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Abstract: 
Instruction-based self-testing is being proposed as 

an effective alternative to the conventional techniques 
for at-speed testing of high performance 
microprocessors. However, testing superscalar 
microprocessors using this approach faces serious 
challenges, due to the out-of-order execution with 
multiple functional units and in-order commit 
behaviour. This paper discusses the instruction-based 
test issues for the testing of superscalar architectures. 
A graph theoretic model to model the superscalar 
behavior is presented. Procedures for delay fault 
testing, which make sure that generated test vectors are 
applied in the correct order to test each testable path, 
are developed. 
 
1. Introduction 
 
 Rapid advances in VLSI technology and aggressive 
design methodologies are resulting into extremely 
complex devices. A microprocessor is one of the most 
complex such device and the existing SoCs are also 
build around high performance microprocessors to 
meet the consumer demand for rich functionality and 
performance with short turn around time. Modern high 
performance microprocessors use superscalar 
architecture; they are designed for very high frequency 
operation, and are implemented in very deep sub-
micron technology. Aggressive timing requirements for 
such designs have introduced the need to test for the 
smaller timing defects and distributed faults caused by 
statistical process variation.  Testing of such a 
processor becomes even more difficult if it is 
embedded deep inside an SoC providing limited and 
poor accessibility. 
 Testing of defects in high-speed circuits requires 
high-speed testers. At-speed testing of processors using 
external tester is not an economically viable scheme. 

                                                 
∗ This work was carried out while authors were with NAIST, Japan. 

Moreover, the inherent inaccuracy of the ATE also 
leads to yield loss. Traditional hardware BIST moves 
the testing task from external tester to the internal 
hardware but this often needs design changes that can 
stretch the time to market. In addition, such methods 
lead to unacceptable performance loss and area 
overhead, and can also result into burn out of the chip 
due to excessive power consumption during the test. A 
new paradigm, program-based self-testing (also known 
as software-based self-testing) can alleviate the 
problems of both external tester and structural BIST. It 
links instruction-level test with the low level fault 
model. In order to apply test in functional mode, 
program-based self-testing uses processor instructions 
to deliver the test patterns and collect the test 
responses. Thus, being inherently non-intrusive, it does 
not require area and performance overheads and it is 
well suited test methodology for the testing of 
processor cores embedded deep inside an SoC. 
Furthermore, the test programs developed for this 
method can also be used for online periodic testing to 
improve the processor reliability. 
 This paper focuses on the instruction-based self-
testing of superscalar processors. In order to achieve 
higher performance, superscalar processors use out of 
order execution, which makes the instruction-based 
testing difficult.  The main objectives of this paper are: 
• Discuss the test issues for the instruction-based 

testing of superscalar architecture 
• Describe the test procedures which force the 

processor scheduler to make sure that generated test 
vectors are applied in correct order. 

The paper is organized as follows. Section 2 
describes the previous work in the domain of 
instruction-based self-testing. Section 3 lists the test 
issues and describes an overview of our methodology. 
Section 4 presents the graph model of superscalar 
processor. Sections 5 and 6 describe the test generation 
methods for datapath and controller respectively. 
Finally, we conclude this paper with section 7. 
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2. Previous Work 
 
 Recently, a number of software-based self-testing 
approaches [2,3,4,5,6] have been proposed in literature. 
These approaches target stuck-at faults for simple non-
pipelined processors. For example the approaches 
proposed in [2,3] are based on the instruction 
randomization method, whereas those in [4,5,6] 
generate structural tests for functional modules under 
constraints. Approaches have also been proposed for 
pipelined processors targeting stuck-at faults [7,8,9]. 
Chen [7] proposed a template-based approach, whereas 
approaches based on deterministic test of functional 
modules are proposed by Kranitis [8] and Paschalis [9].
  

Unlike stuck-at fault testing, delay testing is 
closely tied to the test application strategy. Only a few 
software-based self-testing approaches 
[10,11,12,13,14] targeting delay faults have been 
proposed in literature for simple non-pipelined 
processors. The methodology proposed by Lai 
[10,11,12] extracts constraints by exhaustively 
searching instructions and instruction pairs, which can 
be applied in functional mode. In our earlier work we 
proposed an efficient graph theoretical model [13,14], 
which was based on the model proposed in [1], to 
model simple a processor by an Instruction Execution 
Graph (IE graph), which is then used for constraints 
extraction to generate test vectors. These generated 
vectors can then be applied as instructions to test a 
processor.  We also extended our approach to include 
testing of pipelined processors [15,16]. To the best of 
our knowledge, it is the only work reported in literature 
that deals with delay fault testing of pipelined 
processors in functional mode.  

The graph model and the associated methodology 
proposed in [15,16] models the static pipeline 
behaviour where instructions progress in lock step 
fashion. Hence, it is not suited for the modeling and 
testing of a dynamic pipelined architecture such as a 
superscalar processor. Superscalar processors use 
buffers and queues to support out-of-order execution. 
Indeed, as pointed out in this paper, the test application 
strategy plays a key role for the testing of superscalar 
processors. 

To the best of our knowledge, no approach has 
been proposed in literature for the testing of superscalar 
processors in functional mode of operation targeting 
stuck-at or delay faults 
 
3. Test Issues and Overview of the 

Approach  
 
  This work is aimed at delay fault testing of 
superscalar processors. The objective is to generate 

tests and test sequences that can be applied in the 
functional mode of operation, using path delay fault 
model [17]. We believe that this is the first work 
towards the modeling of the superscalar (dynamic 
pipeline) behaviour for the purposes of testing of a 
superscalar processor. This paper describes some of the 
important issues that are pertinent to testing superscalar 
architectures, highlighting some of the differences 
between simple pipelined and superscalar architectures. 
 
Pipeline Vs Superscalar Processors 
 
 Scalar pipelines are characterized by a single 
instruction pipeline of k stages. All instructions, 
regardless of type, traverse through the same set of 
pipeline stages. At the most one instruction can be 
resident in each pipeline stage at any one time and the 
instructions advance through lock step fashion. 
Whereas, superscalar processors go beyond just a 
single-instruction pipeline by being able to 
simultaneously advance multiple instructions through 
the pipeline stages. They incorporate multiple 
functional units to achieve greater concurrency of 
processing multiple instructions for higher instruction 
execution throughput, often quantified as instructions 
per cycle (IPC). Another fundamental attribute of the 
superscalar processors is their ability to execute 
instructions in an order different from the order 
specified by the original program. 

There are many possible superscalar organizations. 
Typically a superscalar organization consists of 
instruction fetch and branch prediction unit, decode and 
register renaming unit, instruction issue unit, execution 
unit, and commit unit. In this work we consider a most 
common organization of a superscalar processor which 
use distributed reservation station for each functional 
unit. The Re-order buffer (ROB) is used to commit  the 
instructions. Figure 1 shows an organization of the 
DLX superscalar processor. For simplicity of 
presentation, we will use this particular organization to 
explain the various concepts. We believe, all the 
concepts can easily be generalized to other 
organizations. 
 Instr.cache
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 Figure 1  A Superscalar Organization of  the DLX-SV 
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We use an example superscalar DLX processor to 
demonstrate the concept. This processor uses a branch 
history table with 2 history bits to predict branch. It 
fetches four instructions and commits at most four 
instructions per cycle. Execution unit has 5 functional 
units (2 ALU, 1 Multiplier, 1 Branch unit, and 1 Load 
Store unit). Every unit has its own reservation station 
with 2 entries and ROB is implemented as a circular 
queue with 32 entries.  
 
Superscalar Test Issues 
 
 Instruction based testing faces serious challenges 
due to the out of order execution with multiple 
functional units and in-order commit behavior, because 
it is the processor scheduler who decides the order of 
instruction execution, on the fly, and not the program 
that executes on the processor. This means that even if 
we have a test vector sequence generated under 
architectural constraints, when we apply such a 
sequence, there is no guarantee that the sequence will 
indeed be executed by the same functional unit for 
which it was meant to be. In fact, in a superscalar 
processor, the instructions in the sequence may be 
executed on a different functional unit and possibly in 
different order of instructions. Further, superscalar 
architecture uses buffers and queues, which makes it a 
challenging task to ensure that a given instruction 
resides at a given location in the buffer or queue with 
appropriate data at a given time. We explain this 
through the following example. 
 
Example1: Consider a 4 instruction wide fetch 
superscalar implemented with 2 ALU, 1 Multiplier, 1 
Shifter, 1 Load, 1 Store and 1 Branch Unit, where 
every unit has individual reservation station with 2 
entries, and ROB has 32 entries. Processor instructions 
are represented as (I Rd, Rs1, Rs2) where I specifies 
operation, Rd is the destination, and Rs1 and Rs2 are 
the two source operands. Let a path through ALU be 
tested by an instruction sequence ADD followed by 
SUB. This path is from the reservation station to the 
reorder buffer. Let the desired operands be placed in 
the registers R2 and R3 for the ADD instruction and in 
registers R6 and R7 for the SUB instruction. 
Conventionally, we apply the test vectors in the 
following sequence: 
 
I1: ADD R1, R2, R3 -- processor schedules this   instr. to ALU1 
I2: SUB R5, R6, R7  -- processor schedules this instr. to ALU2 
 

The processor may schedule instructions I1 and I2 
to two different ALUs. Therefore, this sequence will 
not apply the desired test to any of the ALUs. We will 
get the correct result in spite of having a faulty path, 
because the fault is not excited. A possible partial 

solution to this problem is to concurrently test the two 
ALU’s by the following program segment. 

 
I1: ADD R1, R2, R3   -- processor schedules this instr. to ALU1 
I2: ADD R21, R2, R3 -- processor schedules this instr. to ALU2 
I3: SUB R5, R6, R7    -- processor schedules this instr. to ALU1 
I4: SUB R25, R6, R7  -- processor schedules this instr. to ALU2 
 

This can apply the test sequence to both the ALUs 
provided that these instructions are aligned, i.e., all 
these 4 instructions are fetched simultaneously. We can 
achieve this by having branch instruction preceding 
this set. Now, these instructions can be applied in our 
desired order. However, reservation station has two 
entries and first two instructions will be placed in the 
first entries of respective reservation stations and next 
two instructions will be placed in the second entries of 
the corresponding reservation stations. Therefore, the 
transition will not be launched and the path will remain 
untested. Again, a possible partial solution is to insert 
two instructions between I2 and I3 which are being 
scheduled to some other functional units. Therefore, 
the partial solution which can test the path from the 
first entry of reservation station to ROB is: 

 
I1     J   2000H 
I2: 2000H   ADD R1, R2, R3 -- processor schedules it for  

--  ALU1 (stay at 1st position in RS) 
I3            ADD R21, R2, R3 -- processor schedules it for 

-- ALU2 (stay at 1st position in RS) 
I4:            MULT R10, R11, R12  -- processor schedules it  

-- for Multiplier (Filler instr.)  
I5:            SW  R1, 100 (R15) -- processor schedules it for  

-- Load store unit (Filler instruction) 
I6:              SUB R5, R6, R7-- processor schedules it for 
      -- ALU1 (stay at 1st position in RS) 
I7:             SUB R25, R6, R7-- processor schedules it for  

-- ALU2 (stay at 1st position in RS) 
This way, we can make sure that the desired 

transitions will be created and propagated. Still the 
consideration to make sure that a result will be 
transferred to some particular entry of ROB is not 
looked at in this example. This simple example 
demonstrates the need for carefully developing a test 
sequence. The situation becomes even more complex 
when we consider feedback paths (due to the presence 
of forwarding logic) in the out of order execution 
engine. 
 
Overview of Our Approach 
 
 In order to test the processor, we consider paths in 
datapath part and controller part separately. Clearly it is 
very difficult to separate out datapath and controller in 
superscalar processor as every stage carries data and 
control signals. We define data transfer activities 
between architectural registers, and data and address 



part of pipeline registers, buffers and queues, as a part 
of the datapath. All other paths are considered as a part 
of the controller.  
 A graph theoretic model called Superscalar 
Instruction Execution graph (SIE-graph) has been 
developed that is constructed by using RT level 
description and instruction set architecture. This graph 
model is an extension of our pipeline instruction 
execution graph [15,16]. This graph models the 
complex superscalar behaviour. The paths in datapath 
are classified as functionally testable, functionally 
untestable, and potentially functionally testable. The 
graph is used to extract the constraints. Combinational 
constrained ATPG is used to generate test vectors for 
potentially functionally testable paths. Vectors thus 
generated can be applied in functional mode using 
carefully crafted instruction sequences generated under 
architectural constraints. The test vectors so generated 
are mapped to control signals and registers. Processor 
instructions are used as vehicles to deliver test patterns 
and collect test responses. It was indicated earlier that a 
superscalar processor executes instructions out-of 
program order using multiple functional units and it is 
the processor scheduler that decides, on the fly, which 
instruction will be executed by which functional unit. 
Therefore, we need to carefully craft the test instruction 
sequence that can force scheduler to execute in our 
desired order as well as on a given functional unit. We 
have developed a methodology to generate an 
instruction sequence for every path based on the graph 
that forces scheduler to execute instructions in our 
desired order. We limited ourselves to Non Robust 
testing of the path delay faults. 

  

 
4. Superscalar Instruction Execution 

Graph 
 
 The pipeline instruction execution graph (PIE-
graph) presented in [14 ,15] is extended to capture the 
superscalar behaviour. SIE-graph is used for constraint 
extraction, path classification, and test instruction 
sequence generation.  
 SIE-graph can be constructed from RTL description 
and instruction set architecture. This includes the 
architectural registers, data and address part of the 
pipeline registers, buffers (Reservation Station), and 
queues (Re-Order Buffer). Note that this does not 
include control part of the registers, buffers, and 
queues. 
 
Nodes of SIE graph are: 
(i) Architectural Registers 
(ii) Part of architectural registers if it is independent 

readable and writtable 

(iii) Equivalent register (Set of registers that behave 
identically with the instruction set, such as register 
file, and stacks) 

(iv)  Two special nodes, IN and OUT, which models the 
external world such as memory or IO devices 

(v)  Data and address part of the pipeline registers 
(vi)  Data and address part of buffers (like Reservation 

Station) 
(vii) Data and address part of queues (like ROB) 

There are four types of nodes in SIE graph, which 
are special type (IN and OUT), register type (R), buffer 
type (B), and queue type (Q). Every node is labeled 
with its type and its attribute. The number of entries in 
buffers or queues are the attributes. Every node, except 
special node, is labeled with its name, node type, and 
the attributes of the type if any. For example, a node 
representing ROB with 16 entries is labeled as (ROB, 
Q, 16).  
 A directed edge between two nodes is drawn iff 
there exists at least one instruction responsible to 
transfer data (with or without manipulation) between 
corresponding two registers. Each edge is marked with 
a 4 –tuple [<instruction set>, <stage from, stage to>, 
<logic type>, <cardinality>]. This 4 – tuple signifies 
that instructions from the <instruction set> are 
responsible for the transfer data from <stage from> to 
<stage to> through the logic specified by <logic type>. 
Logic classification for logic type is based on our 
observation that many paths directly transfer data to the 
next stage using simple interconnects or through 
multiplexers. Keeping this in mind we classify logic in 
three types, namely interconnect (I), multiplexers (M), 
and processing logic (L). This classification simplifies 
the test generation process.  
 Superscalar processors often use multiple identical 
functional units. Edges for these are merged and a 
cardinality of the edge is specified as <cardinality>. 
SIE-graph for a part of the superscalar DLX processor 
is shown in the figure 2. 
 
 
  
 
 
 
 
 
 
 
5. Tests for the Datapath 
 
 In this section we consider the paths that transfer 
the data between architectural registers, data and 
address part of the pipeline registers, buffers and 

Figure 2 Part of SIE-graph of DLX-SV processor 
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queues. These paths are significant in number. Other 
paths are considered in the control section.  

We assume that any instruction can follow any 
other instruction. Data forwarding takes place through 
the multiplexers. So, the data that can be received 
through forwarding path can also be received by the 
normal paths.  
  
Path classification and constraint extraction: 

A path can be, i) functionally testable (FT) path, 
ii) functionally untestable (FUT) path, or iii) potentially 
functionally testable (PFT) path. In order to test a path, 
we extract the architectural constraints by using SIE-
graph.  There are two types of constraints, i) control 
constraints and ii) data constraints. Control constraints 
are the constraints on the control signals, which are 
responsible to transfer data between two nodes. These 
are obtained from the instructions marked on the 
corresponding edge on SIE-graph. Data constraints are 
the constraints on the justifiable data under the 
extracted control constraints. Data constraints are not 
applicable to Non Robust (NR) testable paths. 
1. when logic type is interconnect ‘I’: These paths 

always carry data for the stages ahead. Therefore, 
these paths do not observe data constraints and can 
be tested as interconnects. These paths are 
classified as FT paths. 

2. when logic type is multiplexer ‘M’: These paths 
pass through a set of multiplexers and behave as 
interconnects if control signals are properly 
assigned. Therefore these can also be tested as 
interconnects and classified as FT paths. 

3. when logic type is processing logic ‘L’: These 
paths transfer data to destination node after 
manipulation.  
(i) Normal paths:  

These paths carry manipulated data inside the 
same pipeline stage. An instruction pair (IV1, 
IV2) is needed to test such a path. Any pair of 
instructions marked on the target path can be a 
test instruction, and can be used as IV1 and IV2. 
The constraints on the control signals of the 
modules in the target path are extracted under 
this set of instructions. Non Robust test do not 
observe any data constraints. For Robust test, 
we must consider the data constraints on the 
nodes which have out-edge to the target 
destination node inside the same stage and 
have some common instruction with the target 
edge. These paths are classified as PFT paths. 

  (ii) Forwarding paths: 
These paths carry data to the other stages. 
Therefore, they need a sequence of three 
instructions (IV1, IV2, and IV3) to test, where 
instruction IV1 and IV2 must be marked on the 
in-edge of the target source node, and IV3 must 

be marked on the target edge. Non robust test 
do not observe any data constraints. These are 
also classified as PFT paths. 

The forwarding paths from the ith entry of a 
buffer to the ith entry of the same buffer are 
classified as FUT paths because a transition 
cannot be launched and propagated through 
this path. 

As shown in the fig. 3, the forwarding paths 
always go through MUX and the MUX can 
always be set to forward data. Therefore, the 
forwarding paths dominate the normal paths. 
Hence, it reduces the test generation effort. 

 
 
 
 Forwarding path
 RS
 
 
 Normal path 
 

ROB 
 
 Figure 3 Forwarding and normal paths 
 
Test Generation: 
 After extraction of constraints, constrained ATPG 
is used to generate the tests for the potentially 
functionally testable paths. The ATPG returns the test 
vectors for the functionally testable paths. 
 
Test Instruction Sequence Generation: 

The generated test vectors are mapped to the 
control signals and the registers. An instruction 
sequence is needed to apply the test vectors, justify the 
valus, and transfer the results to memory. We need to 
carefully craft an instruction sequence which can force 
scheduler to apply the test patterns in desired order. 
Test instruction generation procedures are explained 
through examples. In the examples we consider a 
processor that has 2 ALUs (1 ALU is considered for p 
= 1 case to demonstrate some concepts), with 2-entry 
reservation station and 32 entry ROB. The fetch width 
of the processor is 4 instructions. The other functional 
units in the processor are multiplier, load store unit, 
and branch unit. We assume that the ADD instruction 
followed by the SUB instruction is a test instruction 
pair.  
 
Paths from node Ni to No (register type nodes): 

Fetch and the decode stages usually consist of these 
paths. These stages are in-order processing stages. Let 
us consider that a test instruction sequence (IV1, IV2) is 
needed to test a path. Let the superscalar width be w, 
and the cardinality of the edge be p. The instruction 



pair (IV1, IV2) can be applied by an instruction sequence  
[p number of I1 instructions, (w-p) other instructions 
except branching instructions, p number of I2 
instructions].  
 
Paths from a buffer type node Ni to queue type node 
No: 

These paths originate from a reservation station and 
terminate at ROB. Let a reservation station has k 
entries and there be p number of identical functional 
units. The node representing the RS is labeled as (Ni, 
B, k). Let ROB be labeled with (No, Q, l). Derivation of 
test sequence for a path from ith entry of RS to jth entry 
of ROB is explained for two cases through examples. 
(i) when p = 1  
 

Example 2:  A path from  2nd entry in RS to 6th entry 
in ROB can be tested by the following instruction 
sequence. We assume that the processor has one 
ALU. 
 

    I1:   J 2000H  -- instruction for  the alignment 
I2: 2000H  MULT R7, R8, R9 -- instr. for dependency 
I3:       AND R10, R7, R11--instr. to occupy 1st entry 
I4:       ADD R1, R2, R3 -- Instruction IV1 

   I5:       SW R7, R13, R14 – Filler instruction 
   I6:       SW   R12, R15, R16 – Filler instruction 
   I7:   SUB R4, R5, R6  – Instruction IV2 

 
The first jump instruction flushes the RS and the 

ROB (assuming this entry is seen first time). The 
next 4 entries will be fetched in next cycle. The AND 
instruction (I3) will be placed at first entry of the RS 
and the ADD instruction (I4) will be placed in the 
second entry of the RS.  During second cycle 
instruction I4 will be executed. Next four instructions 
will be fetched in the second cycle and instruction I7 
will be placed in the second entry of the RS. During 
the third cycle, instruction I7 will be executed and 
will transfer the result to the 6th entry of the ROB. 
Hence, the path from the 2nd entry of RS to the 6th 
entry of ROB is tested.  

In general, any path from the ith entry of a buffer 
(RS) to the jth entry of a queue (ROB) can be tested 
by an instruction sequence generated in the following 
way. 

 {Branch instruction, [(int(j/w)–1)*w] 
instructions at branch address which are not marked 
on the edge, instruction for dependency creation 
(should not be marked on the edge), (i-1) instructions 
marked from the instructions marked on the edge 
with dependency to the instructions which are not 
marked on the edge, IV1 instruction, (w-i-1) 
instructions which are not marked on the instruction, 
(rem (j-1/w)) instructions which are not marked the 
edge, IV2 instruction}. In case of 1<j<w, j = l+w. We 

need a previously unseen branch instruction to align 
instructions and flush RS and ROB to make sure that 
desired data transfer takes place.  

  
(ii) when p >1(Multiple identical functional units exist) 

In case of multiple identical units, our approach 
tests these units simultaneously. Here, we assume 
that p ≤ w, i.e., the number of multiple units is less 
than or equal to the fetch width. Let a test sequence 
(IV1, IV2) be required to test a path from the RS to the 
ROB. 

 
Example 3: A path from 2nd entry in RS to 9th and 
10th entries in ROB can be tested by the following 
instruction sequence. 
 

    I1:   J 2000H  -- instruction for the alignment 
I2: 2000H  LW R8, 100(R10)  
I3:    MULT R7, R8, R9 – for dependency creation 
I4:   AND R11,R7,R12 –  
      -- Schedule to 1st entry in RS of ALU1 
I5:    AND R13,R7,R14 

-- Schedule to 1st entry in RS of ALU2 
I6:   ADD R1, R2, R3 – Instruction IV1  

-- Schedule to 2nd entry in RS of ALU1 
I7:       ADD R21, R2, R3  --Instruction IV1 

-- Schedule to  2nd entry in RS of ALU2 
I8:       SW   R11, 100(R15) – Filler instruction 

   I9:       SW   R13, 104(R14) – Filler instruction 
   I10:       SUB R24, R5, R6 – Instruction IV2  
     -- Schedule to 2nd entry in RS of ALU1 
     -- Transfer the result to the 9th entry of ROB 
   I11:   SUB R4, R5, R6  – Instruction IV2 

     -- Schedule to 2nd entry in RS of ALU2 
     -- Transfer the result to the 10th entry of ROB 

 
 The procedure to test a path from any entry in a 
buffer to any entry in queue can be generalized without 
much difficulty. 
 
Paths from a buffer type node Ni to buffer type 
node No (Forwarding paths): 

These paths are responsible to forward data to the 
instructions residing in the RS without going through 
commit stage. These paths dominate the normal paths, 
i.e, a test for a forwarding path can also test the 
corresponding normal path. Hence, normal paths can 
be tested along with forwarding paths by using 
observation sequence for normal paths. An instruction 
sequence (Iv1, Iv2, Iv3) can test a path from RS (ith entry) 
to the same RS (jth entry) if it is applied in the 
following manner. This instruction sequence will test 
both normal paths and forwarding paths.  

 
Example 4:  A path from the 1st entry in RS to the 2nd 
entry in RS can be tested by the following instruction 
sequence. 



I1:   J 2000H  -- instruction for  the alignment 
I2: 2000H  ADD R1, R2, R3 -- Instruction IV1 
I3:       ADD R21, R2, R3  --   
I4:       SW   R1, 100(R9) 
I5:       SW R21, 104(R14) – Filler instruction 
I6:       SUB R4, R5, R6  – Instruction IV2 
I7:   SUB R24, R5, R6  – Instruction IV2 

I8:       ORA R7, R4, R8  – Instruction IV3 
I9:   ORA R7, R24, R8 – Instruction IV3 

 
Paths from a queue type node Ni to buffer type node 
No (From ROB to RS): 
 These are the paths which forward the data from 
the ROB to the RS. Following example explain the 
procedure to test a path from ith entry in ROB to jth 
entry in RS. 
 
Example 5: A path from 3rd entry of ROB to 2nd entry 
in RS of multiplier unit can be tested by the following 
instruction sequence. 
 
I1:   J 2000H  -- instruction for the alignment 
I2: 2000H  LW R1, 100(R10)  
I3:    AND R11,R7,R12 – 
I4:   ADD R1, R2, R3 – Instruction IV1 

       -- Schedule to 3rd  entry in ROB 
I5:    J 2100H 
I6: 2100H LW   R11, 100(R15) – Filler instruction 
I7:       AND R14, R12, R13 
I8:           SUB R4, R5, R6  – Instruction IV2 

       -- Schedule to 3rd  entry in ROB 
I9:       SW   R4, 104(R14) – Filler instruction 
I10:       MULT R7, R8, R9  
     -- Schedule to 1st  entry in RS of multiplier 
I11:   MULT R10, R4, R11  – Instruction IV3 

     -- Schedule to 2nd entry in RS of Multiplier 

 
 The paths from ROB to register file can also be 
tested along with these paths by observing the result of 
Iv2.  
 
6. Tests for the Controller 
 

Instruction decoder dispatches the control signals 
with the data, which are used by the stages ahead. 
These control signals are often not structured. However 
they form a small group. We use this grouping to find 
the constraints. There are two types of constraints. i) 
intra group constraints, and ii) inter group constraints.  . 
(i) Intra-group signal constraints: Some combinations 

of value on a small group of signals are not valid 
combination. Therefore, we need to extract all the 
legitimate values. For example, test control 
(test_ctrl) signals in DLX-SV are grouped in a 
group of 3 bits, and legitimate values are <0XX, 
10X, and 110>. 

(ii) Inter group signal constraints: We extract these 
constraints in terms of instructions, i.e., map to the 
instruction which can generate the particular 
combination and all possible combinations are 
extracted.  For example, in DLX-SV when ALU 
ctrl (alu_ctrl) signal is 0000 the test control 
(test_ctrl) signal must be 000.  

The part of a pipeline register, which carries the control 
signals is called control register. There are paths 
between control register (CR) to control register, 
control register to data register (DR), or data register 
(such as IR) to control register. The paths between CR-
to-CR are used to carry the control signals for the 
pipeline stages ahead. These paths are connected 
directly and can be tested as interconnects. Paths from 
CR to DR are the paths which pass through the 
combinational logic such as paths from control register 
of RS to the ROB. Following example shows the 
procedure to test such paths. 
 
Example 6: A path from 1st entry of CR in RS to 6th 
entry in ROB can be tested by the following instruction 
sequence. 
 
I1:   J 2000H  -- instruction for  the alignment 
I2: 2000H  ADD R1, R2, R3 -- Instruction IV1 
I3:       MULT R10, R11, R12  
I4:       SW   R1, 100(R15) 
I5:       SW R10, 104(R15) – Filler instruction 
I6:       SUB R4, R5, R6  – Instruction IV2   
I7:   SUB R4, R5, R6  – Instruction IV2 

 
Similarly, the test procedures for the paths from the 

control part of RS to the data part of RS (feed back 
paths) and other paths can also be developed as 
explained in the previous section. 
 
7. Conclusion 
 

This paper highlighted the issues that are pertinent 
to testing superscalar architecture in the functional 
mode of operation. A graph theoretic model is 
developed to extract the constraints. We have 
developed the test procedures that can force the 
processor scheduler to execute program in our desired 
order. Hence, these procedures can apply test vectors in 
the functional mode of operation. Superscalar DLX 
processor (DLX-SV) is implemented and it will be 
used as a vehicle to verify the methods described in this 
paper. 
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