
Serial and Parallel TAM Designs for System-on-Chip
Interconnects Based on 2-Pattern Testability

Yuusuke Saga, Tomokazu Yoneda and Hideo Fujiwara
Graduate School of Information Science
Nara Institute of Science and Technology
Kansai Science City, 630–0192 Japan

Email: {yuusu-s, yoneda, fujiwara}@is.naist.jp

Abstract—Testing crosstalk-induced faults on interconnects of
system-on-chip (SoC) has become more important because of
high integration of semiconductors. The faults can be tested by 2-
pattern testing. 2-pattern testing means application of consecutive
two test patterns and observation of one test response. In this
paper, we present two DFT methods for 2-pattern testability of
interconnect. One DFT method utilizes EXTEST mode of IEEE
P1500 wrappers and achieves 2-pattern test through a serial
TAM. The other method doesn’t use IEEE P1500 wrappers, but
utilizes existing interconnects as much as possible in order to
achieve 2-pattern test. In case studies, we show advantages that
hardware overhead of the proposed method is lower than that
of our previous DFT method based on consecutive testability.

I. INTRODUCTION
With high integration and high working frequency of

system-on-chip (SoC), coupling capacitance and mutual in-
ductance between long interconnects become significant.
Therefore, testing crosstalk-induced faults on interconnects
becomes an important problem. Maximal aggressor (MA)
model is proposed as a model of crosstalk-induced faults on
interconnects[1]. On this MA fault model, there are 4N + 2
faults for an N bit interconnect. Testing of the MA faults on
interconnects is performed by application of consecutive two
test patterns and observation of the one test response (2-pattern
test). Therefore, 4N + 2 2-pattern tests are required for an N
bit interconnect.
We have proposed DFT methods based on consecutive testa-

bility that supports application of consecutive test sequence of
arbitrary length and observation of consecutive test response
of arbitrary length[2]. However, there is a room for reduction
of hardware overhead because interconnects can be tested by
2-pattern test.
In this paper, we present two DFT methods for 2-pattern

testability of SoC interconnects. One DFT method is based
on IEEE P1500 wrapper, and achieves 2-pattern test by using
EXTEST mode of IEEE P1500 wrapper[3] and a serial test
access mechanism (TAM) in an SoC. The other DFT method
achieves 2-pattern testability without IEEE P1500 wrapper. In
this method, a register is added to each port of each core
instead of IEEE P1500 wrapper cells. Then, we design TAMs
for 2-pattern testing for interconnects from primary inputs
to registers, and from registers to primary outputs by using
existing interconnects as much as possible. In case studies,
we show advantages that one of the proposed DFT methods
is effective when designers adopt the IEEE P1500 wrappers,
and hardware overhead of the another proposed DFT method

is lower than that of our previous DFT method based on
consecutive testability.
The rest of this paper is organized as follows. Section

II describes target SoCs, IEEE P1500 wrappers and testing
of interconnects. Section III defines 2-pattern testability of
interconnects. In section IV, we present two DFT methods for
the 2-pattern testability. Results of case studies are presented
in section V. Finally, section VI concludes this paper.

II. PRELIMINARIES
A. SoC Modeling
We assume that an SoC consists of cores, primary inputs,

primary outputs and interconnects and all cores operate using
single clock frequency.
We introduce ports of each core as interface points in a

natural fashion: signals enter into a core through its input ports,
and exit through its output ports. An interconnect connects an
output port with an input port, a primary input with an input
port, or an output port with a primary output. Though any
number of interconnects can connect to the same output port
(i.e. fanout is allowed), only one interconnect can connect to
the same input port. It is not necessary that interconnects are
of the same bit-width.
A floor plan is provided for an SoC and each core has

placement denoted by (x, y) coordinates of its center of
gravity. The area of a signal line is estimated as the product
of bit-width and length on the floor plan, where the length of
each line is defined as Manhattan distance.

B. IEEE P1500 Wrapper
The IEEE P1500 wrappers is a shell around a core, and

it allows the core to be tested as a stand-alone module
by separating it from its environment[4]. Fig. 1 shows an
example of a core with IEEE P1500 wrapper[3]. It has
functional input/output ports. Furthermore, it has a mandatory
one-bit input/output port pair, wrapper serial input/output,
respectively. Optionally, it has multi-bit input/output port pair,
wrapper parallel input/output, respectively. The IEEE P1500
wrapper also contains wrapper input/output cells (Fig. 2) in
order to provide controllability and observability of functional
input/outputs. The wrapper has four main types of modes:
(1) functional mode, (2) INTEST mode, (3) EXTEST mode
and (4) BYPASS mode. Here, we describe the detail of
EXTEST mode using wrapper serial input/output since this is
a mandatory test mode for interconnects between cores. First, a

IEEE 5th Workshop on RTL and High Level Testing (WRTLT'04), pp. 13-18, Nov. 2004.

Wrapper

Core

Scan chain 0

sc clk

Bypass
register

Wrapper
instruction

register
Clock clk

Wrapper serial
input wsi

Wrapper instruction input wsc[0:5]

Scan enable
sc Wrapper serial

output wso

Wrapper
parallel input
wpi[0:2]

Functional
input d[0:2]

Wrapper
parallel output
wpo[0:2]

Functional
output q[0:1]

Scan chain 1

Functional
output q[0:1]

Functional
input d[0:2]

Output cell

Output cell

Fig. 1. IEEE P1500 Wrapper

Wrapper input cell

FF
clk

From SoC To core

sc

Wrapper output cell

FF

From core To SoCScan-in

Scan-outScan-out

Scan-in

scwci wco

clk

Fig. 2. Wrapper Input Cell and Wrapper Output Cell

test pattern for an interconnect is scanned into wrapper output
cells through a wrapper serial input. Then, the test pattern is
applied to the interconnect, and the test response from the
interconnect are captured in wrapper input cells of next cores.
After that, the captured test response is scanned out through
a wrapper serial output. In this way, IEEE P1500 wrappers
can support 1-pattern test for interconnects. However, 2-pattern
testing required for crosstalk-induced faults or delay faults is
impossible.

C. Testing of Interconnects
For deep sub-micron technology, coupling capacitance and

mutual inductance between interconnects become significant.
Cross-coupling effects such as glitches, or delay/speed-up
transitions cause signal integrity problems on interconnects.
Cuviello et al.[1] proposed the maximal aggressor (MA) fault
model which abstracts the crosstalk-induced defects by linear
number of faults (detailed models of speed-up transitions are
in [5]). In this fault model, one line of an N bit interconnect
is a victim line and other N − 1 lines act as aggressors.
Effect of all aggressors appears on the victim line. In MA

0
0
0
0
0

1
1
0
1
1

0
0
1
0
0

0
0
1
0
0

1
1
0
1
1

1
1
1
1
1

Glitch fault Delay fault Speed-up fault
0
0
1
0
0

1
1
0
1
1

0
0
0
0
0

1
1
1
1
1

0
0
0
0
0

1
1
1
1
1

1 0 1 0 0 1

Victim line

Fig. 3. Test Patterns for MA Fault Model

fault model, there exist 4N + 2 2-pattern tests for an N bit
interconnect. The required transitions on the aggressor/victim
lines to test the MA faults are shown in Fig. 3. Each line
becomes a victim line that is indicated by arrows in Fig. 3
for testing of positive glitch, negative glitch, falling delay and
rising delay. For testing of falling and rising speed-up faults,
position of the victim line is not identified. Therefore, there
exist two 2-pattern tests for rising/falling speed-up.

III. 2-PATTERN TESTABILITY

In this section, we define 2-pattern testability which can
achieve 2-pattern test for interconnects. In III-A, we define
a port graph for an SoC. We define 2-pattern testability on
the port graph when there exist IEEE P1500 wrappers for all
cores in an SoC in III-B, and we define 2-pattern testability
on the port graph when there exist no IEEE P1500 wrappers
for all cores in III-C.

A. Port Graph

We define a port graph G = (V, E) for an SoC as the
following directed graph (Fig. 4).

• V = VPI ∪ VPO ∪ Vport where VPI is the set of all
primary inputs of the SoC, VPO is the set of all primary
outputs of the SoC, and Vport is the set of all ports of
cores in the SoC.

• E where E = {(x, y) ∈ V × V | port x is connected to
port y }.

We refer to a vertex that has no input edge as a source, and
a vertex that has no output edge as a sink. We consider AND
and OR as types for edges in a port graph. AND is a type
for edges that propagate part of bit-width of v (Fig. 5(a)(c)).
OR is a type for edges that propagate all bit-width of v (Fig.
5(b)(d)). Fig. 5 illustrates AND/OR edges and their hardware
implementations. For an edge i ∈ E, we define vin

i as a head
of i and vout

i as a tail of i. For v ∈ V in a port graph, we
define win

v as follows.
1) If the input edges of v are AND type, win

v is the sum
of the bit-width of the input edges of v.

2) If the input edges of v are OR type, win
v is the bit-width

of one of the input edge of v.
Similarly, we define wout

v as follows.
1) If the output edges of v are AND type, wout

v is the sum
of the bit-width of the output edges of v.

2) If the output edges of v are OR type, wout
v is bit-width

of one of the output edge of v.
Let u and v be vertices in G. Reconvergence from u to v are

called OR-AND reconvergence if all the following conditions
are satisfied.
1) Type of the output edges of u in the reconvergence is
OR.

2) Type of the input edges of v in the reconvergence is
AND.

CoreCore

Core

CoreCore

Fig. 4. Port Graph

n bit port

AND n1

n ҈ n1 + n2

n bit port

n ҈ n1

(a) n1 + n2 ҇ n

n1 ҇ n

n2
n

n1

n2

n bit port
n bit port

n1

n1

n1

n2

n1 n1

n1

n2

n1

n1

n1

n1

n1
n

n

n

OR OR

AND

(b)

(c)

(d)

Fig. 5. AND/OR Edges and Their Hardware Implementations

B. 2-pattern Testability with IEEE P1500 Wrappers

When all cores in an SoC have IEEE P1500 wrappers, all
input/output ports of all cores are controllable and observable.
Thus, a head and a tail of an interconnect are 1-pattern
controllable and 1-pattern observable, respectively. Then, we
define 2-pattern testability of an interconnect in the case that
all cores in an SoC have IEEE P1500 wrappers as follows.
Definition 1: (2-pattern testability of an interconnect with

IEEE P1500 wrappers) Let G be a port graph for an SoC,
and let i be an interconnect in E, then i is 2-pattern testable
if there exists a subgraph Gi that satisfies all the following
conditions.
1) All sources in Gi are included in VPI ∪ Vport −

{
vin

i

}
.

2) Only vin
i is a sink in Gi.

3) win
vin

i
≥ wi. Here, let wi be bit-width of i,

C. 2-pattern Testability without IEEE P1500 Wrappers

When there exists no IEEE wrapper for all cores in an SoC,
we have to propagate the test sequence (two patterns) from
primary inputs to an interconnect, and furthermore propagate
the test response to primary outputs. In this case, we define
2-pattern controllability, 1-pattern observability and 2-pattern
testability of an interconnect as follows.
Definition 2: (2-pattern controllability of an interconnect

without IEEE P1500 wrappers) Let G be a port graph for
an SoC, and let i be an interconnect in E, then i is 2-pattern
controllable if there exists a subgraph GJ

i that satisfies all the
following conditions.
1) All sources in GJ

i are primary inputs.
2) Only vin

i is a sink in GJ
i .

3) For all vertices v except for sources in GJ
i , win

v ≥ wout
v .

4) Let RJ
i be the set of OR-AND reconvergence in GJ

i .
For each OR-AND reconvergence r ∈ RJ

i from u to v,
r satisfies all the following conditions.
a) Only u has OR type edges.
b) Let dp be the number of vertices on a path. Then,
for any pair of paths, pj , pk, from u to v in r that
do not share the same output edge of u, it satisfies
|dpj − dpk | ≥ 2.

Definition 3: (1-pattern observability of an interconnect
without IEEE P1500 wrappers) Let G be a port graph for
an SoC, and let i be an interconnect in E, then i is 1-pattern
observable if there exists a subgraph GP

i that satisfies all the
following conditions.
1) Only vout

i is a source in GP
i .

2) All sinks in GP
i are primary outputs.

3) For all vertices v except for sinks of GP
i , win

v ≤ wout
v .

Definition 4: (2-pattern testability of an interconnect with-
out IEEE P1500 wrappers) An interconnect i ∈ E is said to
be 2-pattern testable if i satisfies all the following conditions.
1) i is 2-pattern controllable.
2) i is 1-pattern observable.

IV. DESIGN FOR TESTABILITY
In this section, we present two DFT methods that make

all interconnects 2-pattern testable. One DFT method called
serial 2-pattern DFT adds IEEE P1500 wrappers to all cores
in an SoC and utilizes a serial TAM to make interconnects
2-pattern testable. The other DFT method called parallel 2-
pattern DFT does not add IEEE P1500 wrapper, but utilizes
existing interconnects as much as possible in order to design
TAMs which make all interconnects 2-pattern testable.

A. Serial 2-pattern DFT
We describe a serial 2-pattern DFT method that adds IEEE

P1500 wrappers to all cores in an SoC and utilizes serial TAMs
to make all interconnects 2-pattern testable. In EXTEST mode
of IEEE P1500 wrappers, only 1-pattern test can be performed
for interconnects. Then, this method aims to achieve 2-pattern
testability by modifying IEEE P1500 wrappers so that two
test patterns for an interconnect can be stored in wrapper
input/output cells in a core and the patterns can be applied to
the interconnect consecutively. We formulate the above design
for 2-pattern testability as the following optimization problem.
Definition 5: (Serial 2-pattern DFT problem)
• Input: An SoC
• Output: An SoC with a serial TAM and wrappers that
make all interconnects 2-pattern testable

• Optimization: Minimizing hardware overhead (numbers
of registers and MUXs, and area of additional lines)

Serial 2-pattern DFT algorithm consists of the following
three steps.
Step 1: (Wrapper and TAM design for each core)
We design IEEE P1500 wrapper with serial EXTEST mode

that is mandatory mode in P1500. Moreover, we design a serial
TAM that connects all cores in series to realize serial EXTEST
mode.

Core
c CM

odified
input cells

Total:
wout,cbit

Total:
win,cbit

Additonal
cells:

wout,c-win,cbit

(a) win,c < wout,c

wout,c-win,c

win,c (c) Modified wrapper input cell

(b) win,c > wout,c

(d) Modification on wrapper output cell side

Core
c C

Output cells

wout,c

Mod. wrapper input cell

FF

Wrapper output cell

FF
Total:
wout,cbit

Total:
win,cbit

From input side

Output cells

Input cells
Input cells

To
interconnect

From core

To output
side

Scan-in

Scan-in
Scan-out

Scan-out
sc

sc wco

clk

clk

Fig. 6. Serial 2-pattern DFT

CoreCore
N

Nbit register+MUX Nbit register

Fig. 7. Additional Hardware for Interconnects

Step 2: (Addition of modified wrapper input cells)
For each core c ∈ C in an SoC, let win,c be total bit-width

of input ports of c, and wout,c be total bit-width of output
ports of c. Then, if win,c < wout,c we put wout,c − win,c bit
modified wrapper input cells (Fig. 6(c)) to input side of c (Fig.
6(a)). Otherwise, we do not add modified wrapper input cells
(Fig. 6(b)).
Step 3: (Addition of paths in wrappers)
We create wout,c bit parallel paths from input cells to

wrapper output cells by adding signal lines and MUXs (Fig.
6(a)(b)). MUXs are inserted to scan-in ports of wrapper output
cells (Fig. 6(d)).
By using the wrappers designed by the above three steps,

the first pattern of 2-pattern test can be scanned into wrapper
output cells of the core, and second pattern can be scanned
into wrapper input cells of the core. Moreover, by using paths
from wrapper input cells to wrapper output cells, these two
patterns can be applied to interconnects consecutively.

B. Parallel 2-pattern DFT
We describe a parallel 2-pattern DFT method for 2-pattern

testability of interconnects without using IEEE P1500 wrap-
pers. This method adds registers to input/output ports of
each core instead of IEEE P1500 wrapper cells (Fig. 7).
The location of the added registers are very close to the
input/output ports. Then, for each interconnect i, we create
paths from primary inputs to the register located at the head
of i, and paths from the register located at the tail of i to
primary outputs. If there exists an interconnect that cannot
be made 2-pattern testable by utilizing existing paths, we add
signal lines and MUXs in order to achieve 2-pattern testability.
We formulate the above design for 2-pattern testability as the
following optimization problem.
Definition 6: (Parallel 2-pattern DFT problem)

c1

c2

c4

c6

c5

c3

Justification frontier
Sf

Unknown

1

1

1

2

2
2

2

3

3 4

4

Unknown

Unknown

Fig. 8. Determination of Justification Level, and Justification Frontier

c1

c2
c4

c6

c5

c31

1

1

2

2
2

2

3

3 4

4

4

4

3

Fig. 9. An SoC with All Interconnects whose Justification Levels are
Determined

• Input: An SoC
• Output: An SoC with a parallel TAM that make all
interconnects 2-pattern testable

• Optimization: Minimizing hardware overhead (numbers
of registers and MUXs, and area of additional lines)

We describe a heuristic algorithm for the parallel 2-pattern
DFT. This algorithm consists of the following four steps.
Step 1: Determine justification level of interconnects
Step 2: Design for 2-pattern controllability of interconnects
Step 3: Determine observation level of interconnects
Step 4: Design for 1-pattern observability of interconnects

In step 1, we determine justification level of each intercon-
nect that is the distance from primary inputs. Step 2 makes
interconnects 2-pattern controllable in the ascending order of
justification levels. Step 3 determines observation level of each
interconnect that is the distance from primary outputs. In step
4, we make interconnects 1-pattern observable in the ascending
order of observation levels. We describe the detail of each step
as follows.
Step 1: (Determine justification levels of interconnects)
In this step, we determine justification levels of all inter-

connects. Justification level is a distance from primary inputs.
We determine justification levels of all interconnects by the
following three processes.
(1) We set justification levels of interconnects directly con-
nected to primary input to 1, and set justification levels of
other interconnects to unknown. For each core c, we refer to
an interconnect whose tail is an input port of c as an input
interconnect, and an interconnect whose head is an output
port of c output interconnects. Let Sf be the set of cores that
satisfy the following two condition: (i) each core in Sf has
one or more input interconnects whose justification levels are

Justification level 1
(2-pattern controllable)

Justification level j

i E

Justification level j-1
(2-pattern controllable)

Add edges to
satisfy bit width
of iSicand

SiJ

Fig. 10. Making 2-pattern Controllable in Ascending Order of Justification
Level

determined and (ii) each core in Sf has all output interconnects
whose justification levels are unknown (Fig. 8). We call Sf

justification frontier. We define that each core c ∈ Sf has
core-level Lc and flag. Core-level is maximum value among
known justification levels of input interconnects of the core.
The flag has either ”visited” or ”unvisited”, and we initialize
all the flags to ”unvisited” in this process (1).
(2) We select a core c with ”unvisited” flag and minimum
core-level from Sf . We set justification levels of output
interconnects of c to Lc + 1 if all justification levels of input
interconnects are not unknown. If the justification levels of
output interconnects of c are determined, then we update Sf .
Otherwise, we set the flag of c to ”visited”. We iterate this
process (2) until justification levels of all interconnects are
determined (Sf becomes empty), or flags of all elements in
Sf are ”visited” (loops are detected). If Sf becomes empty,
the justification levels of all interconnects are determined and
we move to step 2. If flags of all elements in Sf are ”visited”,
we go to process (3).
(3) When flags of all cores in Sf are ”visited” (i.e., loops are
detected), we select a core which have minimum core-level
from Sf and set justification levels of output interconnects
to Lc + 1. Moreover, we reset flags of all elements in Sf to
”unvisited”, and we go back to process (2).
Fig.9 shows justification levels corresponding to the SoC in

Fig. 8 after this step.
Step 2: (Design for 2-pattern controllability of intercon-
nects)
We make all interconnects 2-pattern controllable by using

justification levels by the following five processes.
(1) We add a register to each input/output port of each core.
Bit-width of the register is the same as that of the port, and
the location of the register is very close to the port (Fig. 7).
(2) We select an interconnect i such that i is not 2-pattern
controllable and i has minimum justification level. Here, we
consider that interconnects with justification level 1 are 2-
pattern controllable from the beginning since they are directly
connected to primary inputs. On the other hand, interconnects
without justification level 1 may not be 2-pattern controllable.
If there does not exist such i, all interconnects are 2-pattern
controllable and we move to step 3. Let SJ

i be a set of 2-
pattern controllable vertices for i which are head and tail
vertices of all 2-pattern controllable interconnects. Then, we
calculate area costs of signal lines from vin

i to each element
in SJ

i . Area cost of a signal line is product of Manhattan

c5
(11,4)c3

(7,3)

c6
(15,6)

c4
(11,7)c2

(7,6)c1
(3,5)

vPI1:(0,6) e1:16

e2:16
e3:16

e4:16
e5:16

e6:16

e7:16

e8:16

e9:16

e10:16

e11:32

e12:32
e13:32

e14:32
vPO1:(18,6)

vPI2:(0,5) vPO2:(18,5)

Fig. 11. SoC Example of Case Studies

distance of the added signal lines and bit-width of the signal
lines. Let Scand

i be the set of vertices that are selected as
candidate vertices to make i 2-pattern controllable. Let Wi

be the bit-width that is currently required to make i 2-pattern
controllable. We initialize Wi = wi. Here, let wi be bit-width
of i.
(3) We pick a port v with minimum area cost from SJ

i , and
add the port v to Scand

i (Fig. 10). Then, we update SJ
i as

SJ
i = SJ

i − {v}. We iterate this process (3) until sum of bit-
width of all elements in Scand

i is Wi or over.
(4) We check 2-pattern controllability (definition 2) of i in
the case that there exist AND type edges from all elements
in Scand

i to vin
i . If i satisfies 2-pattern controllability, we

can make i 2-pattern controllable by adding paths from each
element in Scand

i to vin
i with MUXs and signal lines. Then, we

go back to process (2). Otherwise, it is impossible to make i 2-
pattern controllable by using paths from all elements in Scand

i
to vin

i simultaneously. In that case, we go to process (5).
(5) Let Sn

i be the subset of Scand
i whose vertices cannot be uti-

lized simultaneously in order to satisfy 2-pattern controllability
of i. Let vk be a vertex which have maximum bit-width in Sn

i .
Then, we add paths from the elements in

(
Scand

i − Sn
i

)
∪{vk}

to vin
i by using MUXs and signal lines. Moreover, let wc be

the sum of bit-width of all elements in
(
Scand

i − Sn
i

)
∪ {vk},

then we update W as W = W − wc. We update Scand
i as

Scand
i = φ, then we go back to process (3).
Step 3: (Determine observation levels of interconnects)
This step determines observation level of all interconnects.

Observation level is the a distance from primary outputs. We
set observation levels of interconnects directly connected to
primary output to 1, then we process this step in a similar
fashion to step 1.
Step 4: (Design for 1-pattern observability of interconnects)
We make all interconnects 1-pattern observable by using

observation levels in a similar fashion to step 2.

V. CASE STUDIES
In this section, we present results of case studies obtained

by the proposed methods. We apply serial 2-pattern DFT
method, parallel 2-pattern DFT method and consecutive DFT
method to two SoCs we randomly created since ITC’02
SoC benchmarks[6] have no information about connectivity
between cores. SoC1 shown in Fig. 11 has 6 cores and 14
interconnects. SoC2 has 20 cores and 37 interconnects. The
consecutive DFT methods uses the same algorithm as the
parallel 2-pattern DFT method except for the conditions of

TABLE I
CASE STUDIES RESULT

SoC SoC1 (6 Cores, 14 interconnects) SoC2 (20 Cores, 37 interconnects)
2-pattern 2-pattern

Serial Serial
DFT P1500 Add. Parallel Consecutive P1500 Add. Parallel Consecutive

Registers (bit) 464 80 464 464 1184 128 1184 1184
MUXs (bit) 928 317 352 384 2368 692 912 944

Core external lines
(bit*length) 27 0 48 288 127 0 256 688

H
ar
dw
ar
e

ov
er
he
ad

Core internal lines (bit) 0 237 320 272 0 564 720 688
Test application time (clock) 71524 6064 2452 172132 7787 6493

testability in step 2 and 4. The DFT method uses consecutive
testability defined in [2] instead of 2-pattern testability.
Table I shows hardware overhead and test application time

obtained by the three DFT methods. In table I, ”Serial” and
”Parallel” in ”2-pattern” denote results of serial 2-pattern
DFT method and parallel 2-pattern DFT method, respectively.
”Consecutive” denotes results of consecutive DFT method.
”P1500” in ”Serial” denotes hardware overhead of original
IEEE P1500 wrappers, and ”Add.” in ”Serial” denotes hard-
ware overhead for 2-pattern testability except for original
wrapper hardware. ”Registers” and ”MUXs” in ”Hardware
overhead” denote the bit-width of registers added by each
method. ”Core external lines” denotes area costs of added
signal lines between cores, and ”Core internal lines” shows
the bit-width of added signal lines to the inside of cores since
the distance from an input port of a core to an output port
of the core is 0. ”Test application time” is a time in the case
that we execute MA test. In serial 2-pattern DFT method, all
interconnects can be tested simultaneously because each in-
terconnect has unique wrapper input/output cells for 2-pattern
test. In parallel 2-pattern and consecutive DFT methods, we
assume that each interconnect is tested one by one.
Test application time of serial 2-pattern DFT method is

longer than those of other methods. Moreover, hardware over-
head of registers and MUXs of serial 2-pattern DFT method
are very larger than those of other methods. However, serial
2-pattern DFT method is compliant for IEEE P1500 standard.
Therefore, this method can achieve the smallest hardware
when designers adopt the IEEE P1500 wrappers.
Test application time of parallel 2-pattern DFT method is

about 1.9 times longer than that of consecutive DFT method on
average. However, parallel 2-pattern DFT method can achieve
about 73% reduction of hardware overhead in comparison with
consecutive DFT method on average. The reason is difference
between 2-pattern testability and consecutive testability. The
2-pattern testability allows common parts of control paths and
observation paths, and OR-AND reconvergent paths. You can
see that parallel 2-pattern DFT method can achieve reduction
of hardware overhead effectively with little increase of test
application time compared to consecutive DFT method by this
difference.

VI. CONCLUSION
In this paper, we introduced 2-pattern testability of SoC

interconnects that is a property to achieve testing of crosstalk-

induced faults on SoC interconnects. Moreover, we proposed
two DFT methods for SoC interconnects based on the 2-
pattern testability. One of the proposed DFT methods is serial
2-pattern DFT which utilizes IEEE P1500 wrappers. This is
compliant for IEEE P1500 standard. Therefore, this method
is effective when designers adopt the IEEE P1500 wrappers.
Another proposed method is parallel 2-pattern DFT which
does not utilize IEEE P1500 wrappers, but utilizes existing
interconnects as much as possible. In the case studies, we
show that test application time of parallel 2-pattern DFT
method is about 1.9 times longer than that of consecutive DFT
method. However, 2-pattern DFT method can achieve 73%
reduction of hardware overhead compared to consecutive DFT
method. Parallel 2-pattern DFT method can achieve reduction
of hardware overhead effectively with little increase of test
application time compared to consecutive DFT method.
One of our future works is to propose a DFT method in

the case that test pattern sources and test response sinks are
embedded to the inside of SoCs. Another future work is to
achieve co-optimization between test application time and area
overhead for the proposed 2-pattern testability.

ACKNOWLEDGMENT
This work was supported in part by 21st Century COE

(Center of Excellence) Program and in part by JSPS (Japan
Society for the Promotion of Science) under Grants-in-Aid for
Scientific Research B(2) (No.15300018). Authors would like
to thank Prof. Michiko Inoue and Prof. Satoshi Ohtake and
members of Computer Design and Test Lab. (Nara Institute of
Science and Technology) for their valuable discussions.

REFERENCES
[1] M. Cuviello, S. Dey, X. Bai and Y. Zhao, ”Fault Modeling and Simulation

for Crosstalk in System-on-Chip Interconnects,” in Proc. of Int. Conf. on
Computer-Aided Design (ICCAD), pp.297-303, 1999.

[2] T. Yoneda and H. Fujiwara, ”Design for Consecutive Testability of
System-on-a-Chip with Built-In Self Testable Cores,” Journal of Elec-
tronic Testing: Theory and Applications (JETTA), vol.18, no.4/5, pp.487-
501, Aug. 2002.

[3] IEEE P1500 Standard for Embedded Core Test (SECT),
http://grouper.ieee.org/groups/1500/.

[4] Y. Zorian E. J. Marinissen and Sujit Dey, ”Testing Embedded-Core Based
System Chips,” in Proc. of Int. Test Conf. (ITC), pp.130-143, 1998.

[5] W.-C. Lai, J.-R. Huang and K.-T. (T.) Cheng, ”Embedded-Software-Based
Approach to Testing Crosstalk-Induced Faults at On-Chip Buses,” in Proc.
of VTS, pp.204-209, 2001.

[6] E. J. Marinissen, V. Iyengar and K. Chakrabarty,
”ITC’02 SOC Test Benchmarks Web Site”,
http://www.extra.research.philips.com/itc02socbenchm/.

