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Abstract: The paper uses the concept of time expansion model [9] to find the test generation for acyclic sequential 
circuits. It identifies a class of sequential circuits called as max-testable sequential circuits, where test generation can be
obtained using a combinational test generator with the capability of detecting multiple faults on a kernel of 
combinational circuit. Any acyclic sequential circuit without hold registers belongs to this class. For the sequential 
circuits having hold registers, a subset of such circuits are found to be belonged to max-testable class. The paper also 
suggests an algorithm to find such class of circuits. 

1. Introduction 
Test generation for a sequential circuit is, in 
general a hard problem and may be unsolvable in 
reasonable amount of time for a large circuit 
[1],[2]. If a test generation problem of a sequential 
circuit S can be reduced to the problem of test 
generation for a combinational circuit, then S is 
called a sequential circuit with combinational test 
generation complexity [3]. Generally, it is believed 
that the cyclic structures of sequential circuits are 
mainly responsible for making the test generation 
of such circuits more complex. But even acyclic 
sequential circuits do not allow test generation with 
combinational test generation complexity. Several 
attempts were reported earlier to find the classes of 
acyclic sequential circuits that can provide 
combinational test generation complexity. For 
example, strongly balanced [4], balanced [5], 
internally balanced [6] are classes of circuit 
structure with this feature. 
If the acyclic sequential circuit contains hold 
registers, the situation becomes worse for the test 
generation. In [7], a concept of time expansion 
graph (TEG) was introduced for testing of acyclic 
sequential circuits, where test generation is done 
using a combinational test generator on a 
combinational kernel circuit called as time 
expansion model (TEM). In this method all the 
hold registers are scanned. The concept of this 
model was later enriched in [8],[9] and attempts 
were made to find the test generation by not 
scanning the hold registers.  
In this paper we use the concept of TEG and TEM 
and explore the properties of TEG, which lead us 
to identify a class of acyclic sequential circuits 
called as max-testable class for which test 
generation can be obtained by running a 
combinational test generator with capability of 
detecting multiple faults on a combinational kernel. 

This class includes (i) all acyclic sequential circuits 
without hold registers and (ii)  a subset of 
sequential circuits containing hold registers. We 
also present an algorithm to search for such class of 
circuits.   

2. Preliminaries 
2.1 Time Expansion Graph (TEG) 
Definition 1:  (Topology graph) A topology graph 
is a directed graph G = (V,A,r), where a vertex v ∈
V denotes a logic block and an arc (u, v) ∈A
denotes a connection from u to v and each arc has a 
label r: A → Z+ (non-negative integers) ∪
{h}.When two logic blocks u,v are connected 
through one or more L-registers, the label r(u,v)
denotes the number of L-registers (i.e., r(u,v) →
Z+). When two logic blocks u,v are connected 
through one hold register, the label r(u,v) =h. 

Example 1: Consider a sequential circuit S shown 
in Fig. 1a, in which 1,2,3 and 4 are logic blocks, 
b,c,d, and e, are L-registers, and a which is 
highlighted, is a H-register. The topology graph G 
of S is shown in Fig. 1b.  
Definition 2: The set of direct predecessors of any 
vertex u in a directed graph is denoted as pre(u).  
The set of direct successors of any vertex u in a 
directed graph is denoted as suc(u).  
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Fig. 1a: The sequential circuit S
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Fig. 1b: The topology graph G of S
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Definition 3: (Time-expansion graph (TEG)): Let S
be an acyclic sequential circuit and let G=(V,A,r)
be the topology graph of S. Let E=(VE, AE, t, l) be a 
directed graph, where VE is a set of vertices, AE is a 
set of arcs, t is a mapping from VE to a set of 
integers, and l is a mapping from VE to the set of 
vertices in G. If graph E satisfies the following five 
conditions, graph E is said to be a time-expansion 
graph (TEG) of G.
C1(Logic Preservation) The mapping l is a 
surjective, i.e., ∀v ∈V, ∃u ∈VE s.t. v = l(u)    
C2(Input preservation) Let u be a vertex in E. For 
any direct predecessor v (∈pre(l(u)) of l(u) in G,
there exists a vertex u’ in E such that l(u’) = v and 
u’ ∈ pre(u).
C3(Time consistency) For any arc (u,v) ( ∈AE),
there exists a corresponding arc (l(u),l(v)), and if 
r(l(u),l(v)) ∈Z+, then r(l(u),l(v))=t(v)-t(u), or else 
(r(l(u),l(v))=h, t(u) < t(v). 
C4(time uniqueness) For any pair of vertices u,v ( 
∈VE), if t(u) = t(v) and if l(u) =l(v), then the 
vertices u and v are identical, i.e., u=v. 
C5(Hold consistency) For any pair of arcs (u1,v1),
(u2,v2) (∈ AE) such that (l(u1), l(v1)) = (l(u2), l(v2))
and r(l(u1), l(v1)) = r(l(u2), l(v2)) = h, if t(v1) > 
t(v2), then either t(u1) = t(u2) or t(u1) > t(v2).

Example 2:  Figs. 2a, 2b and 2c show the three 
TEGs E1, E2 and E3 respectively of the TG G 
shown in Fig. 1b. 

Remark: Note that TEGs E1 and E2 are different 
only in time-frames – they are isomorph to each 
other. From now on, we consider them as same. 

Lemma 1: Given two TEGs E1 ( V1, A1,t1,l1) and E2

( V2, A2,t2,l2) of a TG G (V,A,r), let  u1∈ V1 and u2

∈V2  are two vertices in E1 and E2 respectively such 
that l1(u1) = l2(u2). Then for any vertex  v1 ∈ pre( 
u1), there exists a vertex  v2 ∈ pre( u2), such that 
l1(v1) = l2(v2).
Proof: See [10]. 

Lemma 2: Let G= (V,A,r) be the TG of an acyclic 
sequential circuit S, and let E  = (VE, AE, t, l) be a 
TEG of G. Consider two vertices v1 and v2 ∈ VE,
such that l(v1) =l(v2) = w ∈V. If there exists a 
vertex u ∈VE such that (l(u),w) and u ∈pre(v2),
then (l(u),w) is a hold arc in the TG G.
Proof: see [10]. 
Lemma 3: Given two vertices u and v in a TEG, all 
paths between them are having same length. 

2.2 Time Expansion Model (TEM) 
Definition 4: [9] Let S be an acyclic sequential 
circuit, let G= (V,A,r) be the topology graph of S,
and let E=( VE, AE,t,l) be a TEG of G. The 
combinational circuit CE(S) obtained by the 
following procedure is said to be the time-
expansion model (TEM) of S based on E.
(1) For each vertex u ∈ VE, let logic block l(u)
(∈V) be the logic block corresponding to u.
(2) For each arc (u,v)∈ AE, connect the output of u
to the input of v with a bus in the same way as 
(l(u),l(v)) (∈A). Note that the connection 
corresponding to (u,v) has noregister even if the 
connection corresponding to (l(u),l(v)) has a 
register (i.e., r(l(u),l(v)) ≠0).
(3) In each logic block, lines and logics that are 
reachable to neither other ogic blocks nor primary 
outputs are removed. 

Example 3: Fig. 3 is a TEM of the sequential 
circuit S (Fig. 1a) based on TEG E1 (Fig. 2a). 

Theorem 1: [9] Let S be an acylic sequential 
circuit, and let F be the set of faults in S. Let G
=(V,A,r) be the topology graph of S.
(1) A fault f ∈ F is testable (or irredundant) in S if 
and only if there exists a TEG E of G such that the 
fault fe ∈ Fe , corresponding to f is testable in the 
TEM CE(S) based on E.
(2) A test pattern for a fault fe (∈ Fe) obtained 
using a TEM CE(S) can be transformed into a test 
sequence for the fault f (∈ F) corresponding to 
fault fe.

From this theorem, we can see that test generation 
for an acyclic sequential circuit can be performed 
by using several different TEMs. Furthermore, 
since TEMs are fully combinational, a 
combinational test generator can be used for the 
test generation provided the test generator can deal 
with the multiple faults. 

2.3 Cover relation 
Given a TG, there can be several TEGs for it. 

Fig. 2a: TEG of G: E1 Fig. 2b: TEG of G: E2
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Definition 5: A vertex in a directed graph is called 
as a sink vertex, if there is no outgoing edge from 
the vertex.  
Example 4: The vertex   4    in each of the directed 
graphs of Figs. 1b, 2a, 2b and 2c is a sink vertex.. 
Definition 6: Let u is a vertex in TG G and let 
E(VE, AE, t, l) be any TEG of G. The cone sub-
graph E’ (E, u) of E with respect to u is defined as 
the maximal sub-graph of E in which uE [l(uE) = u]
is the only sink vertex, i.e. there is  no other vertex 
vE in E’, for which l(vE)=u.

Definition 7: Let G = (V, A, r) be the TG of an 
acyclic sequential circuit S, and let E1  = (V1, A1, t1,
l1) and E2  = (V2, A2, t2, l2) be arbitrary TEGs of G.
Let s be any sink vertex in G.  Let E’1(E1,s) = (V’1,
A’1) [E’2(E2,s)  = (V’2, A’2)] is the cone sub-graph 
of E1 [E2] with respect to s. TEG E1 is said to cover 
TEG E2 if there exists a mapping m from V’1 to 
V’2, such that for every s,

(i) m(s1) = s2, where l1(s1)= l2(s2) =s
(ii) For v1 ∈ V’1 and v2 ∈ V’2, if v2 = 

m(v1),  then the following condition 
holds, for any pair of vertices u1 ∈
pre(v1) and  u2∈ pre(v2), if l1(u1) = 
l2(u2), then u2=m(u1).

Example 5: Consider the TG G2 of Fig. 4a. The 
three TEGs of G2, E4, E5 and E6 are shown in Figs. 
4b, 4c and 4d respectively. E4 covers E5 with the 
mapping shown. Notice that E4 does not cover E6.
Example 6: The TEG E1 (Fig. 2a) and E2 (Fig. 2b) 
covers TEG E3 (Fig. 2c). Obviously, E1 (Fig. 2a) 
covers E2 and E2 covers E1

Definition 8:  Given a TG, if there exist two TEGs 
E1 and E2 for it such that E1 covers E2 and E2
covers E1, then E1 and E2 are said to be equivalent. 
Example 7: E1 (Fig. 2a) and E2 (Fig.2b) are 
equivalent.  
Remark: If the two TEGs are equivalent, they are 
not necessarily isomorph to each other. 
The question is, given two TEGs E1 and E2 for a 
TG G, how to determine that whether E1 covers E2.
The answer is, we have to find the mapping m, if 
exists as defined in Definition 7. The following 
algorithm determines the cover relation by finding 
the required mapping. 

Algorithm Cover-relation (G,E1,E2)
   Input: TG G(V, A, r), TEG E1(V1, A1, t1, l1), TEG 
E2(V2, A2, t2, l2)
   Output: to find mapping m if E1 covers E2, else 
report “NO COVER”   
   for every sink vertex s∈V

(1) select vertex s1 ∈ V1and s2 ∈ V2, such that  l1
(s1) =l2 (s2)= s,
Let E’1(E1,s) = (V’1, A’1) and E’2(E2,s)  = (V’2,
A’2)  be cone sub-graphs with respect to s.
Make m(s1) = s2, mark s1 as mapped 

(2) for each vertex u2 [u2 ∈V’2] that has a mapping 
relation m(u1)=u2, where u1 (∈V’1) is already 
mapped. 

for each vertex v2 ∈ pre(u2)
(a) find a vertex  v1∈ pre(u1) with  l1(v1)

= l2(v2).
(b) if  such v1 is already mapped,  
    then (i)  report “NO COVER”  
   (ii) return 
    else (i) make m(v1)= v2,

(ii) mark v1 as mapped 
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Lemma 4: The algorithm cover-relation establishes 
the cover relation between two TEGs, if it exists. 
Proof: see [10]. 
Lemma 5: Let G= (V, A, r) be the TG of an acyclic 
sequential circuit S, and let E1  = (V1, A1, t1, l1) and 
E2  = (V2, A2, t2, l2) be arbitrary TEGs of G, where 
E1 covers E2 with a mapping m. Let s1 and s2 be 
any two sink vertices in E1 and E2 respectively, 
such that l1(s1) = l2(s2). Let E’1  = (V’1, A’1, t’1, l’1)
[E’2  = (V’2, A’2, t’2, l’2)] is the cone sub-graph of 
E1 [E2] with s1 [s2] as sink vertex. If v1 and v2 are 
two non-sink vertices in V’1 and V’2 respectively, 
such that, v2 = m(v1), then U2(v2) ⊇U1 (v1), where 
Ui(vi) is a set of vertices in TG G given by Ui(vi) = 
{v ∈ V !v = li(u), u∈suc(vi)}.
Proof: see [10]. 
Definition 9: A path from a vertex u1 to uk in a TG 
G(V, A, r)  [TEG E(VE, AE, t, l)] is obtained by 
concatenation of several arcs (u1,u2), (u2,u3), 
(u3,u4), (u4,u5),…….,(uk-1,uk) ∀ i, 1< i < (k-1),
where (ui, ui+1) ∈A [AE].
Definition 10: Given a TG G(V,A,r) let E(VE, AE, t, 
l) be any TEG of it, let p be a path  from a vertex u1
to uk in E obtained by concatenation of the arcs 
(u1,u2), (u2,u3), (u3,u4), (u4,u5), ……., (uk-1,uk) ∀ i,
1< i < (k-1), where (ui, ui+1) ∈A [AE]. The path p’
in TG from the vertex v1 to vk in TG G passing 
through vertices (v1,v2, v3, …….,vk), where each vi=
l(ui) is called as the corresponding path of p.
Lemma 6: Let G = (V, A, r) be the TG of an acyclic 
sequential circuit S, and let E1  = (V1, A1, t1, l1) and 
E2  = (V2, A2, t2, l2) be arbitrary TEGs of G.
 TEG E1 covers TEG E2 if and only if, for any 
vertex uk ∈V1, there exists a vertex vk∈ V2 which 
satisfies the following two conditions   
  (i) l1(uk) = l2(vk)
  (ii) for any pair of vertices u1 ∈ P(uk) and  
v1∈ P(vk), if l1(u1) = l2(v1), and L1(u1,uk) ∩L2(v1,vk)
≠φ, then L1(u1,uk) ⊆L2(v1,vk).

P(v) denotes the set of all predecessors of v.
Li(u,v) denotes the set of paths (l(u),…..,l(v)) (in G)
corresponding to paths (u,…..,v) whose tail and 
head are u and v in Ei respectively.  
Proof: see [10]. 
The above Lemma basically reaches the definition 
of cover relation, as described in [9]. 

2.4 Maximum TEG 
Definition 11: Given a TG G, a TEG E which 
cannot be covered by any other TEG of the TG 
except by its equivalent TEG, is called a maximal 
TEG of G. If number of maximal TEGs is one, 
then that maximal TEG is called as the maximum.   
If a TG has a maximum TEG, how can we find out 
that? One method may be to attempt to draw all 
TEGs, and then find the maximum TEG among 

them that covers any other TEGs and cannot be 
covered by anyone else. Obviously, this process is 
time consuming and quite impractical. The best 
way to achieve this maximum TEG is to draw it in 
such a manner such that it follows the properties of 
the maximum TEGs. The question definitely 
arises- while we achieved a TEG, is it easy to 
confirm whether this TEG is maximum or not? In 
some cases, the features in a TEG clearly indicates 
its not being maximum, which can be easily 
verified, as evident from the following Lemma.  
Lemma 7: Given a TEG, if it has no re-convergent 
fanout, then it is maximum TEG. 
Proof: see [10]. 
Lemma 8: Consider a hold arc h (h1, h2) in a TG 
G(V,A,r). Let E  = (VE, AE, t, l) is a TEG of G.
Consider two vertices v1 and v2 ∈VE, such that 
r(l(v1),l(v2)) = h. If there exist a vertex u ∈VE such 
that l(u) = h1 and u ∈ pre(v1) and u ∈pre(v2), then 
E cannot be a maximum TEG. 
Proof: see [10]. 
The verification of the condition in the above 
Lemma is very easy. Because, if we observe in the 
TEG that if any hold-start vertex originates two 
hold-end vertices of the same hold arc in the TEG, 
we confirm that TEG is not maximum. If a TEG is 
not maximum, it does not imply that it is not also 
maximal. But obviously, if a TEG is maximal, then 
there does not exist any maximum TEG of the TG. 
The condition in the Lemma 8 describes a 
necessary condition for a TEG to be not maximum, 
but it is not sufficient.      
Lemma 9: Let a TEG E has re-convergent fan-outs. 
If for every such re-convergent fan-out, no path in 
the re-convergent loop contains an arc that 
corresponds to a hold arc in TG, then E is 
maximum. 
Proof: see [10]. 
Definition 12: Two paths p1 and p2 in a TG 
G(V,A,r) [TEG (VE, AE, t, l)] are called parallel to 
each other with respect to an arc (v1,v2) ∈ A [AE ] if 
both head and tail  vertices of the two paths are 
same and the arc (v1, v2) is not common to both p1
and p2.
Theorem 2: Consider a TEG E(VE, AE, t, l) of a TG 
G(V, A, r). The necessary and sufficient condition 
for E not to be maximum TEG, is that if there exist 
a pair of vertices u,v ∈VE, such that there are at 
least two parallel paths p1 and p2 between u and v,
with respect to an arc  (v1, v2), such that 
r(l(v1),l(v2)) =h.
Proof:  Let E is such a TEG that there does not 
exist any pair of parallel paths p1 and p2 with 
respect to an arc (v1, v2), such that r(l(v1),l(v2)) =h.
It means, even if there is reconvergent fanout in E, 
no path in the reconvergent loop contains an arc 
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that corresponds to hold arc in TG.  Obviously in 
that case E is always maximum (Lemma 9).  
Now, let E contains two parallel paths p1 and p2
between u and v, with respect to an arc  (v1, v2),
such that r(l(v1),l(v2)) =h. It implies there exists a 
re-convergent fan-out between u and v, with the 
reconvergent loop containing an arc that 
corresponds to hold arc in TG. We now prove that 
E can never be maximum.  
Let path p1 (and not p2) contains the arc (v1, v2),
such that r(l(v1),l(v2)) =h. Let us draw another TEG 
E’(V’E, A’E, t’, l’)  in following manner-  (i) the 
paths in E that don’t contain the arc (v1, v2), are 
redrawn in E’ in identical manner with same time 
frames. Let p’2 is the path in E’, such that p2 and 
p’2 correspond to the same path in TG and p’2
passes through the vertices u’ and v’ in E’, such 
that l(u)=l’(u’) and l(v)=l’(v’).  (ii) For all the arcs 
from v2 to v in E, they are drawn in identical 
manner in E’. Let l’(v’2)=l( v2), (iii) for the path p1
in E, a path p’1 in E’ is drawn with p1 and p’1
corresponding to the same path in TG  and 
r(l’(v’1),l(v’2)) =h, but the length of the arc (v’1,
v’2), is chosen as a such large value that p’1  does 
not pass through u’ [let it pass through u’’ with 
l’(u’) =l’(u’’) and t’(u’’) < t’(u’). The rest of the 
paths containing the arc (v’1, v’2) are drawn 
following the rules of drawing TEG. 
If we consider the reduced subgraphs Ereduced and 
E’reduced of E and E’ by removing the paths 
containing arc (v1, v2) from E and (v’1, v’2) from E’,
as Ereduced and E’reduced are identical. If we now 
consider the complete E and E’, for a path p’
between u’ and v’ in E’, there always exists a path 
p between u and v in E, such that p and p’
corresponds to same path in TG. In totality, it 
implies that for any vertex uk ∈V’, there exists a 
vertex vk∈ V which satisfies the following two 
conditions   
  (i) l1(uk) = l2(vk)
  (ii) for any pair of vertices u1 ∈ P(uk) and  
v1∈ P(vk), if l1(u1) = l2(v1), and L1(u1,uk) ∩L2(v1,vk)
≠φ, then L1(u1,uk) ⊆L2(v1,vk).
It implies E’ covers E (Lemma 6). Thus E cannot 
be maximum. Hence the Proof. 
Lemma 10: If a TEG E is maximum, then for any 
path p in it that contains an arc (v1,v2) with 
r(l(v1),l(v2))=h, there cannot exist any other 
parallel path to p with respect to (v1, v2).
Proof: see [10]. 
Given a sequential circuit or its TG, if we obtain a 
TEG by following the method described in the 
definition, we can easily confirm whether that 
obtained TEG is maximum or not. We need not 
draw the other TEGs to compare them with it to 
check which one covers the other. But suppose, we 
are failed, given a TG, we have got a TEG E and 

found that it is not maximum. Obviously, we will 
try to obtain another TEG that satisfies the 
properties of the Lemma 10. For a simple 
structured TG, it may not be a hard task to try for 
other alternatives. But, if the structure is a complex 
one and there are several hold registers and paths, 
this process may not be so easy. Moreover, a TG 
may not have any maximum TEG. Thus, our 
efforts may be futile after searching of the different 
possibilities and then to report that the concerned 
TG has no maximum.  The question is, by 
observing the TG can we confirm that whether this 
TG has a maximum TEG or not and if it is having 
this maximum TEG, how to obtain that in one 
chance. This is discussed in the next section. 

3. The properties of a sequential circuit having 
maximum TEG 
If any arc (v1, v2) ∈ AE in a TEG E (VE, AE, t, l), is a 
non-hold arc, len(v1, v2) is always fixed and that is 
given by r(u1, u2), where u1 = l(v1) and u2=l(v2).
But if (v1, v2) corresponds to a hold arc what can be 
the value for len(v1,v2)? As a hold register can hold 
a value for arbitrary amount of time, this len(v1,v2)
can be any value between 1 and ∝. But there are 
some restrictions on this length, it depends on the 
length of other hold arcs in the TEG. 
Consider two pairs of vertices (v1, v2) and (v’1, v’2)
in the TEG , such that l(v1) = l(v’1)= h1 and 
l(v2)=l(v’2) = h2, where (h1,h2) is a hold arc in the 
TG. In this case, between two arcs (v1, v2) and 
(v’1,v’2) in the TEG, depending on one of the 
lengths, the other length is highly dependent to 
fulfill the constraint described in condition C5 of 
the definition of TEG. 
Let us introduce a concept of bounded distance 
between two vertices u and v in a TG, which is 
defined through the following definitions in the 
different cases. 
Definition 13: Consider a TG G(V,A,r) where (h1,
h2) ∈ A is a hold arc and u ∈ V is a vertex 
reachable from h2. Let in each TEG E(VE,AE, t,l) of 
G, v1, v2 and w ∈ VE, are three vertices such that (i) 
l(v1)= l(v2) = h2 (ii) l(w)= u and (iii) t(v1) < t(v2).
Let p1* [p2*] is the path from v1 [v2] to w and p1
[p2] in G is the corresponding path of p1 *[p2*] in 
E. The path p3 in TG obtained by concatenation of 
hold arc (h1,h2) with p1 is called unbounded with 
respect to p2. The path p4 in TG obtained by 
concatenation of hold arc (h1,h2) with p2 is called 
bounded with respect to p3, bounded by a range {n1
to n2} where n1 and n2 are two positive integers and 
n1< n2. The values of n1 and n2 are obtained in such 
a manner such that in any TEG E(VE,AE, t,l) of TG 
G, for the pair of paths p3* and p4* in E with p3 and 
p4 respectively be the corresponding paths in G, if 
the length of the path p4* in E is any value between 
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n1 and n2 (both inclusive), then p3* and p4* has no 
common vertex v for which l(v)= h1.
Definition 14: Let u and v are two vertices in a TG, 
and there is a path p between them which does not 
contain any hold arc, then there exists a fixed 
distance between u and v  along the path p, which 
is given by the summation of the lengths of the 
different arcs along the path. 
Definition 15: If between two vertices u and v in a 
TG, there exists a bounded path, bounded by a 
range {d to d’}, then there exists a bounded 
distance dbound between u and v, which is obtained 
by assigning any integer value in the range {d to 
d’} to dbound i.e.  d  < dbound < d’. If there are 
several such bounded paths between u and v, there 
exist several bounded distances between u and v 
and all these distances depend on how we do assign 
them in appropriate ranges. 
A path p which is unbounded with respect to a path 
p’, may be bounded, when we compare it with 
another path.   
Theorem 3: Between two vertices u and v in a TG 
G, if there exists one or more bounded paths, and 
whatever be the assignment, if any bounded 
distance of a path p becomes equal to bounded or 
fixed distance of any other path p’ between u and v,
where p and p’ are parallel to each other with 
respect to an arc (v1 ,v2) where r(v1 ,v2)=h, then G
has no maximum TEG. 
Proof: see [10]. 
Lemma 12: If a TG has no maximum TEG, then 
there exist two vertices u and v in TG, such that 
there are two paths between u and v, where one of 
them is bounded and the other is either bounded or 
fixed.  
Proof: see [10]. 
Corollary:   If a TG has no maximum TEG, then 
there exist two vertices u and v in TG, such that 
there are at least three paths between u and v.
Algorithm to find maxtestabilty 
   for each sink vertex s in a TG G(V,A,r)

(i)Find the set H of head-hold vertices, s.t. for all 
u ∈H, there exists at least 3 paths to s and only 
two of which contain a common hold arc,  

(ii) for each  u ∈H
(a) find all the bounded ranges and fixed 

distances from u to s
(b) assign the bounded distances 
(c) if bounded distance of a path p becomes 

equal to bounded or fixed distance of 
another path p’, where p and p’ has at 
least one uncommon hold arc, then try for 
another assignment in (b), if no other 
assignment exists, then report ‘not 
maximum’ and return 

(d) Draw the TEG with the assignment, this 
TEG is maximum. Return. 

4. Conclusion 
We used a model called time expansion model 
(TEM) to have the test sequences for acyclic 
sequential circuits. To obtain the TEMs of a 
sequential circuit, we used time expansion graphs 
(TEG), constructed from the original sequential 
circuit by following some conditions, described in 
the paper. We identify a class of acyclic sequential 
circuits, called as max-testable class for which the 
test sequences can be easily achieved by running a 
combinational test generation tool on a TEM of the 
circuit, obtained by finding a particular TEG called 
as maximum TEG. The combinational test 
generator should have the capability of detecting 
multiple faults.  We presented an algorithm to find 
max-testable class of circuits. Any acyclic 
sequential circuit with no hold register belongs to 
the max-testable class (thus it includes balanced 
and internally balanced structure). For acyclic 
sequential circuits with hold registers, we presented 
an algorithm to determine whether it belongs to 
max-testable class or not and if it belongs to max-
testable class we also find the TEM on which the 
test generator tool is to be run.    
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