
Program-Based Testing of Super-scalar Microprocessors

Virendra Singh*1,3, Michiko Inoue1, Kewal K. Saluja*1,2, and Hideo Fujiwara1

1Nara Institute of Science & Technology, Takayama, Ikoma, Nara 630-0192, Japan

{virend-s, kounoe, saluja, fujiwara}@is.naist.jp

2University of Wisconsin-Madison, USA
saluja@engr.wisc.edu

3Central Electronics Engineering Research Institute, Pilani, India

viren@ceeri.res.in

Abstract:
Instruction-based self-testing is being proposed as

an effective alternative to the conventional techniques
for at-speed testing of high performance
microprocessors. However, testing superscalar
microprocessors using this approach faces serious
challenges, due to the out-of-order execution with
multiple functional units and in-order commit
behaviour. This paper discusses the instruction-based
test issues for the testing of superscalar architectures.
A graph theoretic model to model the superscalar
behavior is presented. Procedures for delay fault
testing, which make sure that generated test vectors are
applied in the correct order to test each testable path,
are developed.

1. Introduction

 Rapid advances in VLSI technology and aggressive
design methodologies are resulting into extremely
complex devices. A microprocessor is one of the most
complex such device and the existing SoCs are also
build around high performance microprocessors to
meet the consumer demand for rich functionality and
performance with short turn around time. Modern high
performance microprocessors use superscalar
architecture; they are designed for very high frequency
operation, and are implemented in very deep sub-
micron technology. Aggressive timing requirements for
such designs have introduced the need to test for the
smaller timing defects and distributed faults caused by
statistical process variation. Testing of such a
processor becomes even more difficult if it is
embedded deep inside an SoC providing limited and
poor accessibility.
 Testing of defects in high-speed circuits requires
high-speed testers. At-speed testing of processors using
external tester is not an economically viable scheme.

∗ This work was carried out while authors were with NAIST, Japan.

Moreover, the inherent inaccuracy of the ATE also
leads to yield loss. Traditional hardware BIST moves
the testing task from external tester to the internal
hardware but this often needs design changes that can
stretch the time to market. In addition, such methods
lead to unacceptable performance loss and area
overhead, and can also result into burn out of the chip
due to excessive power consumption during the test. A
new paradigm, program-based self-testing (also known
as software-based self-testing) can alleviate the
problems of both external tester and structural BIST. It
links instruction-level test with the low level fault
model. In order to apply test in functional mode,
program-based self-testing uses processor instructions
to deliver the test patterns and collect the test
responses. Thus, being inherently non-intrusive, it does
not require area and performance overheads and it is
well suited test methodology for the testing of
processor cores embedded deep inside an SoC.
Furthermore, the test programs developed for this
method can also be used for online periodic testing to
improve the processor reliability.
 This paper focuses on the instruction-based self-
testing of superscalar processors. In order to achieve
higher performance, superscalar processors use out of
order execution, which makes the instruction-based
testing difficult. The main objectives of this paper are:
• Discuss the test issues for the instruction-based

testing of superscalar architecture
• Describe the test procedures which force the

processor scheduler to make sure that generated test
vectors are applied in correct order.

The paper is organized as follows. Section 2
describes the previous work in the domain of
instruction-based self-testing. Section 3 lists the test
issues and describes an overview of our methodology.
Section 4 presents the graph model of superscalar
processor. Sections 5 and 6 describe the test generation
methods for datapath and controller respectively.
Finally, we conclude this paper with section 7.

IEEE North Atlantic Test Workshop 2005, pp.79-86, May 2005.

2. Previous Work

 Recently, a number of software-based self-testing
approaches [2,3,4,5,6] have been proposed in literature.
These approaches target stuck-at faults for simple non-
pipelined processors. For example the approaches
proposed in [2,3] are based on the instruction
randomization method, whereas those in [4,5,6]
generate structural tests for functional modules under
constraints. Approaches have also been proposed for
pipelined processors targeting stuck-at faults [7,8,9].
Chen [7] proposed a template-based approach, whereas
approaches based on deterministic test of functional
modules are proposed by Kranitis [8] and Paschalis [9].

Unlike stuck-at fault testing, delay testing is
closely tied to the test application strategy. Only a few
software-based self-testing approaches
[10,11,12,13,14] targeting delay faults have been
proposed in literature for simple non-pipelined
processors. The methodology proposed by Lai
[10,11,12] extracts constraints by exhaustively
searching instructions and instruction pairs, which can
be applied in functional mode. In our earlier work we
proposed an efficient graph theoretical model [13,14],
which was based on the model proposed in [1], to
model simple a processor by an Instruction Execution
Graph (IE graph), which is then used for constraints
extraction to generate test vectors. These generated
vectors can then be applied as instructions to test a
processor. We also extended our approach to include
testing of pipelined processors [15,16]. To the best of
our knowledge, it is the only work reported in literature
that deals with delay fault testing of pipelined
processors in functional mode.

The graph model and the associated methodology
proposed in [15,16] models the static pipeline
behaviour where instructions progress in lock step
fashion. Hence, it is not suited for the modeling and
testing of a dynamic pipelined architecture such as a
superscalar processor. Superscalar processors use
buffers and queues to support out-of-order execution.
Indeed, as pointed out in this paper, the test application
strategy plays a key role for the testing of superscalar
processors.

To the best of our knowledge, no approach has
been proposed in literature for the testing of superscalar
processors in functional mode of operation targeting
stuck-at or delay faults

3. Test Issues and Overview of the

Approach

 This work is aimed at delay fault testing of
superscalar processors. The objective is to generate

tests and test sequences that can be applied in the
functional mode of operation, using path delay fault
model [17]. We believe that this is the first work
towards the modeling of the superscalar (dynamic
pipeline) behaviour for the purposes of testing of a
superscalar processor. This paper describes some of the
important issues that are pertinent to testing superscalar
architectures, highlighting some of the differences
between simple pipelined and superscalar architectures.

Pipeline Vs Superscalar Processors

 Scalar pipelines are characterized by a single
instruction pipeline of k stages. All instructions,
regardless of type, traverse through the same set of
pipeline stages. At the most one instruction can be
resident in each pipeline stage at any one time and the
instructions advance through lock step fashion.
Whereas, superscalar processors go beyond just a
single-instruction pipeline by being able to
simultaneously advance multiple instructions through
the pipeline stages. They incorporate multiple
functional units to achieve greater concurrency of
processing multiple instructions for higher instruction
execution throughput, often quantified as instructions
per cycle (IPC). Another fundamental attribute of the
superscalar processors is their ability to execute
instructions in an order different from the order
specified by the original program.

There are many possible superscalar organizations.
Typically a superscalar organization consists of
instruction fetch and branch prediction unit, decode and
register renaming unit, instruction issue unit, execution
unit, and commit unit. In this work we consider a most
common organization of a superscalar processor which
use distributed reservation station for each functional
unit. The Re-order buffer (ROB) is used to commit the
instructions. Figure 1 shows an organization of the
DLX superscalar processor. For simplicity of
presentation, we will use this particular organization to
explain the various concepts. We believe, all the
concepts can easily be generalized to other
organizations.
 Instr.cache

 Decoder RF ROB

 Figure 1 A Superscalar Organization of the DLX-SV

Data Cache

BRU ALU1 ALU2 MULT LSU

We use an example superscalar DLX processor to
demonstrate the concept. This processor uses a branch
history table with 2 history bits to predict branch. It
fetches four instructions and commits at most four
instructions per cycle. Execution unit has 5 functional
units (2 ALU, 1 Multiplier, 1 Branch unit, and 1 Load
Store unit). Every unit has its own reservation station
with 2 entries and ROB is implemented as a circular
queue with 32 entries.

Superscalar Test Issues

 Instruction based testing faces serious challenges
due to the out of order execution with multiple
functional units and in-order commit behavior, because
it is the processor scheduler who decides the order of
instruction execution, on the fly, and not the program
that executes on the processor. This means that even if
we have a test vector sequence generated under
architectural constraints, when we apply such a
sequence, there is no guarantee that the sequence will
indeed be executed by the same functional unit for
which it was meant to be. In fact, in a superscalar
processor, the instructions in the sequence may be
executed on a different functional unit and possibly in
different order of instructions. Further, superscalar
architecture uses buffers and queues, which makes it a
challenging task to ensure that a given instruction
resides at a given location in the buffer or queue with
appropriate data at a given time. We explain this
through the following example.

Example1: Consider a 4 instruction wide fetch
superscalar implemented with 2 ALU, 1 Multiplier, 1
Shifter, 1 Load, 1 Store and 1 Branch Unit, where
every unit has individual reservation station with 2
entries, and ROB has 32 entries. Processor instructions
are represented as (I Rd, Rs1, Rs2) where I specifies
operation, Rd is the destination, and Rs1 and Rs2 are
the two source operands. Let a path through ALU be
tested by an instruction sequence ADD followed by
SUB. This path is from the reservation station to the
reorder buffer. Let the desired operands be placed in
the registers R2 and R3 for the ADD instruction and in
registers R6 and R7 for the SUB instruction.
Conventionally, we apply the test vectors in the
following sequence:

I1: ADD R1, R2, R3 -- processor schedules this instr. to ALU1
I2: SUB R5, R6, R7 -- processor schedules this instr. to ALU2

The processor may schedule instructions I1 and I2
to two different ALUs. Therefore, this sequence will
not apply the desired test to any of the ALUs. We will
get the correct result in spite of having a faulty path,
because the fault is not excited. A possible partial

solution to this problem is to concurrently test the two
ALU’s by the following program segment.

I1: ADD R1, R2, R3 -- processor schedules this instr. to ALU1
I2: ADD R21, R2, R3 -- processor schedules this instr. to ALU2
I3: SUB R5, R6, R7 -- processor schedules this instr. to ALU1
I4: SUB R25, R6, R7 -- processor schedules this instr. to ALU2

This can apply the test sequence to both the ALUs
provided that these instructions are aligned, i.e., all
these 4 instructions are fetched simultaneously. We can
achieve this by having branch instruction preceding
this set. Now, these instructions can be applied in our
desired order. However, reservation station has two
entries and first two instructions will be placed in the
first entries of respective reservation stations and next
two instructions will be placed in the second entries of
the corresponding reservation stations. Therefore, the
transition will not be launched and the path will remain
untested. Again, a possible partial solution is to insert
two instructions between I2 and I3 which are being
scheduled to some other functional units. Therefore,
the partial solution which can test the path from the
first entry of reservation station to ROB is:

I1 J 2000H
I2: 2000H ADD R1, R2, R3 -- processor schedules it for

-- ALU1 (stay at 1st position in RS)
I3 ADD R21, R2, R3 -- processor schedules it for

-- ALU2 (stay at 1st position in RS)
I4: MULT R10, R11, R12 -- processor schedules it

-- for Multiplier (Filler instr.)
I5: SW R1, 100 (R15) -- processor schedules it for

-- Load store unit (Filler instruction)
I6: SUB R5, R6, R7-- processor schedules it for
 -- ALU1 (stay at 1st position in RS)
I7: SUB R25, R6, R7-- processor schedules it for

-- ALU2 (stay at 1st position in RS)
This way, we can make sure that the desired

transitions will be created and propagated. Still the
consideration to make sure that a result will be
transferred to some particular entry of ROB is not
looked at in this example. This simple example
demonstrates the need for carefully developing a test
sequence. The situation becomes even more complex
when we consider feedback paths (due to the presence
of forwarding logic) in the out of order execution
engine.

Overview of Our Approach

 In order to test the processor, we consider paths in
datapath part and controller part separately. Clearly it is
very difficult to separate out datapath and controller in
superscalar processor as every stage carries data and
control signals. We define data transfer activities
between architectural registers, and data and address

part of pipeline registers, buffers and queues, as a part
of the datapath. All other paths are considered as a part
of the controller.
 A graph theoretic model called Superscalar
Instruction Execution graph (SIE-graph) has been
developed that is constructed by using RT level
description and instruction set architecture. This graph
model is an extension of our pipeline instruction
execution graph [15,16]. This graph models the
complex superscalar behaviour. The paths in datapath
are classified as functionally testable, functionally
untestable, and potentially functionally testable. The
graph is used to extract the constraints. Combinational
constrained ATPG is used to generate test vectors for
potentially functionally testable paths. Vectors thus
generated can be applied in functional mode using
carefully crafted instruction sequences generated under
architectural constraints. The test vectors so generated
are mapped to control signals and registers. Processor
instructions are used as vehicles to deliver test patterns
and collect test responses. It was indicated earlier that a
superscalar processor executes instructions out-of
program order using multiple functional units and it is
the processor scheduler that decides, on the fly, which
instruction will be executed by which functional unit.
Therefore, we need to carefully craft the test instruction
sequence that can force scheduler to execute in our
desired order as well as on a given functional unit. We
have developed a methodology to generate an
instruction sequence for every path based on the graph
that forces scheduler to execute instructions in our
desired order. We limited ourselves to Non Robust
testing of the path delay faults.

4. Superscalar Instruction Execution

Graph

 The pipeline instruction execution graph (PIE-
graph) presented in [14 ,15] is extended to capture the
superscalar behaviour. SIE-graph is used for constraint
extraction, path classification, and test instruction
sequence generation.
 SIE-graph can be constructed from RTL description
and instruction set architecture. This includes the
architectural registers, data and address part of the
pipeline registers, buffers (Reservation Station), and
queues (Re-Order Buffer). Note that this does not
include control part of the registers, buffers, and
queues.

Nodes of SIE graph are:
(i) Architectural Registers
(ii) Part of architectural registers if it is independent

readable and writtable

(iii) Equivalent register (Set of registers that behave
identically with the instruction set, such as register
file, and stacks)

(iv) Two special nodes, IN and OUT, which models the
external world such as memory or IO devices

(v) Data and address part of the pipeline registers
(vi) Data and address part of buffers (like Reservation

Station)
(vii) Data and address part of queues (like ROB)

There are four types of nodes in SIE graph, which
are special type (IN and OUT), register type (R), buffer
type (B), and queue type (Q). Every node is labeled
with its type and its attribute. The number of entries in
buffers or queues are the attributes. Every node, except
special node, is labeled with its name, node type, and
the attributes of the type if any. For example, a node
representing ROB with 16 entries is labeled as (ROB,
Q, 16).
 A directed edge between two nodes is drawn iff
there exists at least one instruction responsible to
transfer data (with or without manipulation) between
corresponding two registers. Each edge is marked with
a 4 –tuple [<instruction set>, <stage from, stage to>,
<logic type>, <cardinality>]. This 4 – tuple signifies
that instructions from the <instruction set> are
responsible for the transfer data from <stage from> to
<stage to> through the logic specified by <logic type>.
Logic classification for logic type is based on our
observation that many paths directly transfer data to the
next stage using simple interconnects or through
multiplexers. Keeping this in mind we classify logic in
three types, namely interconnect (I), multiplexers (M),
and processing logic (L). This classification simplifies
the test generation process.
 Superscalar processors often use multiple identical
functional units. Edges for these are merged and a
cardinality of the edge is specified as <cardinality>.
SIE-graph for a part of the superscalar DLX processor
is shown in the figure 2.

5. Tests for the Datapath

 In this section we consider the paths that transfer
the data between architectural registers, data and
address part of the pipeline registers, buffers and

Figure 2 Part of SIE-graph of DLX-SV processor

RSALU,
B, 2

ROB,
Q, 16

RF, R
[Iset1, <disp, disp>, M,1]

[Iset1, <ex, ex>, L,2]

[Iset1, <ex, disp>, L,2] [Iset3, <comit, comit>, I,1]

[Iset1, <comit,disp>, M,1]

queues. These paths are significant in number. Other
paths are considered in the control section.

We assume that any instruction can follow any
other instruction. Data forwarding takes place through
the multiplexers. So, the data that can be received
through forwarding path can also be received by the
normal paths.

Path classification and constraint extraction:

A path can be, i) functionally testable (FT) path,
ii) functionally untestable (FUT) path, or iii) potentially
functionally testable (PFT) path. In order to test a path,
we extract the architectural constraints by using SIE-
graph. There are two types of constraints, i) control
constraints and ii) data constraints. Control constraints
are the constraints on the control signals, which are
responsible to transfer data between two nodes. These
are obtained from the instructions marked on the
corresponding edge on SIE-graph. Data constraints are
the constraints on the justifiable data under the
extracted control constraints. Data constraints are not
applicable to Non Robust (NR) testable paths.
1. when logic type is interconnect ‘I’: These paths

always carry data for the stages ahead. Therefore,
these paths do not observe data constraints and can
be tested as interconnects. These paths are
classified as FT paths.

2. when logic type is multiplexer ‘M’: These paths
pass through a set of multiplexers and behave as
interconnects if control signals are properly
assigned. Therefore these can also be tested as
interconnects and classified as FT paths.

3. when logic type is processing logic ‘L’: These
paths transfer data to destination node after
manipulation.
(i) Normal paths:

These paths carry manipulated data inside the
same pipeline stage. An instruction pair (IV1,
IV2) is needed to test such a path. Any pair of
instructions marked on the target path can be a
test instruction, and can be used as IV1 and IV2.
The constraints on the control signals of the
modules in the target path are extracted under
this set of instructions. Non Robust test do not
observe any data constraints. For Robust test,
we must consider the data constraints on the
nodes which have out-edge to the target
destination node inside the same stage and
have some common instruction with the target
edge. These paths are classified as PFT paths.

 (ii) Forwarding paths:
These paths carry data to the other stages.
Therefore, they need a sequence of three
instructions (IV1, IV2, and IV3) to test, where
instruction IV1 and IV2 must be marked on the
in-edge of the target source node, and IV3 must

be marked on the target edge. Non robust test
do not observe any data constraints. These are
also classified as PFT paths.

The forwarding paths from the ith entry of a
buffer to the ith entry of the same buffer are
classified as FUT paths because a transition
cannot be launched and propagated through
this path.

As shown in the fig. 3, the forwarding paths
always go through MUX and the MUX can
always be set to forward data. Therefore, the
forwarding paths dominate the normal paths.
Hence, it reduces the test generation effort.

 Forwarding path
 RS

 Normal path

ROB

 Figure 3 Forwarding and normal paths

Test Generation:
 After extraction of constraints, constrained ATPG
is used to generate the tests for the potentially
functionally testable paths. The ATPG returns the test
vectors for the functionally testable paths.

Test Instruction Sequence Generation:

The generated test vectors are mapped to the
control signals and the registers. An instruction
sequence is needed to apply the test vectors, justify the
valus, and transfer the results to memory. We need to
carefully craft an instruction sequence which can force
scheduler to apply the test patterns in desired order.
Test instruction generation procedures are explained
through examples. In the examples we consider a
processor that has 2 ALUs (1 ALU is considered for p
= 1 case to demonstrate some concepts), with 2-entry
reservation station and 32 entry ROB. The fetch width
of the processor is 4 instructions. The other functional
units in the processor are multiplier, load store unit,
and branch unit. We assume that the ADD instruction
followed by the SUB instruction is a test instruction
pair.

Paths from node Ni to No (register type nodes):

Fetch and the decode stages usually consist of these
paths. These stages are in-order processing stages. Let
us consider that a test instruction sequence (IV1, IV2) is
needed to test a path. Let the superscalar width be w,
and the cardinality of the edge be p. The instruction

pair (IV1, IV2) can be applied by an instruction sequence
[p number of I1 instructions, (w-p) other instructions
except branching instructions, p number of I2
instructions].

Paths from a buffer type node Ni to queue type node
No:

These paths originate from a reservation station and
terminate at ROB. Let a reservation station has k
entries and there be p number of identical functional
units. The node representing the RS is labeled as (Ni,
B, k). Let ROB be labeled with (No, Q, l). Derivation of
test sequence for a path from ith entry of RS to jth entry
of ROB is explained for two cases through examples.
(i) when p = 1

Example 2: A path from 2nd entry in RS to 6th entry
in ROB can be tested by the following instruction
sequence. We assume that the processor has one
ALU.

 I1: J 2000H -- instruction for the alignment
I2: 2000H MULT R7, R8, R9 -- instr. for dependency
I3: AND R10, R7, R11--instr. to occupy 1st entry
I4: ADD R1, R2, R3 -- Instruction IV1

 I5: SW R7, R13, R14 – Filler instruction
 I6: SW R12, R15, R16 – Filler instruction
 I7: SUB R4, R5, R6 – Instruction IV2

The first jump instruction flushes the RS and the

ROB (assuming this entry is seen first time). The
next 4 entries will be fetched in next cycle. The AND
instruction (I3) will be placed at first entry of the RS
and the ADD instruction (I4) will be placed in the
second entry of the RS. During second cycle
instruction I4 will be executed. Next four instructions
will be fetched in the second cycle and instruction I7
will be placed in the second entry of the RS. During
the third cycle, instruction I7 will be executed and
will transfer the result to the 6th entry of the ROB.
Hence, the path from the 2nd entry of RS to the 6th
entry of ROB is tested.

In general, any path from the ith entry of a buffer
(RS) to the jth entry of a queue (ROB) can be tested
by an instruction sequence generated in the following
way.

 {Branch instruction, [(int(j/w)–1)*w]
instructions at branch address which are not marked
on the edge, instruction for dependency creation
(should not be marked on the edge), (i-1) instructions
marked from the instructions marked on the edge
with dependency to the instructions which are not
marked on the edge, IV1 instruction, (w-i-1)
instructions which are not marked on the instruction,
(rem (j-1/w)) instructions which are not marked the
edge, IV2 instruction}. In case of 1<j<w, j = l+w. We

need a previously unseen branch instruction to align
instructions and flush RS and ROB to make sure that
desired data transfer takes place.

(ii) when p >1(Multiple identical functional units exist)

In case of multiple identical units, our approach
tests these units simultaneously. Here, we assume
that p ≤ w, i.e., the number of multiple units is less
than or equal to the fetch width. Let a test sequence
(IV1, IV2) be required to test a path from the RS to the
ROB.

Example 3: A path from 2nd entry in RS to 9th and
10th entries in ROB can be tested by the following
instruction sequence.

 I1: J 2000H -- instruction for the alignment
I2: 2000H LW R8, 100(R10)
I3: MULT R7, R8, R9 – for dependency creation
I4: AND R11,R7,R12 –
 -- Schedule to 1st entry in RS of ALU1
I5: AND R13,R7,R14

-- Schedule to 1st entry in RS of ALU2
I6: ADD R1, R2, R3 – Instruction IV1

-- Schedule to 2nd entry in RS of ALU1
I7: ADD R21, R2, R3 --Instruction IV1

-- Schedule to 2nd entry in RS of ALU2
I8: SW R11, 100(R15) – Filler instruction

 I9: SW R13, 104(R14) – Filler instruction
 I10: SUB R24, R5, R6 – Instruction IV2
 -- Schedule to 2nd entry in RS of ALU1
 -- Transfer the result to the 9th entry of ROB
 I11: SUB R4, R5, R6 – Instruction IV2

 -- Schedule to 2nd entry in RS of ALU2
 -- Transfer the result to the 10th entry of ROB

 The procedure to test a path from any entry in a
buffer to any entry in queue can be generalized without
much difficulty.

Paths from a buffer type node Ni to buffer type
node No (Forwarding paths):

These paths are responsible to forward data to the
instructions residing in the RS without going through
commit stage. These paths dominate the normal paths,
i.e, a test for a forwarding path can also test the
corresponding normal path. Hence, normal paths can
be tested along with forwarding paths by using
observation sequence for normal paths. An instruction
sequence (Iv1, Iv2, Iv3) can test a path from RS (ith entry)
to the same RS (jth entry) if it is applied in the
following manner. This instruction sequence will test
both normal paths and forwarding paths.

Example 4: A path from the 1st entry in RS to the 2nd
entry in RS can be tested by the following instruction
sequence.

I1: J 2000H -- instruction for the alignment
I2: 2000H ADD R1, R2, R3 -- Instruction IV1
I3: ADD R21, R2, R3 --
I4: SW R1, 100(R9)
I5: SW R21, 104(R14) – Filler instruction
I6: SUB R4, R5, R6 – Instruction IV2
I7: SUB R24, R5, R6 – Instruction IV2

I8: ORA R7, R4, R8 – Instruction IV3
I9: ORA R7, R24, R8 – Instruction IV3

Paths from a queue type node Ni to buffer type node
No (From ROB to RS):
 These are the paths which forward the data from
the ROB to the RS. Following example explain the
procedure to test a path from ith entry in ROB to jth
entry in RS.

Example 5: A path from 3rd entry of ROB to 2nd entry
in RS of multiplier unit can be tested by the following
instruction sequence.

I1: J 2000H -- instruction for the alignment
I2: 2000H LW R1, 100(R10)
I3: AND R11,R7,R12 –
I4: ADD R1, R2, R3 – Instruction IV1

 -- Schedule to 3rd entry in ROB
I5: J 2100H
I6: 2100H LW R11, 100(R15) – Filler instruction
I7: AND R14, R12, R13
I8: SUB R4, R5, R6 – Instruction IV2

 -- Schedule to 3rd entry in ROB
I9: SW R4, 104(R14) – Filler instruction
I10: MULT R7, R8, R9
 -- Schedule to 1st entry in RS of multiplier
I11: MULT R10, R4, R11 – Instruction IV3

 -- Schedule to 2nd entry in RS of Multiplier

 The paths from ROB to register file can also be
tested along with these paths by observing the result of
Iv2.

6. Tests for the Controller

Instruction decoder dispatches the control signals
with the data, which are used by the stages ahead.
These control signals are often not structured. However
they form a small group. We use this grouping to find
the constraints. There are two types of constraints. i)
intra group constraints, and ii) inter group constraints. .
(i) Intra-group signal constraints: Some combinations

of value on a small group of signals are not valid
combination. Therefore, we need to extract all the
legitimate values. For example, test control
(test_ctrl) signals in DLX-SV are grouped in a
group of 3 bits, and legitimate values are <0XX,
10X, and 110>.

(ii) Inter group signal constraints: We extract these
constraints in terms of instructions, i.e., map to the
instruction which can generate the particular
combination and all possible combinations are
extracted. For example, in DLX-SV when ALU
ctrl (alu_ctrl) signal is 0000 the test control
(test_ctrl) signal must be 000.

The part of a pipeline register, which carries the control
signals is called control register. There are paths
between control register (CR) to control register,
control register to data register (DR), or data register
(such as IR) to control register. The paths between CR-
to-CR are used to carry the control signals for the
pipeline stages ahead. These paths are connected
directly and can be tested as interconnects. Paths from
CR to DR are the paths which pass through the
combinational logic such as paths from control register
of RS to the ROB. Following example shows the
procedure to test such paths.

Example 6: A path from 1st entry of CR in RS to 6th
entry in ROB can be tested by the following instruction
sequence.

I1: J 2000H -- instruction for the alignment
I2: 2000H ADD R1, R2, R3 -- Instruction IV1
I3: MULT R10, R11, R12
I4: SW R1, 100(R15)
I5: SW R10, 104(R15) – Filler instruction
I6: SUB R4, R5, R6 – Instruction IV2
I7: SUB R4, R5, R6 – Instruction IV2

Similarly, the test procedures for the paths from the

control part of RS to the data part of RS (feed back
paths) and other paths can also be developed as
explained in the previous section.

7. Conclusion

This paper highlighted the issues that are pertinent
to testing superscalar architecture in the functional
mode of operation. A graph theoretic model is
developed to extract the constraints. We have
developed the test procedures that can force the
processor scheduler to execute program in our desired
order. Hence, these procedures can apply test vectors in
the functional mode of operation. Superscalar DLX
processor (DLX-SV) is implemented and it will be
used as a vehicle to verify the methods described in this
paper.

Acknowledgement

This work was supported in part by Semiconductor
Technology Academic Research Center (STARC)
under the Research Project and in part by Japan Society

for the Promotion of Science (JSPS) under Grants-in-
Aid for Scientific Research B (2) (No. 15300018) and
the grant of JSPS Research Fellowship (No. L04509).

References:

[1] S.M. Thatte and J. Abraham, “Test generation for

Microprocessors”, IEEE Trans. on Computers, Vol. C-
29, No. 6, June 1980, pp. 429-441.

[2] J. Shen and J.A. Abraham, “Native Mode Functional Test
Generation for Processors with Applications to Self-Test
and Design Validation”, Proc. of the International Test
Conference 1998, pp. 990-999.

[3] K. Batcher and C. Papachristou, “Instruction
Randomization Self Test for Processor Cores” Proc. of
the VLSI Test Symposium 1999, pp. 34-40.

[4] L. Chen, and S. Dey, “Software-Based Self-Testing
Methodology for Processor Cores”, IEEE Trans. on
CAD of Integrated Circuits and Systems, Vol. 20, No.3,
March 2001, pp. 369-380.

[5] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian,
“Instruction-Based Self-Testing of Processor Cores”,
Journal of Electronic Testing: Theory and Application
(JETTA) 19, 2003, pp 103-112.

[6] K.Kambe, M.Inoue, and H. Fujiwara, “Efficient Template
Generation for Instruction-Based Self-Test of Processor
Cores”, Proc. of Asian Test Symposium, 2004, pp. 152-
157.

[7] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable
Software-Based Self-Test Methodology for
Programmable Processors”, Proc. of Design
Automation Conference 2003, pp. 548-553.

[8] N.Krantis, G.Xenoulis, A.Paschalis, D.Gizopolous, and
Y.Zorian, “Application and Analysis of RT-Level
Software-Based Self-Testing for Embedded Processor
Cores”, Proc. of International Test Conference, 2003, pp
431-440.

[9] A. Paschalis, and D. Gizopoulos, “ Effective Software-
Based Self-Test Strategies for On-Line periodic Testing
of Embedded Processors”, Proc. of Design and Test in
Europe 2004, pp 578-583.

[10] W.-C. Lai, A. Krstic, and K.-T. Cheng, “On Testing the
Path Delay Faults of a Microprocessor Using its
Instruction Set”, Proc. of the VLSI Test Symposium
2000, pp. 15-20.

[11] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test Program
Synthesis for Path Delay Faults in Microprocessor
Cores”, Proc. of International Test Conference 2000, pp
1080-1089.

[12] W.-C. Lai, and K.-T. Cheng, “Instruction-Level DFT for
Testing Processor and IP Cores in System-on-a-Chip”,
Proc. of the Design Automation Conference 2001, ACM
Press, NY, 2001, pp. 59-64.

[13] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,
“Instruction-Based Delay Fault Testing of Processor
Cores”, Proc. of the International Conference on VLSI
Design 2004, pp 933-938.

[14] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,
“Delay Fault Testing of Processor Cores in Functional
Mode”, IEICE Trans. on Information & Systems, Vol.
E-88D, No. 3, March 2005, pp. 1-9.

[15] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara,
“Instruction-Based Delay Fault Self-Testing of Pipelined
Processor Cores”, Proc. of International Symposium on
Circuits and Systems 2005. To appear

[16] V.Singh, M.Inoue, K.K.Saluja, and H.Fujiwara,
“Software-Based Delay Fault Self-Testing of Pipelined
Processor Cores”, NAIST Technical report. No.
2004006 Sept. 2004.
http://isw3.aist-nara.ac.jp/IS/TechReport/2004006

[17] A. Krstic and K.-T. Cheng, Delay fault testing for VLSI
circuits, Kluwer Academic Publishers, 1998.

	Program-Based Testing of Super-scalar Microprocessors
	Acknowledgement

