives the test shift 
time savings between the single scan chain and the 
proposed method. The last column reports the 
corresponding computation time in seconds. 
 The number of clock cycles is computed 
considering the following expression: 

( ) ( )( )12 ×+×= Lt#t#Lt#cycles_clock# sttts

where #tst is the number of test patterns applied in 
ST mode, L2 is the length of the scan tree 
architecture, #tt is the test sequence length and L1 is 
the number of scan cells. For single scan chain, #tst 
is equal to 0. For full compatible scan tree, #tst is 
equivalent to #tt. For the proposed solution, #tst is 
included between 0 and #tt. 
 The test shift time saving using the full 
compatible scan tree is equal to 52.3% in average 
and to 78.9% at maximum in comparison with the 
single scan architecture. The proposed method 
improves significantly the test time reduction. 
Indeed, the average test shift time saving is equal to 
78% and reaches 95.45% for s38584. The 
difference of time saving achievements clearly 
shows the effectiveness of the proposed solution. 
Moreover, an equivalent reduction of the test data 
volume is obtained. Concerning the computation 

time, it remains reasonable even though the results 
have not been provided by a workstation. 
  Figures 7 and 8 represent the evolution of the 
test shift time saving along the amount in 
percentage of patterns in the test sequence applied 
in ST mode. A linear evolution of test shift time 
saving can be observed in the first part of the 
graphics. This linear evolution reveals that the test 
patterns progressively included in the solution have 
a low impact on the current scan tree architecture, 
implying a beneficial reduction of the test time. Full 
compatible scan tree architecture corresponds to the 
last point on the curve (100% of the test sequence is 
applied in scan tree mode) 
 Concerning the effectiveness of the proposed 
test sequence reduction to lessen the scan tree 
architecture generation complexity, the table 3 
summarizes the achieved results. The first column 
reports the names of the circuits. The second and 
third columns correspond respectively to the test 
sequence length and to the reduced test sequence 
length considered for the architecture generation 
algorithm. The last column reports the 
corresponding percentage of reduction. The results 
show the effectiveness of this solution for some 
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circuits. In future work, we will try to improve the 
proposed solution to reduce thecomplexity of the 
scan tree architecture generation.  

Table 3. Optimization of the test sequence for 
the scan tree architecture generation on 

ISCAS’89 and ITC99 benchmark circuits 

 5. Conclusion 
 In this paper, a new scan tree architecture is 
presented to reduce scan test shift time thanks to a 
dynamic reconfiguration during the test application. 
Experimental results for benchmark circuits show 
that our proposed method can reduce scan test shift 
time up to 95% of that for the single scan. In further 
work, we shall consider design constraints and 
reduce the scan tree generation complexity. 
Another perspective is to use several scan tree 
modes to improve the test time reduction. 
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Benchmark 
reference 

Test 
sequence 

length 

Reduced test 
sequence length 

Reduction 
(%) 

s1423 79 68 13.92 
s5378 166 166 - 
s9234 341 341 - 

s13207 540 538 0.03 
s15850 390 390 - 
s38584 1098 1088 - 

b09 51 51 - 
b10 102 87 14.7 
b11 111 111 - 
b12 183 173 5.78 
b13 52 51 1.92 
b14 906 893 1.43 


