
Instruction-Based Delay Fault Self-Testing of Pipelined
Processor Cores

Virendra Singh1,3, Michiko Inoue1, Kewal K Saluja2, Hideo Fujiwara1
1Nara Institute of Science & Technology, Takayama, Ikoma, Nara – 630-0192 Japan

2University of Wisconsin-Madison, USA
3Central Electronics Engineering Research Institute, Pilani, India
{virend-s, kounoe, fujiwara}@is.naist.jp, saluja@engr.wisc.edu

Abstract—Although nearly all modern processors use pipelined
architecture, yet no method has been proposed in literature to
model these for the purpose of test generation. This paper
proposes a graph theoretic model of pipelined processors and
develops a systematic approach to delay fault testing of such
processor cores using the processor instruction set. Our
methodology consists of using a graph model of the pipelined
processor, extraction of architectural constraints, classification
of paths, and generation of tests using a constrained ATPG.
These tests are then converted to a test program, a sequence of
instructions, for testing the processor. Thus, the tests generated
by our method can be applied in functional mode of operation
and can also be used for self-test. We applied our method to
two example processors, namely a 16 bit five stage VPRO
pipelined processor and a 32 bit pipelined DLX processor, to
demonstrate the effectiveness of our methodology.

I.

II.

INTRODUCTION
In modern high performance processors, it is no longer

sufficient to target conventional stuck-at faults, instead delay faults
and cross talk faults are becoming increasing important. At-speed
testing using external tester is almost infeasible because of its
inherent accuracy limitation and cost. Due to the need of design
change, possibility of excessive power consumption, and high area
and performance overhead, hardware-based self-test (BIST) is also
not a feasible solution. Software-Based Self-Test (SBST) is an
alternate to BIST which uses processor instructions and
functionality in order to test processor core in functional mode.

A number of approaches have been proposed for testing non-
pipelined processors targeting stuck-at faults but a very few [2,3]
approaches have been proposed to test pipelined processors. Chen
[2] proposed a template based methodology, whereas Kranitis[3]
proposed an approach which targets functional blocks. Though
pipelined processors are studied in [2,3], the pipelined behavior is
not considered, instead the focus is on functional blocks; and also
faults in the controller are not explicitly addressed. Researchers in
[4,5,6] proposed SBST approaches targeting delay faults for non-
pipelined processors. However, Lai’s [4] approach does not provide
details about testing the controller, whereas [5, 6] provide an
efficient graph theoretic model based approach, it is also limited to
non-pipelined processors, though it can handle architectural
registers and an FSM based controller.

The paper is organized as follows. Section II lists the
contributions of this paper and describes an overview of our
methodology. Section III and IV describe the test generation
methods for datapath and controller. Section V describes the
instruction sequence generation process. Section VI presents
experimental results to demonstrate the effectiveness our
methodology, and finally we conclude with section VII.

CONTRIBUIONS AND OVERVIEW OF THE PROPOSED
APPROACH

To the best of our knowledge, no approach has been proposed
in literature for testing pipelined processors and targeting delay
faults. We believe this is the first work towards modeling of
pipeline behavior for testing of a microprocessor in functional mode.

The main contributions of this work are:

1. Develop a graph theoretic model for pipeline behavior
using the RT level description of the processor,

2. Provide a systematic approach to test the processor based
on the model.

This paper presents a unified approach to test normal and
bypassing/forwarding paths in the datapath by using a graph model
of the behavior of the datapath and the controller. A hierarchical
approach is presented for the test generation, which classifies paths
at RT level and extract constraints for potentially testable paths to
generate test vectors at gate level using constrained ATPG. Path
delay fault model [7] is used in this work.

Unlike a non-pipelined processor, in which one instruction must
finish execution before the execution of the next instruction, in a
pipelined processor multiple instructions can be in various stages of
execution. This makes its behavior more complex. These stages can
be viewed as independent hardware units and all the stages execute
instructions concurrently. In order to support concurrent execution
of instructions, necessary data and control signals are carried along
as an instruction progresses in the pipeline stages. Simultaneous
execution of multiple instructions can lead to data, control and
structural hazards. Data bypassing is a commonly used technique to
resolve data hazards and stalling is used for the unresolved hazards.
Data flows from the first pipeline stage to the last pipeline stage
during the normal execution (without any hazard). It is very
difficult to separate datapath and controller part in a pipelined
processor as every pipeline stage carries all the data and control

This work was supported in part by Semiconductor Technology
Academic Research Center (STARC) under the Research Project and in
part by Japan Society for the Promotion of Science (JSPS) under Grants-in-
Aid for Scientific Research B (2) (No. 15300018).

56860-7803-8834-8/05/$20.00 ©2005 IEEE.

2005 IEEE International Symposium on Circuits and Systems (ISCAS 2005) , pp.5686-5689, May 2005.

signals required by the pipeline stages ahead of it. Nonetheless, our
model defines them clearly, yet for testing the paths in the datapath
part and the control part are treated separately. The data transfer
activities between the architectural registers and data and address
(memory address and register address) part of the pipeline registers
are assumed be in the datapath and the remaining paths are
considered in the control part.

A graph theoretic model called pipeline instruction execution
graph (PIEG), has been developed that is constructed by using
instruction set architecture and RT level description. It is based on
instruction execution graph (IE-Graph) introduced by us in [5,6],
and similar work in [1] for non-pipelined processors. Our present
model classifies paths as functionally testable (FTP), functionally
untestable (FUTP), potentially functionally testable (PFTP), and
parity check functionally untestable (PCFTP). After the
classification, it extracts constraints for the PFTP and PCFTP
paths. First, constraints on the control signals in one or more
relevant pipeline stages are extracted and then the constraints on
justifiable data in the data registers or pipeline registers under the
control constraints are extracted. PCFTPs are further classified
FUTPs or PFTPs. A combinational constrained ATPG is used for
the test vector generation for the PFTPs. We can get test sequences
without using ATPG for FTPs, and test sequence is not needed for
FUTPs. For testing the controller, the constraints on the legitimate
values for a group of control signals are extracted by using RT
level description. PIEG is used along with these constraints for
further extraction of control and data constraints for target control
paths, and their classification. Constraint ATPG is used to generate
the test vectors. Finally, an instruction sequence to apply the
generated test vectors, is generated by using the knowledge of the
control signals of various pipeline stages and the PIEG.

III. DATAPATH
In this section we consider the paths that are responsible to

transfer data between architectural registers or data and address
between pipeline registers, which are significant in number. Other
paths are considered in the control part. Datapath of a pipelined
processor can be modeled by PIEG which captures the pipeline
behavior, and is used for constraint extraction, path classification,
and instruction sequence generation. Nodes of the PIEG are: (i)
registers, (ii) part of registers which can be independently readable
and writeable, (iii) equivalent registers (set of registers which
behave identically for all instructions, like register file), (iv) two
special nodes, IN and OUT, which model the external world such
as memory and IO devices, and (v) data and address (memory
address and register address) part of pipeline registers. A directed
edge is drawn between two nodes iff there exists at least one
instruction responsible to transfer data (with or without
manipulation) between the corresponding two registers. Each edge
is marked with a 4-tuple [<instruction set>, <stage from, stage to>,
<distance>, <logic type>]. This 4-tuple signifies that the
instructions from the <instruction set> are responsible for the
transfer of data from <stage from> to <stage to> through the logic
specified by <logic type>, and the pair of instructions for delay
testing must be separated by the number of cycles specified by the
<distance>. Informally, the number of pipeline stages bypassed by
a path is referred to as distance.

We use our 16 bit, 5 stage pipelined processor VPRO design
[9], which has 24 instructions as an example processor to explain
the concepts. A partial PIEG of VPRO is shown in Figure 1, and
complete PIEG and other details are given in [9].

Logic classification for <logic type> was based on our
observation that many paths directly transfer data to the next stage
using simple interconnects or through multiplexers. Keeping this in

mind we classified logic into three types, namely interconnect (I),
multiplexers (M), and processing logic (L). This classification
simplifies the test generation process.

[<I2-21>,<mem,id>,2,M]

 [<I2-21>,<ex,id>,1,L]

RF S1 ALO

 [<I2-21>,<id,id>,0,M] [<I2-21>,<ex,ex>,0,L]

Instructions, which have identical behavior in a given stage,

are defined as equivalent instructions for that stage. For example,
ADD and INC are the equivalent instructions in the EX stage of
the VPRO processor. We can use these equivalent instructions to
reduce the cardinality of the instruction set marked on each edge,
which in turn reduce the constraint extraction and test generation
effort.

Figure 1 Partial PIEG of VPRO processor

We assume that any instruction can be followed by any other
instruction in a pipeline stage with the exception of those
instructions, which always need stall after the execution, such as
unconditional jumps.

To test a path from a register Ri to a register Ro, we must
create a transition at Ri and capture the transferred data at Ro. We
need two data transfers to Ri to make a transition at Ri, and one
data transfer from Ri to Ro along the target path. Though there may
be a bypass/forwarding path (with one or more distance) to Ri,
there must be another normal path (zero distance path) which
brings the same values as the bypass path, and hence we only
consider the normal path for data transfer to Ri. We also allow the
propagation of data to Ro through normal paths except from Ri.

In order to generate the test vectors to be applied in functional
mode, we need to extract architectural constraints. There are two
types of constraints, i) control constraints, ii) data constraints.
Control constraints are the constraints on control signals, which are
responsible to transfer data between two nodes. These are obtained
from PIEG. Data constraints are the constraints on justifiable data
under the control constraints.

Ri Ro

Sj

A path from register Ri to register Ro, marked with [<Iset>,
<Sj, Si>, d, LT], where LT∈{I, M, L}, can be tested by a test
instruction sequence IP1, IP2, ID1, ID2, ……I_Dd-2, IS1, and IS2. To
test a path we need constraints for both stages Sj and Si in two
consecutive cycles (see Fig. 2). Instruction pair IP1, IP2 creates a
transition at register Ri and allows it to propagate in Sj stage, hence
provide the control constraints for the stage Sj. Instruction pair IS1,
IS2 propagates it in Si stage and finally instruction IS2 latches the
result in register Ro; hence provide the control constraints for the
stage Si. Other instructions ID1, ……IDd-2 are dummy instructions
between IP2 and IS1 to excite the path. Though there may be
another data from another stage (ex. data from S’ in Fig. 2), we
assume that such data is transferred through a MUX and does not
affect data transfer along the target path. Therefore, ATPG does
not care these values and we do not need to extract their constraints.

Si S’

Figure 2 Target path and pipeline stages

5687

Control constraints are extracted as instruction pairs (IP1, IP2) and
(IS1, IS2). Instruction pair (IP1, IP2) must be marked on any zero
distance (d = 0) in-edge of Ri and instruction pair (IS1, IS2) must be
marked on the target path (edge between Ri and Ro). Note that IP2
= IS1 if d=1, and IP1 = IS1 and IP2 = IS2 if d=0.

Data Constraints for the three different logic types are extracted as
follows:
(1) when logic type is interconnect ‘I’:

These paths are generally used to carry data to the next stage
and always have zero distance (d = 0). Ro has only one edge, and
that is from Ri; hence, it will not observe any data constraint.
These paths can always be tested as interconnects test, therefore
they are classified as FTP.
(2) when logic type is multiplexer ‘M’:

These paths pass through a set of MUXs and behave as
interconnects if control signals are properly assigned. Therefore,
under the control constraints (proper assignment of MUX select
signals), data constraints are not applicable, as other paths to Ro
will automatically be disintegrated with the proper assignment of
MUXs control signals.

These paths are classified as FUTP if these are marked with
d=1 and have a self-loop because a transition cannot be launched.
Otherwise, paths are classified as FTP and these paths can be
tested as interconnect test.
 (3) when logic type is processing logic ‘L’:

This includes the paths which pass through the combinational
logic. Let an edge between two registers Ri and Ro be marked with
[<Iset1>, <Sj, Si>, d, L>]. Following edges and registers must be
considered: i) All the in-edges to Ro with distance d and logic type
‘L’ (having some instructions common with Iset1), ii) all the in-
edges to Ro with zero distance, logic type ‘L’, and have some
instruction common with Iset1, iii) all the zero distance (d=0) in-
edges to Ri.

All those registers which have out-edge to Ro (with distance d
(same as target path distance), logic type ‘L’, and some instruction
common with the target path) provide the data constraints for the
propagation of created transition in Sj stage. All those registers
which have out-edge to Ro (with zero distance, logic type ‘L’, and
have some instruction common with the target path) provide data
constraints for the propagation of the created transition in Si stage.
Figure 3 shows the edges and nodes which are needed to be
considered. Note that Iset1 ∩ Iset2 ≠ φ, Iset1 ∩ Iset3 ≠ φ.

We consider different distance cases separately:
when d = 0 (Normal paths inside a pipeline stage):
We have to find out the data constraints for all those registers
which have zero distance (d=0) in-edge to Ro with logic type ‘L’
using PIEG and RTL description. Let Ro has an in-edge from
register Rp which is marked with common instructions with the
target edge.If selected instrcution IS2 is not marked on any of zero
distance in-edge of Rp, then Rp must have constant value across
two time frames (under IS1 and IS2). Otherwise, the register Rp do
not observe any data constraints.

when d = 1 (paths across the pipeline stages, i.e. forwarding paths)
(a) Paths from bit i to bit i of register Ri in case of self-loop

These paths can be functionally testable only when there is
odd inversion parity exists in the path; otherwise, these paths
are functionally untestable. These paths are declared as
PFTUP. Many paths of such kind exist in the circuit, such as
paths in the pass logic of ALU, paths in shifter, paths in logic
operation block of ALU etc.

Constraints must be extracted for the registers which have
unity delay edge to Ro under IP1 and IS1 instructions, and for
register which has zero distance edge to Ro under IS1 and IS2
instructions, as explained in d = 0 case.

(b) For other cases, paths are PFTP and data constraints can be
obtained as stated above.

Similarly, constraints can be obtained for d >1 case. Details are
given in [9].

Inversion parity test program is used to further classify PCFTP
paths into FUTP or PFTP. The above stated classification can also
be used to simplify the circuit for ATPG. Constraint ATPG is used
for test vector generation for all the PFTP paths by using extracted
constraints.

IV. CONTROLLER
In order to execute an instruction, the instruction is decoded by

the decode unit (in decode stage) which dispatches control signals
along with the required data for the pipeline stages ahead.
Therefore, each pipeline stage does have control signals that are
not structured in nature but often form a small group. In our
approach, small grouping is used to find constraints. Therefore, we
need to extract two types of constraints: i) constraints on the
legitimate value of the group of control signals, ii) constraints on
inter group signals in a pipeline stage.
(i) Constraints on the legitimacy of signals: Every possible value

of a small group of signals is not valid. Therefore, we need to
extract all the legitimate values. For example, comparator
control (comp_ctrl) signals in VPRO are grouped in a group
of 3 bits, and legitimate values are <0XX, 10X, and 110>.

(ii) Constraints on inter group signals: We extract these
constraints in terms of instructions, i.e., map to the instruction
which can generate the particular combination and all possible
combinations are extracted. For example, in VPRO when
ALU ctrl (alu_ctrl) signal is 0000 the comparator control
(comp_ctrl) signal must be 000. Here onwards we will discuss
how we can use these constraints for the test generation.

The part of a pipeline register, which carries the control signals is
called control register. There are paths between control register
(CR) to control register, control register to data register (DR), or
data register (such as IR) to control register. The paths between
CR-to-CR are used to carry the control signals for the pipeline
stages ahead. These paths are connected directly and can be tested
as interconnects. Paths from CR to DR are the paths which pass
through the combinational logic. We construct a table which shows
the transition at some bit in CR with instructions after exclusion of
equivalent instructions.

[<Iset1>, <Sj, Si>, d, L][<Iset4>, <Sk, Sk>, 0, L/M/I]
Ri Ro

[<Iset2>, <Si, Si>, 0, L]

Rp
Rq [<Iset3>, <Sj, Si>, d, L]

Figure 3 Edge consideration for constraint extraction
Let there be a path between a bit i of control register Ci, and data
register Ro. Constraints can be extracted in the following manner:
(i) when Ci and Ro are in the same stage:

It needs an instruction sequence of two instructions (IS1, IS2).
The instruction pairs that can produce a transition at bit i and
also marked on the in-edge of the register Ro can be the test
instructions (IS1, IS2). All the data registers that have zero
distance out edge to Ro (have some common instructions with
the selected potential instruction pairs) are needed to check for
data constraints. Data constraints can be obtained in the same
way as we obtain for datapath.

5688

(ii) when Ci and Ro are in different stages:
Instruction sequence (IP1, IP2, ID1, ……IDd-2, IS1, IS2) is

needed to apply test vector. The instructions which can produce
the transition at bit i of Ci can act as IP1, IP2. Constraints on the
registers which have out-edge to Ro (with distance = d) must be
considered under IP1, and IP2. The instructions which are marked
on the in-edge of Ro (with distance = d) can act as IS1, IS2, and
data constraints on those registers which have zero distance out-
edge to Ro must be considered under the control constraints of
IS1, IS2 instructions.

V.

VI.

TEST INSTRUCTION SEQUENCE GENERATION
The generated test vector pairs as explained above are assigned

to control signals and registers. A sequence of instructions is
needed to apply these test vectors. A sequence of instructions
which is responsible to launch the transition, propagate the
launched transition, and latch the result, provided that desired data
are available in the appropriate registers, is called test instruction
sequence. These data are made available by the justification
instruction sequence. Finally, the result must be transferred to
memory by a sequence of instructions called observation sequence.

It is clear from the earlier discussion that if an edge between
registers Ri and Ro is marked [<Iset>, <Sj, Si>, d, LT], then we need
a test instruction sequence (IP1, IP2, ID1, ……IDd-2, IS1, IS2) to
apply the test vectors provided that test vectors are available in
desired registers. Instructions IP1 (when d > 0) and IP2 (when d > 1)
are decided by the control signals of the stage Sj, and instructions
IS1 and IS2 are decided by the control signals of Si stage. If there are
more than one potential candidates for these instructions then we
must select easy to observe instruction (such as STORE) for IS2,
and easy to justify instruction for the rest. Once IP1, IP2, IS1, IS2
instructions are decided, we fill the rest of the instructions by NOP
instructions, but these can be later on replaced by the justification
instruction for IS1 and IS2 to reduce the number of instructions.

EXPERIMENTAL RESULTS
VPRO processor was synthesized using 2345 gates and 268

sequential elements, and pipelined DLX processor [8] was
synthesized with 34,347 gates and 1898 sequential elements.
Complete PIEGs for both the processors are constructed by using
instruction set architecture and RT level description. Note that the
PIEG is extracted manually in this work but this can be automated.

VII.

PIEG is used for the constraint extraction and the path
classification. A constrained ATPG is developed for delay faults as
commercially available ATPG doesn’t handle the required
constraints. Results for VPRO and DLX processors for the Non
Robust (NR) and Functional Sensitizable (FS) [7] tests are shown in
the Tables 1 and 2 respectively. Less than 1% paths are classified as
PCFTP which are further classified as FUTP. The results show that
only a small number (about 24%) of paths are functionally testable.
However, we achieve 100% fault efficiency.

CONCLUSION
A systematic approach for the delay fault testing of a pipelined

processor cores using their instruction set has been presented. A
graph theoretical model has been developed to model the complex
pipeline behavior. This model can efficiently extract the constraints
under which a processor can be tested. This model also assists the
test instruction sequence generation process. Some paths can be
declared as functionally untestable paths at the early stage. We

would like to extend this model for the more complex processors
such as super-scalar architecture in future.

Table 1 Results for VPRO processor

Datapath Controller

NR FS NR FS

No. of paths 112,752 112,752 98,786 98,786

No. of faults 225,504 225,504 197,572 197,572

No. of functionally
testable paths

32,134 52,092 27,512 42,282

No. of functionally
untestable paths

193,370 173,412 170,060 155,290

Fault coverage (%) 14.2 23.1 13.9 21.4

Fault efficiency (%) 100 100 100 100

Table 2 Results for pipelined DLX processor

Datapath Controller

NR FS NR FS

No. of paths 372,459 372,459 190,542 190,542

No. of faults 744,918 744,918 381,084 381,084

No. of functionally
testable paths

148,718 185,247 57,502 89,974

No. of functionally
untestable paths

596,200 559,671 323,582 291,110

Fault coverage (%) 19.9 24.8 15.0 23.6

Fault efficiency (%) 100 100 100 100

REFERENCES
[1] S.M. Thatte and J. Abraham, “Test generation for Microprocessors”,

IEEE Trans. on Computers, Vol. C-29, No.6, June 1980, pp. 429-441.
[2] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable Software-

Based Self-Test Methodology for Programmable Processors”, Proc.
of the Design Automation Conference 2003, pp. 548-553.

[3] N .Kranitis, G. Xenoulis, A. Paschalis, D. Gizopolous, Y. Zorian,
“Application and Analysis of RT-Level Software-Based Self-Testing
for Embedded Processor Cores”, Proc. of International Test
Conference, 2003, pp 431-440.

[4]. W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test Program Synthesis for
Path Delay Faults in Microprocessor Cores”, Proc. of International
Test Conference 2000, pp 1080-1089.

[5] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara, “Instruction-Based
Delay Fault Testing of Processor Cores”, Proc. of the International
Conference on VLSI Design 2004, pp 933-938.

[6] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara, “Delay Fault
Testing of Processor Cores in Functional Mode”, IEICE Trans. on
Information & Systems, Vol. E-88D, No. 3, pp 1-9.

[7]. A. Krstic and K.-T. Cheng, Delay fault testing for VLSI circuits,
Kluwer Academic Publishers, 1998.

[8] J.L. Hennesy, and D.A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, 1996.

[9] V. Singh, M. Inoue, K.K. Saluja, and H. Fujiwara, “Instruction-Based
Delay Fault Self-Testing of Pipelined Processor Cores”, NAIST
Technical report. http://isw3.aist-nara.ac.jp/IS/TechReport/2004006.

5689

