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Abstract 

In this paper, we introduce a new test generation 
complexity notation called τk notation, which consists of 
τk-equivalent and τk-bounded, in order to clarify the 
classification of sequential circuits based on 
combinational test generation complexity. We reconsider 
the test generation complexity for the existing classes of 
acyclic sequential circuits. Several new classes of 
sequential circuits that cover some cyclic sequential 
circuits have been identified as being τ–equivalent and τ–
bounded.

1. Introduction 

It has been known for almost three decades that test 
generation problem is NP-complete. However, empirical 
observation shows that the combinational test generation 
problem seems to be O(nr) for some constant r, where n is 
the size of the circuit. Consequently, works have been 
done on searching for classes of sequential circuits with 
combinational test generation complexity. 

Classes of sequential circuits with combinational test 
generation complexity include balanced sequential circuits 
[1], strongly balanced sequential circuits [2], internally 
balanced sequential circuits [4], switched balanced 
sequential circuits [5] and switched internally balanced 
sequential circuits [6]. In [3], a test generation model 
(TGM) transforms an acyclic sequential circuit into its 
combinational equivalent with logic duplicates at most d 
time frames where d is the sequential depth. On the other 
hand, the test generation problem for general sequential 
circuits, which is modeled by an iterative logic array, 
possesses greater time complexity than that of the acyclic 
sequential circuits does. To clarify the time complexity of 
the test generation, we introduce τk notation to classify the 
sequential circuits. In our discussion, τ(n) is used to 
denote the combinational test generation complexity 
where τ(n)=Θ(nr) for some constant r ≥ 2. 

In Section 2, based on the asymptotic notation, we 
define a new test generation complexity notation that we 
call τk notation. In section 3, we reconsider the time 

complexity of test generation problem for the existing 
classes of acyclic sequential circuits based on τk notation. 
In Section 4, several τ-equivalent and τ2–bounded classes 
of sequential circuits, which include some cyclic 
sequential circuits, are introduced. Conclusion is 
presented in the final section. 

2. Preliminaries 

Generally, asymptotic notation is used to describe the 
asymptotic running time of an algorithm. This notation is 
also convenient for describing the worst-case running time 
of the test generation problem. Let g(n) be a given 
function. The following describes briefly Θ(g(n)), O(g(n)) 
and Ω(g(n)). A function f(n) belongs to the set Θ(g(n)) if 
g(n) is an asymptotically tight bound for f(n). A function 
f(n) belongs to the set O(g(n)) if g(n) is an asymptotically 
upper bound for f(n) while a function f(n) belongs to the 
set Ω(g(n)) if g(n) is an asymptotically lower bound for 
f(n) [7].  

To facilitate our discussion, we define the time 
complexity of test generation problem as follows. 

PC: Combinational Test Generation Problem
Instance: A combinational circuit C and a fault f. 
Question: Is there a test pattern to detect f in C? 
PS: Sequential Test Generation Problem
Instance: A sequential circuit S and a fault f. 
Question: Is there a test sequence to detect f in S? 
Pα: Class α Test Generation Problem
Instance: A sequential circuit S in α and a fault f. 
Question: Is there a test sequence to detect f in S? 

Definition 1: The time complexity of a problem P is the 
time complexity of the fastest algorithm for the problem 
P. Let TC(n), TS(n) and Tα(n) be the time complexity of 
PC, PS and Pα, respectively, where n is the size of the 
problem instance. TC(n), TS(n) and Tα(n) are also called 
test generation complexity for class C, class S and class α,
respectively. 

To show that TC(n) is the basics of the time complexity 
of the test generation problem, τ(n) is used to denote 
TC(n) in the following text, where τ(n)=O(nr) for some 
constant r ≥ 2. 
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Definition 2: T(n) is τk-equivalent if T(n)=Θ(τk(n)) and 
τk-bounded if T(n)=O(τk(n)), where k>0. 
Definition 3: Class α is τk-equivalent if Tα(n)=Θ(τk(n)) 
and τk-bounded if Tα(n) = O(τk(n)), where k>0. 
The following section reconsiders the test generation 
complexity of the existing classes of acyclic sequential 
circuits based on τk notation. 

3. Existing classes of acyclic sequential 
circuits 

A sequential circuit is said to be a balanced sequential 
circuit if, for any pair of primary input and primary 
output, all paths between them have the same number of 
flip-flops. A subclass of balanced sequential circuits, 
which is called strongly balanced sequential circuits, was 
then proposed. A sequential circuit is a strongly balanced 
sequential circuit if it is balanced and in addition, all 
paths between a node and all reachable PIs in its fan-in 
cone have the same number of flip-flops. A wider class of 
sequential circuits with combinational test generation 
complexity is internally balanced sequential circuits. A 
sequential circuit is an internally balanced sequential 
circuit if a circuit resulting from operation 1 of the 
extended combinational transformation in [4] on an 
acyclic sequential circuit is a balanced sequential circuit. 
It has been shown in the previous works that these three 
classes of sequential circuits can be converted into its 
combinational model. Thus, we have the following 
theorem based on τk notation. 
Theorem 1: Internally balanced sequential circuits, 
balanced sequential circuits and strongly balanced 
sequential circuits are τ–equivalent. 

An acyclic sequential circuit is a sequential circuit 
without feedback. Based on the test generation model 
called time expansion model or TEM in [10], we show 
that the test generation complexity for this class is not τ–
equivalent.  
Lemma 1: Let u and v be arbitrary logic blocks of an 
acyclic sequential circuit where u∈parents(v). The logic 
block u will be mapped to q different logic blocks in TEM 
if there are p different connections between logic block u 
and v with q different labels where p≥q.
Proof: Let v’ be the corresponding logic block of v in 
TEM and l(v’)=v and let ri(u,v) be labels for each 
connection (u,v) where 0≤i≤q. From the condition of input 
preservation and time consistency [10],  

t(uj’)=t(v’)-ri(u,v)    (1) 
Since 0≤i≤q, the range of j is also 0≤j≤q. Since 

u=l(uj’), the lemma is proved. 
Theorem 2: There exists an acyclic sequential circuit 
where its test generation complexity represented by TEM 
is not τ–equivalent. 

Proof: Let an acyclic sequential circuit, C has a structure 
represented by a topology graph G=(V,A,r) as follows: 

1. V={u,v} where u∈parents(v) and A={ai | 0≤i≤d};
2. ri(u,v)=i for 0≤i≤d where ri(u,v) represents a label 
on arc aj and d is the sequential depth of C. 
Let n0 and n1 be the size of the logic block represented 

by vertices u and v, respectively where n0=n1=n/2 as 
shown in Figure 1. The primary inputs of C is denoted by 
a vector X and C has the following structure in the logic 
block u. For 0≤i≤d,

1. There is a fan-out point w in the logic block u 
from which output line zi of the logic block u is 
reachable for all i; 
2. The sub-circuit ci with function zi*(X,w) has size 
ki, which is a constant, while the sub-circuit with 
function w(X) has size nw. The sub-circuit w(X) is non-
overlapped to ci for all i. So,  
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From Lemma 1, vertex u in the topology graph is 
mapped to (d+1) different vertices in TEM as shown in 
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From equation (3) and (4), the size of the 
combinational equivalent of the acyclic sequential circuit 
represented in TEM is 
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Therefore, the test generation complexity of the acyclic 
sequential circuit is 
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for some constant r. 

for some constant r, 
for some constant r. 
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The equation (9) has proved the theorem. 
However, there are other test generation models for 

acyclic sequential circuits besides TEM. “Is TA τ-
equivalent?” is still an open question. No one has proved 
the answer is “Yes” but it might probably be “No” since 
the existing works show that generally in the time 
expansion model for the test generation problem, the logic 
duplication might happen for at most d time frames, where 
d is the sequential depth. Therefore, we have the 
following conjecture and theorem. 

Figure 1. Block diagram of the structure of C. 

Figure 2. Time expansion model of C. 

Conjecture 1: Acyclic sequential circuits is not τ-
equivalent. 
Theorem 3: Acyclic sequential circuits is τ2–bounded. 
Proof: See [9]. 

The practical observation shows that the test generation 
of acyclic sequential circuits is close to Θ(τ(n)) instead of 
Θ(τ2(n)) bound. Therefore, its test generation is still not 
very hard. 

4. Classes of easily testable sequential circuits 

In this paper, we consider a class is easily testable if its 
test generation complexity is τ2-bounded. In other words, 
τ2-bounded classes and τ-equivalent classes are easily 
testable. Since a larger class means lower scan overhead is 
necessary in order to ensure the circuits in the class are 
easily testable, it is important to identify larger classes of 
easily testable kernels for the scanned design circuits. In 
this section, we introduce three classes of easily testable 
sequential circuits, which include some cyclic sequential 
circuits. These classes have less area overhead and at the 
same time, have similar test generation complexity 
compared to the acyclic sequential circuits. 

Generally, the test generation problem of a cyclic 
sequential circuit is modeled by an iterative logic array 
that consists of several time frames so that it can be solved 
by combinational test generation techniques. The test 
generation problem involves the following three steps. 

1. Derivation of the excitation state for a fault in the 
combinational part at time frame 0 by treating the 
present-state (PS) lines as primary inputs and the next-
state (NS) lines as primary outputs; 
2. State justification, which considers the fault effect 
in all time frames. This step extends the iterative array 
in backward direction for i time frames, where i is a 
positive integer; 
3. State differentiation, which considers the fault 
effect in all time frames. This step extends the iterative 
array in forward direction for j time frames, where j is 
a positive integer. 
State differentiation that considers the fault effect in all 

time frames is also called fault propagation. Generally, 
backtracks might occur between the three steps. For a 
given fault, step 1 is performed to obtain an excitation 
state for state justification and fault propagation. If state 
justification or fault propagation fails, step 1 is performed 
again to get a different excitation state for justification and 
fault propagation as in Figure 3. Logic duplication of the 
circuit combinational part, which affects significantly the 
test generation complexity, takes place at every time 
frame except time frame 0. In the worst case, i and j are at 
most 2p, where p is the number of memory elements. Note 
that the state justifications that fail to justify an excitation 
state and the fault propagations that fail to propagate the 
fault effect to any primary output are also taken into 
account in determining the time complexity of the state 
justification TJ and the time complexity of the fault 
propagation TD respectively.  

However, there are exceptional classes of sequential 
circuits with τ-equivalent or τ2-bounded test generation 
complexity, which include some cyclic sequential circuits. 
In such classes, backtrack between state justification, fault 
propagation and derivation of excitation state do not occur 
as illustrated in Figure 4. This means it is guaranteed that 
any excitation state can be justified and any activated fault 
can be propagated to a primary output. Since the 
derivation of the excitation state is done by the test 
generation on the combinational part at time frame 0, the 
time complexity TE(n) is always τ-equivalent. Therefore, 
if the state justification and fault propagation can be 
reduced to problem with τ2-bounded or τ-equivalent or 
less time complexity, the circuits become easily testable. 
The test generation complexity for a class of easily 
testable sequential circuits, TS(n) is 

TS(n) ≤ TE(n)+ TJ+ TD

 = τ(n)+ TJ+ TD    (10) 
The following sub-sections introduce three new classes 

of easily testable sequential circuits, which cover some 
cyclic sequential circuits. 

v
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block u 
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Figure 3. Backtrack occurs between justification 
and derivation of excitation state. 

Figure 4. No backtrack between justification and 
derivation of excitation state. 

4.1. Length-bounded testable circuits 

The number of time frames expanded by the state 
justification and fault propagation accounts for the length 
of a test sequence. In this section, we introduce a new 
class of easily testable sequential circuits called length-
bounded testable circuits, the test sequence length of 
which can be bounded so that the class becomes easily 
testable.  
Definition 4: A sequential circuit S is k-length-bounded 
testable with respect to a fault set F if the following 
conditions are satisfied. 

1. For any state si , there exists a state justification 
sequence of length at most k; 
2. For any pair of states (si, sif), there exists a fault 
propagation sequence of length at most k, where si is a 
fault-free state and sif is a faulty state corresponding to 
a fault f and f∈F.

Theorem 4: k-length-bounded testable circuits is τ2-
bounded if k is O(n), where n is the size of the sequential 
circuits.
Proof: To generate a test sequence, firstly an excitation 
state is derived. Secondly, the excitation state is justified 
and thirdly, the fault effect is propagated to a primary 
output. Condition 1 of definition 4 implies that for any 
state si, there exists a state justification sequence and 
hence no backtrack occurs between the state justification 

and derivation of excitation state. It also guarantees that 
the excitation state can be justified within sequence length 
of k. So, the state justification is performed on the 
combinational part duplication of size at most k•n. 
Generally, the time complexity of the state justification TJ

for an excitation state is τ–bounded. Therefore, 
TJ(k•n) = O(τ(k•n))    (11) 
Condition 2 of definition 4 implies that for any pair of 

states (si, sif), there exists a fault propagation sequence and 
hence no backtrack occurs between fault propagation, 
state justification and derivation of excitation. It also 
guarantees that the fault effect can be propagated to a 
primary output within sequence length of k. This means 
the fault propagation is performed on the combinational 
part duplication of size at most k•n. Generally, the time 
complexity of the fault propagation TD for an activated 
fault is τ–bounded. Therefore, 

TD(k•n) = O(τ(k•n))    (12) 
Let TLBT(n) be the test generation complexity for k-

length-bounded testable circuits and k be O(n). Then, 
TLBT(n)  ≤ TE(n)+ TJ(k•n)+ TD(k•n) 
 = τ(n)+O(τ2(n))+ O(τ2(n)) 
 = O(τ2(n)), which is τ2-bounded.  (13) 

4.2. Time-bounded testable circuits 

In this section, another new class of sequential circuits 
called time-bounded testable circuits is introduced. 
Instead of being bounded by the test sequence length, the 
state justification and fault propagation for this class is 
bounded by the time complexity, which is a stronger 
condition. The time-bounded testable circuit is defined as 
follows. 
Definition 5: A sequential circuit S is k-time-bounded 
testable with respect to a fault set F if the following 
conditions are satisfied. 

1. For any state si, there exists a state justification 
sequence which can be obtained in time O(k); 
2. For any pair of states (si, sif), there exists a fault 
propagation sequence which can be obtained in time 
O(k), where si is a fault-free state and sif is a faulty state 
corresponding to a fault f and f∈F.

Theorem 5: k-time-bounded testable circuits is τ-
equivalent (τ2-bounded) if k is τ(n) (τ2(n)), where n is the 
size of the sequential circuits. 
Proof: To generate a test sequence, firstly an excitation 
state is derived. Secondly, the excitation state is justified 
and thirdly, the fault effect is propagated to a primary 
output. From definition 5, it implies that for any state si

there exists a state justification sequence and for any pair 
of states (si, sif) there exists a fault propagation sequence. 
Hence, there is no backtrack between the derivation of 
excitation state, state justification and fault propagation. 

PO PI PO

Time frame 0 
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Backtrack occurs when 
there is an inconsistency. 
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kernel
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From condition 1, the excitation state can be justified in 
time TJ = O(k)      (14) 

From condition 2, the fault effect can be propagated to 
a primary output in time TD = O(k)  (15) 

The test generation complexity for k-time-bounded 
testable circuits, TTBT(n) is 

TTBT(n)  ≤ TE(n)+TJ+TD

 = τ(n)+O(k)+O(k)   (16) 
 = Θ(τ(n)) if k=τ(n) or O(τ2(n)) if k=τ2(n)   
Therefore, k-time-bounded testable circuits is τ–

equivalent if k=τ(n) and τ2–bounded if k=τ2(n). 

4.2.1. State-shiftable finite state machine realizations.
It is hard to realize a time-bounded testable circuit in 
general. To show a concrete realization of time-bounded 
testable circuits, state-shiftable finite state machine is 
introduced here. A state-shiftable finite state machine [11] 
is a machine that possesses 

1. transfer sequences of length at most [log2m] to 
carry the machine from state s0 to state si for all i, and  
2. distinguishing sequences of length [log2m], which 
are arbitrary input sequences consisting of 2 input 
symbols, where m denotes the number of states. 
A sequential circuit that is realized from the state-

shiftable finite state machine (FSM) is called state-
shiftable finite state machine (FSM) realization.  
Theorem 6: State-shiftable FSM realizations is τ-
equivalent if the following conditions are satisfied. 

1. The FSM contains a 2-column submachine 
equivalent to a binary shift register; 
2. The output logic sub circuit OL’ with input 
symbols ε0 and ε1 is separate from other logic sub 
circuits; and 
3. All the next state logic sub circuits with input 
symbols ε0 and ε1 are separate from each other, where 
input symbols ε0 and ε1 shift bit 0 and 1, respectively 
into the least significant bit or LSB of the next state. 

Proof: Refer [12]. 

4.3. Time-bounded validity-identifiable circuits 

The test generation of time-bounded validity-
identifiable circuits is also bounded by the time 
complexity. However, different from the time-bounded 
testable circuits, the circuits has easily identifiable valid 
states and the state validity information, i.e. density of 
encoding is taken into account in the test generation. 
Density of encoding is defined as the fraction of the total 
number of possible states, which are valid [8].  

Density of encoding=
statesallofnumber
statesvalidofnumber

Definition 6: A sequential circuit S is k-time-bounded 
validity-identifiable with respect to a fault set F if the 
following conditions are satisfied. 

1. There exists a combinational circuit of size O(n) 
called validity checker (Figure 5) that can identify the 
validity of states, where n is the size of the sequential 
circuits; 
2. For any valid state si, there exists a state 
justification sequence which can be obtained in time 
O(k); 
3. For any pair of states (si, sif), there exists a fault 
propagation sequence which can be obtain in time 
O(k), where si is a fault-free valid state and sif is a 
faulty state corresponding to a fault f and f∈F.

Theorem 7: k-time-bounded validity-identifiable circuits 
is τ-equivalent (τ2-bounded) if k is τ(n) (τ2(n)), where n is 
the size of the sequential circuits. 
Proof: To generate a test sequence for a given fault in a k-
time-bounded validity-identifiable circuit, firstly a valid 
excitation state is derived at time frame 0. From condition 
1, the excitation state is always guaranteed to be valid by 
embedding a validity checker in the combinational part of 
the sequential circuit as shown in Figure 5 such that a fault 
is testable in C with a valid state if and only if the fault is 
testable in the transformed combinational part C’. 
Secondly, the state justification is performed and lastly the 
fault propagation is performed. From definition 6, it is 
obvious that for any valid state si there exists a state 
justification sequence and for any pair of state (si,sif) there 
exists a fault propagation sequence. Hence, no backtrack 
occurs between the derivation of excitation state, state 
justification and fault propagation. Condition 2 guarantees 
that a state justification can be done in time  

TJ = O(k)      (17) 
Condition 3 implies that the fault effect can be 

propagated to a primary output in time 
TD = O(k)     (18) 
The test generation complexity for the k-time-bounded 

validity-identifiable circuits, TTBVI(n) is 
TTBVI(n) ≤ TE(n)+TJ+TD

 = τ(n)+O(k)+O(k)   (19) 
 = Θ(τ(n)) if k=τ(n) or O(τ2(n)) if k=τ2(n)  
Therefore, k-time-bounded validity-identifiable circuits 

is τ–equivalent if k=τ(n) and τ2–bounded if k=τ2(n).  

4.3.1. Counter-cycle one-hot design realizations.
Counter-cycle one-hot design realization is presented to 
show how to realize the time-bounded validity-identifiable 
circuits concretely. Counter-cycle one-hot design 
realization satisfies the following conditions. 

1. The number of codeword states is in O(n) and 
there exists a codeword checker of size O(n); 
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2. There exists an input symbol ε that strongly 
connects all codeword states accordingly in a counter-
cycle such that  

a. the output function λ(si,ε)=01 if the state 
transition function δ(si,ε)=s0; and  
b. the output function λ(si,ε)=10 if the state 
transition function δ(si,ε)∈SV-{s0}; and 

3. Output logic sub circuit OL’ with input symbol ε is 
separate from other logic sub circuits;  
4. All the next state logic sub circuits with input 
symbol ε are separate from each other, and 
5. The counter-cycle one-hot design realization is 
resettable, where si,s0∈SV, which is a set of all 
codeword states, s0 is the initial state of the counter-
cycle and n is the size of the counter-cycle one-hot 
design realization. 

Theorem 8: Counter-cycle one-hot design realizations is 
τ-equivalent.
Proof: Refer [12]. 

Figure 5. Transformed combinational part C’ 
embedded with a validity checker. 

5. Conclusion 

τk notation has been introduced in order to clarify the 
test generation complexity. Based on this notation, the test 
generation complexity for balanced sequential circuits, 
strongly balanced sequential circuits, internally balanced 
sequential circuits have been proved as being τ-equivalent 
while the test generation complexity for acyclic circuits 
has been showed as being τ2-bounded. We introduced 
three new classes of easily testable cyclic sequential 
circuits. The test generation complexity for k-length-
bounded testable circuits is τ2-bounded if the parameter k 
is O(n) while the test generation complexity for k-time-
bounded testable circuits and k-time-bounded validity-
identifiable circuits is τ-equivalent (τ2-bounded) if the 
parameter k is τ(n) (τ2(n)), where n is the size of the 
sequential circuits. Our future works are to find an 

effective DFT method and efficient test generation 
algorithm for each easily testable class. 
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