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Abstract
This paper presents a method of template generation for

instruction-based self test of processor cores. A test pro-
gram template is an instruction sequence with unspecified
operands, and represents paths for justification of test pat-
terns and propagation of test responses for a module un-
der test (MUT). In order to justify value of MUT inputs, we
introduce a concept of adjacent registers of the MUT that
makes it possible to consider input spaces of the MUT de-
termined by signals from other modules as well as signals
directly from registers. We efficiently generate possible tem-
plates considering dependence of instructions each of which
invokes one or more data transfers between registers. The
method also generates multiple templates in effective order
to detect faults, which may cover different input spaces, and
therefore, different detectable fault sets.

1. Introduction
As microprocessor speed continues to rise beyond the

giga-hertz range, at-speed testing is becoming an absolute
necessity for these processors. Though the full scan ap-
proach is commonly used due to its simplicity, it is too
costly to perform accurate and at-speed testing. Another
widely used technique, the built in self test (BIST) uses
embedded hardware test generators and response analyzer,
and applies test patterns on-chip at the speed of the circuit.
However, the design changes are required to make a circuit
to be BIST ready, and involve large amount of manual ef-
fort. The BIST also leads to unacceptable area overhead.
Furthermore, an application of random patterns results in
excessive power consumption. In order to realize at-speed
test without any change of designs, self testing approach by
instructions of a processor is becoming more and more im-
portant.
Until now, several instruction-based methods have been

proposed. Thatte et al. [1] proposed a functional test-
ing methodology involving graph theoretic model called
S-graph which is a model of dataflow between registers
and a functional fault model for testing a microprocessor.
However, the functional testing approach resulted in low
fault coverage for structural fault models, and indeed, re-
cent approaches have inclined towards targeting the struc-

tural faults.
Our instruction based self test for processors is based

on hierarchical test generation method targeting structural
faults. In the method, a gate level test generation is per-
formed for each module under test (MUT), and a test pro-
gram is generated to justify test patterns from primary in-
put to the MUT and propagates test responses at instruction
level. Since the justification to the MUTs relies on proces-
sor instructions, it is not possible to justify any test patterns.
The faults not detected by the test programs are redundant
at instruction level. To avoid test generation or test pro-
gram synthesis for such redundant faults, test generation for
a MUT under instruction constraints is required. However,
it is difficult to extract accurate constraints for a MUT from
instruction set architecture. Loose constraints including un-
detectable faults at instruction level lead ATPG to extra ef-
fort of test generations and also test program syntheses for
unjustifiable test patterns. On the contrary, if we apply too
strict constraints, we fail in finding detectable faults. There-
fore, it is important to identify the accurate set of constraints
for MUT inputs.
Lai et al. [2, 3] proposed a method targeting path de-

lay faults. It identifies the functionally untestable paths by
extracting the constraints on registers, and then test genera-
tion targets the paths that are not identified as the function-
ally untestable paths. A test program is synthesized from
test vectors generated by ATPG under the constraints. As
the constraints are extracted from instruction pairs and they
do not consider sequences of three or more instructions, it
is not obvious whether the test pattern can be justified or
not. Therefore, the method may fail in program synthesis.
Furthermore, it is possible that the method does not synthe-
size any program even for detectable faults due to inaccurate
constraints.
Our research group [4, 5] proposed more efficient ap-

proach that identify some untestable path delay faults only
using high-level information of processors, namely an In-
struction Execution Graph (IE-graph) based on S-graph and
finite state machine model of the controller. This method-
ology eliminates a large number of functionally untestable
faults, and therefore the search space of test generation is
significantly small.
Chen et al. [6, 7] first generated test program templates
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Figure 1. Overview of test program genera-
tion.

with unspecified operands, which could justify some pat-
terns to inputs of a MUT and propagate test responses. They
use these templates to extract the constraints, and can syn-
thesize test programs once operands are specified from test
patterns which are generated by ATPG. However, there are
some disadvantages in the method:
• Test programs may not be enough for all detectable
faults at instruction level because of syntheses from
only precomputed candidates of templates.

• The proposed template generation method considers
only input spaces of a MUT determined by operands
of one or two instructions which directly affect MUT.

We propose a template based test program generation
method. However, our method considers the input spaces
of the MUT determined by not only operands of instruc-
tions but also registers whose values depend on a series of
instructions, and therefore we can obtain high fault cover-
age. Furthermore, we also generate multiple templates in
effective order to detect faults, which may cover different
input spaces, and therefore, different detectable fault sets.
In this paper, we propose an efficient generation method

of test program templates. Though possible sequences of
instructions are infinite, we efficiently enumerate possible
templates considering dependence of instructions each of
which involves one or more data transfers between registers.
Furthermore, a concept of adjacent registers is introduced,
which makes it possible to consider the input spaces of the
MUT determined by signals from other modules as well as
signals directly from registers.
This paper is organized as follows. Section 2 is devoted

to the brief explanation of our entire self testing system.
We describe our method to generate templates in Section
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Figure 2. Parwan processor.

3, and then present experimental results and evaluate our
methodology in Section 4. Finally, Section 5 concludes the
paper.

2. Instruction-based self test of processors
using templates

A template is a test program in which each instruction
has unspecified operands, and consists of two parts, justifi-
cation and propagation.
Example 1 An example on the right in Figure 3 is a tem-
plate for testing Arithmetic Logic Unit (ALU) of Parwan
processor[8]. Parwan in Figure 2 is an accumulator based
8-bit processor with 23 instructions. A value is set to Ac-
cumulator (AC) by instruction LDA at line 1. ADD at line
2 calculates using the content of AC, and the sum and the
state flags are set to AC and Status Register (SR). SUB at
line 3 applies the test pattern to ALU, and the result in AC
is observed by STA at line 4. ✷
We take a method based on templates; however, it is not

practical to exhaust all of possible test program templates.
We provide a two-way mechanism in which we adopt both
test program syntheses from templates and template genera-
tions from faults in order to guarantee efficiency and quality
of test generation. We first apply ATPG with constraints ex-
tracted from templates generated so as to cover large input
spaces of a MUT. As the test programs synthesized from
such templates are applied one by one, fault coverage be-
comes difficult to go up, or it achieves required fault cov-
erage. If then some faults still remain, we try to generate
templates from the faults.
Figure 1 illustrates an overview of test program gener-

ation. We first analyze controllability and observability of
registers to select instructions for justification and observa-
tion. For each MUT, some templates are generated. The
constraints of MUT inputs are extracted from the template,
and a test program is synthesized by filling in the operands
from test patterns generated by ATPG. If the template has
constraints equal to or stricter than constraints that already
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used, we discard the template to avoid useless test genera-
tion. As one template may not cover the whole input spaces
of a MUT, we generate multiple templates. Applying this
test program, we perform the fault simulation on entire pro-
cessor. We repeat this process until all templates are gen-
erated or fault coverage reaches a required rate. If some
faults remain, templates are generated from the fault. In
this paper, we only discuss how to generate template based
on input spaces of a MUT.

3. Template generation
In this section, we introduce a concept of adjacent regis-

ters of a MUT, and observe that there is dependence be-
tween instructions caused by dataflow between registers.
Overwriting value of registers should be considered. We
also consider how to select instructions to justify patterns to
inputs of a MUT , observe the test response from outputs of
the MUT and generate multiple templates efficiently.

3. 1. Adjacent registers of MUTs
There are some registers around a MUT, and some of

them connect to inputs of the MUT directly or indirectly
through combinational circuits of other module, and outputs
of the MUT also connect to some registers. We call them
input/output adjacent registers of the MUT. Once value of
such registers is justified, the test patterns can be applied to
inputs of the MUT. Justifying value of input adjacent regis-
ters of a MUT implies justifying value of MUT inputs, and
observing value of output adjacent registers of the MUT im-
plies propagation value of MUT outputs to primary outputs.
A module in a datapath executes an operation capturing

signals from a controller. For example of ALU in Parwan,
these signals are given from a controller, and connected to
Instruction Register (IR) through the controller. Hence we
consider IR as an adjacent register of ALU. A concept of
adjacent registers makes it possible to consider input spaces
of a MUT determined by signals from a controller and IR.
Figure 4 shows an outline of our proposed method for

template generation. We first select instructions to justify
value of all input adjacent registers respectively. If some
registers still require justifying, more instructions should be
selected until source registers of instructions reach memory.
We also select instructions to propagate the fault effect to
memory, and append to the end of the template. As one tem-
plate may not cover the whole input spaces of a MUT, we
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Figure 4. Outline of the template generation.

generate more templates. Our method uses IE-Graph pro-
posed in [4, 5] to explore delivering route for justification
and propagation. IE-Graph is a model of dataflow between
registers. Nodes are registers and two special nodes, IN and
OUT, which model external world such as memory and I/O
devices. A directed edge between two nodes represents data
transfer between registers controlled an instruction.

3. 2. Dataflow dependence between registers
We select some instructions to justify value of each reg-

isters respectively. However arbitrary selections and com-
binations of instructions are not always possible due to
dataflow dependence between registers.
As the execution of one instruction may cause one or

more data transfers between registers, it may overwrite
the value of registers transferred by other instructions.
We should determine the order of instructions considering
about overwriting value in the registers.
Our method use instruction dependence graph (ID-

graph) modeled as dependence between instruction execu-
tions. A node of ID-graph represents an execution of an
instruction. The dependence between instructions is repre-
sented by a directed edge of ID-graph as follows. Let us
consider that we want to justify value of a register ri by
an instruction i, and value of a register r j by an instruction
j.
• Dependence of dataflow:
Figure 5(a), a directed edge i in IE-graph represents
that an instruction j transfers data of ri to r j, which is
transferred by an execution of i. There exists a directed
edge from node i to node j in ID-graph.

• Dependence to prevent overwriting:
In Figure 5(b), directed edges labeled i and j in IE-
graph represent that i transfers data to ri and r j, j trans-
fers to only r j. In this case, an execution of i must pre-
cede an execution of j to prevent overwriting the value
of r j. A directed edge is drawn from node i to node j
in ID-graph.
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Figure 5. Dependence on order of instruction execution.

• Cross overwriting:
Figure 5(c) illustrates a case that instructions i and j
overwrite the value of ri and r j mutually. We gener-
ally can not take such a pair of instructions; however it
is possible that there is a justifiable time span for only
adjacent registers where an execution of an instruction
takes multiple cycles. Let Si(ri) be a state at which data
is transferred to ri during the execution of i; Si(r j), to
r j. And let S j(ri) be a state at which data is transferred
to ri during the execution of j; S j(r j), to r j . We de-
note that Si(ri) < Si(r j) iff a data transfer to ri at state
Si(ri) precedes a data transfer to r j at state Si(r j) dur-
ing the execution of i. There exists a directed edge as
follows.
– If Si(ri) < Si(r j),
the value of ri and r j are justifiable from Si(ri) to
Si(r j). The directed edge is from node j to node
i in ID-graph.

– If Si(ri) ≥ Si(r j) and S j(r j) < S j(ri),
the value of ri and r j are justifiable from S j(r j) to
S j(ri). The directed edge is from node i to node
j in ID-graph.

Example 2 Figure 3 illustrates an example of ID-graph jus-
tifying ALU inputs of Parwan. Input adjacent registers are
IR, AC and SR. We first select an instruction SUB at line 3
to justify the value of IR, and next select ADD for AC and
SR. In this case, ADD precedes SUB to prevent overwrit-
ing the value of IR. As ADD uses the value of AC, ADD
depends on LDA. LDA also precedes SUB to prevent over-
writing the value of IR. ✷
After selecting all instructions for justification, we gen-

erate an instruction sequence by transforming a relation be-
tween nodes of ID-graph, from a partial order to a total or-
der, namely a topological sort.

3. 3. Generation of multiple templates

Input spaces of a MUT depend on instructions justifying
value of input adjacent registers.
Example 3 Figure 6 shows an example of input spaces for
four state flags of SR in Parwan, overflow (V), carry (C),

V C Z N V C Z N
0 0 x 0 0 1 x 0
0 1 0 1 0 0 0 1
1 0 0 1 1 1 0 1
1 1 x 0 1 0 x 0

(a) LDA; ADD; (b) LDA; ADD; CMC;
Figure 6. Instructions with different input
spaces.

zero (Z) and sign (N). Figure 6(a) shows the input spaces
justifiable by a template LDA, ADD. Instruction ADD sets
a value of V, which depends on C and N as V = C⊕N.
However, if instruction ADD is followed by CMC which
computes complements of C produces different set of input
constraints in Figure 6(b). ✷
Once we fix a template, we can easily find input spaces

of a MUT where the template can justify. In general, dif-
ferent template may cover different value of input spaces,
and we need multiple templates to get high fault coverage.
In our method, multiple templates are generated combining
instruction sequences of justification which have different
input spaces of a MUT and sequences of observation which
propagate different errors from outputs of a MUT to pri-
mary outputs.

controllability and observability
We take a method based controllability/observability of reg-
isters in order to select instructions for justification and
propagation and efficiently generate multiple templates.
Controllability and observability are defined by the follow-
ing predicates.
• Cg(i,r) : ability that instruction i can set any value to
register r.

• Cpg(i,r) : ability that instruction i can set any value to
a part of register r.

• Og(i,r) : ability that instruction i can observe the value
of register r.

They are computed from memory to register, or register to
register in a recursive manner. The Boolean value is at-
tached to each edge in IE-graph respectively.



Instruction selection for justification
Instructions for justification of the adjacent registers are se-
lected as follows. Let AR(m) denote the adjacent registers
of the module m, MUT.
(1) Select an instruction in the descending order of the fol-

lowing number:
|{r|Cg(i,r) = 1}∩{AR(m)}|.

We try to generate templates for every instruction i
with Cg(i,r) = 1 for some register r. To generate next
template, we select the next instruction in the list after
generating combinations of instructions by changing
selected instructions in (4) and (3).

(2) For each adjacent register r with no instruction se-
lected in (1), select any instruction i with Cg(i,r) = 1,
if exist.

(3) For each adjacent register r with no instruction se-
lected in (1) and (2), select an instruction i with
Cpg(i,r) = 1, if exist. If we want to generate next tem-
plate, we generate a template by changing this instruc-
tion subsequent to (4).

(4) For each adjacent register r with no instruction se-
lected in (1), (2) and (3), select an instruction i with
Cpg(i,r) = 0, if exist. If we want to generate next tem-
plate, we generate a template by changing this instruc-
tion.

In (2), (3) and (4), if some candidates of instructions exist
for the adjacent register, we select an instruction such that
the estimated number of instruction is the least, where the
estimated number of instruction is the length of the least
instruction sequence to deliver a data from memory to the
register. We repeat generating combinations of instructions
for justification in a manner such that an instruction with
less controllability is changed preceding instructions with
more controllability to efficiently cover input spaces of the
MUT. For example, when an instruction iwithCpg(i,ri) = 1
is selected to justify for register ri and another instruction j
which Cpg( j,r j) = 0 is selected for register r j, j should be
permuted preceding instructions i.
After selecting instructions for all adjacent registers, if

necessary, we select instructions to justify for more regis-
ters. For each register r to justify, we first select an instruc-
tion i with the number as follows:

max(|{r|Cg(i,r) = 1}|).
If some candidates of instructions exist for the register, we
select an instruction with the least estimated number of in-
struction. For each register with no instruction selected in
such a way, we select an instruction in the same manner (2),
(3) and (4) as adjacent registers. For example, if an instruc-
tion i is selected to justify value of ri and i transfers data
from r j to ri, we need select more instructions to justify
value of r j.

Instruction selection for observation
After generating an instruction sequence of justification,
some instructions to propagate errors to primary outputs are
appended. We select instructions with Cpg(i,r) = 1 to ob-

serve the value of the register. If there are multiple output
adjacent registers, a register which has an instruction with
Og(i,ri) = 1 is observed prior to registers with less observ-
ability. We extract the output constraints from such an in-
struction selected to observe the value of an output adjacent
register. Even for registers with no direct observability, we
try to observe indirectly if possible. For example, the regis-
ter SR of Parwan does not have any instruction that store the
value of flags directly to the memory. However, we try to
observe by instructions, BRAV, BRAC, BRAZ and BRAN
that are branch-if-overflow, branch-if-carry, branch-if-zero
and branch-if-negative, respectively.

4. Experimental results

We applied our method to ALU of Parwan processor
in Figure 2. The experiments used a logic synthesis tool
Design Compiler (Synopsys), test generation tool TestGen
(Synopsys). Inputs of ALU are a signal alu code from con-
troller, b side from a register AC and four state flags (V, C,
Z and N) from SR. We treat IR as the adjacent register of
ALU to justify value of alu code. Outputs from ALU is set
to AC, four state flags are set to SR through Shifter Unit
(SHU).
Applying our template generation, 276 templates were

generated automatically to detect stuck-at faults in ALU,
and 216 templates of them were discarded because they
had the same constraints as some templates which had al-
ready generated. As a result, we applied ATPG with 60
constraints, and 12 constraints of them contributed to detect
faults. Our method achieved high fault coverage of 99.44%.
The results of test generation are shown in Table 1. The
templates which are generated in order of column 1 have
instruction sequences in column 2. Column 3 shows the
number of faults newly detected by the template, and the
accumulated numbers are shown in parentheses. Column
4 shows the accumulated fault coverage. Column 5 shows
the number of test patterns generated under each template.
In the first template, the first instruction LDA sets value to
AC, and the second ADD justifies value of AC and SR. the
third LDA justifies a side from the data bus and alu code
from controller. The fourth STA propagates errors to the
memory.
In Table 2, the constraints of ALU inputs correspond-

ing to each justification part of templates are shown from
column 2 to column 8. Since the value of IR depends on
instructions, the third instruction for justification of IR is
changed preceding other instructions. The constraints in
column 1 are expressed in fixed values which are extracted
from signal alu code. For example, when alu code is jus-
tified by AND in the second template, it is constrained to
000. For a side and b side, templates from the first to the
fourth in which a side is justified by LDA, AND, ADD and
SUB respectively, have unconstraint value. The value of V
depends on C and b side[7], Z and N depend on b side jus-
tified by ADD. Notice that different input spaces are coverd



Table 1. Templates and result of constrained ATPG.
template #detected faults (#total) fault coverage #patterns

1 LDA; ADD; LDA; STA; 178(178) 20.09% 13
2 LDA; ADD; AND; STA; 109(287) 32.39% 5
3 LDA; ADD; ADD; STA; 435(722) 81.49% 14
4 LDA; ADD; SUB; STA; 43(765) 86.34% 3
5 LDA; ADD; STA; STA; 13(778) 87.81% 2
6 LDA; ADD; CMA; STA; 15(793) 89.50% 3
13 LDA; ADD; LDA; BRAV; 12(805) 90.86% 3
14 LDA; ADD; AND; BRAV; 1(806) 90.97% 1
15 LDA; ADD; ADD; BRAV; 19(825) 93.12% 6
25 LDA; ADD; LDA; BRAC 8(833) 94.20% 2
27 LDA; ADD; ADD; BRAC; 22(855) 96.50% 7
37 LDA; ADD; LDA; BRAZ; 26(881) 99.44% 11

total 881 99.44% 70
(#total faults of ALU: 886)

Table 2. Input constraints extracted from templates

template
input constraints

alu code a side b side V C Z N
LDA; ADD; LDA; 100 xxxxxxxx xxxxxxxx V =C⊕b side[7] x 1 if b side[7]
LDA; ADD; AND; 000 xxxxxxxx xxxxxxxx b side =
LDA; ADD; ADD; 101 xxxxxxxx xxxxxxxx 00000000
LDA; ADD; SUB; 111 xxxxxxxx xxxxxxxx
LDA; ADD; STA; 110 b side xxxxxxxx
LDA; ADD; CMA; 001 zzzzzzzz xxxxxxxx

by changing the third instruction for justification of IR pre-
ceding other instructions.

5. Conclusion
This paper presented a method of template generation for

instruction-based self test of processor cores. Our method
constructs a test program template efficiently, considering
dependence of data flow between registers. A concept of
adjacent registers makes it possible to consider input spaces
of a MUT determined by signals from other modules as well
as signals directly non registers. Therefore, we can justify
such signals in the same manner as other registers. It is also
possible to consider not only the input spaces of a MUT
determined operands of instructions explicitly but the input
spaces whose values depend on a series of instructions. The
method also generates multiple templates in effective order
to detect faults, which may cover different input spaces, and
therefore, different detectable fault sets. We demonstrated
the effectiveness of our method using an example of Par-
wan. Out of 276 templates generated for test of ALU in Par-
wan, 12 templates contributed for the fault coverage. The
method achieved high fault coverage of 99.44%.
Future work is developing a method to generate a tem-

plate for remaining faults once fault coverage reaches given
rate or the templates become difficult to raise fault cover-
age. We guarantee efficiency of test generation and quality
of tests.
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