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Abstract—Although nearly all modern processors use pipelined 
architecture, yet no method has been proposed in literature to 
model these for the purpose of test generation. This paper 
proposes a graph theoretic model of pipelined processors and 
develops a systematic approach to delay fault testing of such 
processor cores using the processor instruction set. Our 
methodology consists of using a graph model of the pipelined 
processor, extraction of architectural constraints, classification 
of paths, and generation of tests using a constrained ATPG.  
These tests are then converted to a test program, a sequence of 
instructions, for testing the processor. Thus, the tests generated 
by our method can be applied in functional mode of operation 
and can also be used for self-test. We applied our method to 
two example processors, namely a 16 bit five stage VPRO 
pipelined processor and a 32 bit pipelined DLX processor, to 
demonstrate the effectiveness of our methodology. 

I. 

II. 

INTRODUCTION 
In modern high performance processors, it is no longer 

sufficient to target conventional stuck-at faults, instead delay faults 
and cross talk faults are becoming increasing important. At-speed 
testing using external tester is almost infeasible because of its 
inherent accuracy limitation and cost. Due to the need of design 
change, possibility of excessive power consumption, and high area 
and performance overhead, hardware-based self-test (BIST) is also 
not a feasible solution. Software-Based Self-Test (SBST) is an 
alternate to BIST which uses processor instructions and 
functionality in order to test processor core in functional mode.  

A number of approaches have been proposed for testing non-
pipelined processors targeting stuck-at faults but a very few [2,3] 
approaches have been proposed to test pipelined processors. Chen 
[2] proposed a template based methodology, whereas Kranitis[3] 
proposed an approach which  targets functional blocks. Though 
pipelined processors are studied in [2,3], the pipelined behavior is 
not considered, instead the focus is on functional blocks; and also 
faults in the controller are not explicitly addressed. Researchers in 
[4,5,6] proposed SBST approaches targeting delay faults for non-
pipelined processors. However, Lai’s [4] approach does not provide 
details about testing the controller, whereas [5, 6] provide an 
efficient graph theoretic model based approach, it is also limited to 
non-pipelined processors, though it can handle architectural 
registers and an FSM based controller.  

The paper is organized as follows. Section II lists the 
contributions of this paper and describes an overview of our 
methodology. Section III and IV describe the test generation 
methods for datapath and controller. Section V describes the 
instruction sequence generation process. Section VI presents 
experimental results to demonstrate the effectiveness our 
methodology, and finally we conclude with section VII.  

CONTRIBUIONS AND OVERVIEW OF THE PROPOSED 
APPROACH 

To the best of our knowledge, no approach has been proposed 
in literature for testing pipelined processors and targeting delay 
faults. We believe this is the first work towards modeling of 
pipeline behavior for testing of a microprocessor in functional mode. 

The main contributions of this work are: 

1. Develop a graph theoretic model for pipeline behavior 
using the RT level description of the processor, 

2. Provide a systematic approach to test the processor based 
on the model.  

This paper presents a unified approach to test normal and 
bypassing/forwarding paths in the datapath by using a graph model 
of the behavior of the datapath and the controller. A hierarchical 
approach is presented for the test generation, which classifies paths 
at RT level and extract constraints for potentially testable paths to 
generate test vectors at gate level using constrained ATPG. Path 
delay fault model [7] is used in this work. 

Unlike a non-pipelined processor, in which one instruction must 
finish execution before the execution of the next instruction, in a 
pipelined processor multiple instructions can be in various stages of 
execution. This makes its behavior more complex. These stages can 
be viewed as independent hardware units and all the stages execute 
instructions concurrently. In order to support concurrent execution 
of instructions, necessary data and control signals are carried along 
as an instruction progresses in the pipeline stages. Simultaneous 
execution of multiple instructions can lead to data, control and 
structural hazards. Data bypassing is a commonly used technique to 
resolve data hazards and stalling is used for the unresolved hazards. 
Data flows from the first pipeline stage to the last pipeline stage 
during the normal execution (without any hazard). It is very 
difficult to separate datapath and controller part in a pipelined 
processor as every pipeline stage carries all the data and control 
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signals required by the pipeline stages ahead of it. Nonetheless, our 
model defines them clearly, yet for testing the paths in the datapath 
part and the control part are treated separately. The data transfer 
activities between the architectural registers and data and address 
(memory address and register address) part of the pipeline registers 
are assumed be in the datapath and the remaining paths are 
considered in the control part.  

A graph theoretic model called pipeline instruction execution 
graph (PIEG), has been developed that is constructed by using 
instruction set architecture and RT level description. It is based on 
instruction execution graph (IE-Graph) introduced by us in [5,6], 
and similar work in [1] for non-pipelined processors.  Our present 
model classifies paths as functionally testable (FTP), functionally 
untestable (FUTP), potentially functionally testable (PFTP), and 
parity check functionally untestable (PCFTP). After the 
classification, it extracts constraints for the PFTP and PCFTP 
paths. First, constraints on the control signals in one or more 
relevant pipeline stages are extracted and then the constraints on 
justifiable data in the data registers or pipeline registers under the 
control constraints are extracted. PCFTPs are further classified 
FUTPs or PFTPs. A combinational constrained ATPG is used for 
the test vector generation for the PFTPs. We can get test sequences 
without using ATPG for FTPs, and test sequence is not needed for 
FUTPs. For testing the controller, the constraints on the legitimate 
values for a group of control signals are extracted by using RT 
level description. PIEG is used along with these constraints for 
further extraction of control and data constraints for target control 
paths, and their classification. Constraint ATPG is used to generate 
the test vectors. Finally, an instruction sequence to apply the 
generated test vectors, is generated by using the knowledge of the 
control signals of various pipeline stages and the PIEG. 

III. DATAPATH 
In this section we consider the paths that are responsible to 

transfer data between architectural registers or data and address 
between pipeline registers, which are significant in number. Other 
paths are considered in the control part. Datapath of a pipelined 
processor can be modeled by PIEG which captures the pipeline 
behavior, and is used for constraint extraction, path classification, 
and instruction sequence generation. Nodes of the PIEG are: (i) 
registers, (ii) part of registers which can be independently readable 
and writeable, (iii) equivalent registers (set of registers which 
behave identically for all instructions, like register file), (iv) two 
special nodes, IN and OUT, which model the external world such 
as memory and IO devices, and (v) data and address (memory 
address and register address) part of pipeline registers. A directed 
edge is drawn between two nodes iff there exists at least one 
instruction responsible to transfer data (with or without 
manipulation) between the corresponding two registers. Each edge 
is marked with a 4-tuple [<instruction set>, <stage from, stage to>, 
<distance>, <logic type>]. This 4-tuple signifies that the 
instructions from the <instruction set> are responsible for the 
transfer of data from <stage from> to <stage to> through the logic 
specified by <logic type>, and the pair of instructions for delay 
testing must be separated by the number of cycles specified by the 
<distance>. Informally, the number of pipeline stages bypassed by 
a path is referred to as distance. 

We use our 16 bit, 5 stage pipelined processor VPRO design 
[9], which has 24 instructions as an example processor to explain 
the concepts. A partial PIEG of VPRO is shown in Figure 1, and 
complete PIEG and other details are given in [9]. 

Logic classification for <logic type> was based on our 
observation that many paths directly transfer data to the next stage 
using simple interconnects or through multiplexers. Keeping this in 

mind we classified logic into three types, namely interconnect (I), 
multiplexers (M), and processing logic (L). This classification 
simplifies the test generation process. 
 

[<I2-21>,<mem,id>,2,M]  
 
 [<I2-21>,<ex,id>,1,L] 
 
 

RF S1 ALO 

 [<I2-21>,<id,id>,0,M] [<I2-21>,<ex,ex>,0,L] 
 

 
Instructions, which have identical behavior in a given stage, 

are defined as equivalent instructions for that stage. For example, 
ADD and INC are the equivalent instructions in the EX stage of 
the VPRO processor. We can use these equivalent instructions to 
reduce the cardinality of the instruction set marked on each edge, 
which in turn reduce the constraint extraction and test generation 
effort.  

Figure 1 Partial PIEG of VPRO processor 

We assume that any instruction can be followed by any other 
instruction in a pipeline stage with the exception of those 
instructions, which always need stall after the execution, such as 
unconditional jumps. 

To test a path from a register Ri to a register Ro, we must 
create a transition at Ri and capture the transferred data at Ro. We 
need two data transfers to Ri to make a transition at Ri, and one 
data transfer from Ri to Ro along the target path. Though there may 
be a bypass/forwarding path (with one or more distance) to Ri, 
there must be another normal path (zero distance path) which 
brings the same values as the bypass path, and hence we only 
consider the normal path for data transfer to Ri. We also allow the 
propagation of data to Ro through normal paths except from Ri. 

In order to generate the test vectors to be applied in functional 
mode, we need to extract architectural constraints. There are two 
types of constraints, i) control constraints, ii) data constraints. 
Control constraints are the constraints on control signals, which are 
responsible to transfer data between two nodes. These are obtained 
from PIEG. Data constraints are the constraints on justifiable data 
under the control constraints. 

 
 
 
 
 
 
 

Ri Ro

Sj

 
 

A path from register Ri to register Ro, marked with [<Iset>, 
<Sj, Si>, d, LT], where LT∈{I, M, L}, can be tested by a test 
instruction sequence IP1, IP2, ID1, ID2, ……I_Dd-2, IS1, and IS2. To 
test a path we need constraints for both stages Sj and Si in two 
consecutive cycles (see Fig. 2). Instruction pair IP1, IP2 creates a 
transition at register Ri and allows it to propagate in Sj stage, hence 
provide the control constraints for the stage Sj. Instruction pair IS1, 
IS2 propagates it in Si stage and finally instruction IS2 latches the 
result in register Ro; hence provide the control constraints for the 
stage Si. Other instructions ID1, ……IDd-2 are dummy instructions 
between IP2 and IS1 to excite the path. Though there may be 
another data from another stage (ex. data from S’ in Fig. 2), we 
assume that such data is transferred through a MUX and does not 
affect data transfer along the target path. Therefore, ATPG does 
not care these values and we do not need to extract their constraints. 

Si S’ 

Figure 2 Target path and pipeline stages 
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Control constraints are extracted as instruction pairs (IP1, IP2) and 
(IS1, IS2). Instruction pair (IP1, IP2) must be marked on any zero 
distance (d = 0) in-edge of Ri and instruction pair (IS1, IS2) must be 
marked on the target path (edge between Ri and Ro). Note that IP2 
= IS1 if d=1, and IP1 = IS1 and IP2 = IS2 if d=0. 

 
Data Constraints for the three different logic types are extracted as 
follows: 
(1) when logic type is interconnect ‘I’: 

These paths are generally used to carry data to the next stage 
and always have zero distance (d = 0). Ro has only one edge, and 
that is from Ri; hence, it will not observe any data constraint. 
These paths can always be tested as interconnects test, therefore 
they are classified as FTP. 
(2) when logic type is multiplexer ‘M’: 

These paths pass through a set of MUXs and behave as 
interconnects if control signals are properly assigned. Therefore, 
under the control constraints (proper assignment of MUX select 
signals), data constraints are not applicable, as other paths to Ro 
will automatically be disintegrated with the proper assignment of 
MUXs control signals.  

These paths are classified as FUTP if these are marked with 
d=1 and have a self-loop because a transition cannot be launched. 
Otherwise, paths are classified as FTP and these paths can be 
tested as interconnect test.  
 (3)  when logic type is processing logic ‘L’: 

This includes the paths which pass through the combinational 
logic. Let an edge between two registers Ri and Ro be marked with 
[<Iset1>, <Sj, Si>, d, L>]. Following edges and registers must be 
considered: i) All the in-edges to Ro with distance d and logic type 
‘L’ (having some instructions common with Iset1), ii) all the in-
edges to Ro with zero distance, logic type ‘L’, and have some 
instruction common with Iset1, iii) all the zero distance (d=0) in-
edges to Ri. 

All those registers which have out-edge to Ro (with distance d 
(same as target path distance), logic type ‘L’, and some instruction 
common with the target path) provide the data constraints for the 
propagation of created transition in Sj stage. All those registers 
which have out-edge to Ro (with zero distance, logic type ‘L’, and 
have some instruction common with the target path) provide data 
constraints for the propagation of the created transition in Si stage. 
Figure 3 shows the edges and nodes which are needed to be 
considered. Note that Iset1 ∩ Iset2 ≠ φ, Iset1 ∩ Iset3 ≠ φ.   

 
 

 
 
 
 
 
 
 
 
 
 
We consider different distance cases separately: 
when d = 0 (Normal paths inside a pipeline stage): 
We have to find out the data constraints for all those registers 
which have zero distance (d=0) in-edge to Ro with logic type ‘L’ 
using PIEG and RTL description. Let Ro has an in-edge from 
register Rp which is marked with common instructions with the 
target edge.If selected instrcution IS2 is not marked on any of zero 
distance in-edge of Rp, then Rp must have constant value across 
two time frames (under IS1 and IS2). Otherwise, the register Rp do 
not observe any data constraints. 

when d = 1 (paths across the pipeline stages, i.e. forwarding paths) 
(a) Paths from bit i to bit i of register Ri in case of self-loop 

These paths can be functionally testable only when there is 
odd inversion parity exists in the path; otherwise, these paths 
are functionally untestable. These paths are declared as 
PFTUP. Many paths of such kind exist in the circuit, such as 
paths in the pass logic of ALU, paths in shifter, paths in logic 
operation block of ALU etc.  

Constraints must be extracted for the registers which have 
unity delay edge to Ro under IP1 and IS1 instructions, and for 
register which has zero distance edge to Ro under IS1 and IS2 
instructions, as explained in d = 0 case. 

(b)  For other cases, paths are PFTP and data constraints can be 
obtained as stated above. 

Similarly, constraints can be obtained for d >1 case. Details are 
given in [9].  

Inversion parity test program is used to further classify PCFTP 
paths into FUTP or PFTP. The above stated classification can also 
be used to simplify the circuit for ATPG. Constraint ATPG is used 
for test vector generation for all the PFTP paths by using extracted 
constraints. 

IV. CONTROLLER 
In order to execute an instruction, the instruction is decoded by 

the decode unit (in decode stage) which dispatches control signals 
along with the required data for the pipeline stages ahead. 
Therefore, each pipeline stage does have control signals that are 
not structured in nature but often form a small group. In our 
approach, small grouping is used to find constraints. Therefore, we 
need to extract two types of constraints: i) constraints on the 
legitimate value of the group of control signals, ii) constraints on 
inter group signals in a pipeline stage. 
(i)    Constraints on the legitimacy of signals: Every possible value 

of a small group of signals is not valid. Therefore, we need to 
extract all the legitimate values. For example, comparator 
control (comp_ctrl) signals in VPRO are grouped in a group 
of 3 bits, and legitimate values are <0XX, 10X, and 110>. 

(ii) Constraints on inter group signals: We extract these 
constraints in terms of instructions, i.e., map to the instruction 
which can generate the particular combination and all possible 
combinations are extracted.  For example, in VPRO when 
ALU ctrl (alu_ctrl) signal is 0000 the comparator control 
(comp_ctrl) signal must be 000. Here onwards we will discuss 
how we can use these constraints for the test generation. 

The part of a pipeline register, which carries the control signals is 
called control register. There are paths between control register 
(CR) to control register, control register to data register (DR), or 
data register (such as IR) to control register. The paths between 
CR-to-CR are used to carry the control signals for the pipeline 
stages ahead. These paths are connected directly and can be tested 
as interconnects. Paths from CR to DR are the paths which pass 
through the combinational logic. We construct a table which shows 
the transition at some bit in CR with instructions after exclusion of 
equivalent instructions.  

[<Iset1>, <Sj, Si>, d, L][<Iset4>, <Sk, Sk>, 0, L/M/I] 
Ri Ro

[<Iset2>, <Si, Si>, 0, L] 

Rp 
Rq [<Iset3>, <Sj, Si>, d, L]

Figure 3 Edge consideration for constraint extraction  
Let there be a path between a bit i of control register Ci, and data 
register Ro. Constraints can be extracted in the following manner: 
(i) when  Ci and Ro are in the same stage: 

It needs an instruction sequence of two instructions (IS1, IS2). 
The instruction pairs that can produce a transition at bit i and 
also marked on the in-edge of the register Ro can be the test 
instructions  (IS1, IS2). All the data registers that have zero 
distance out edge to Ro (have some common instructions with 
the selected potential instruction pairs) are needed to check for 
data constraints.  Data constraints can be obtained in the same 
way as we obtain for datapath. 
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(ii) when Ci and Ro are in different stages: 
Instruction sequence (IP1, IP2, ID1, ……IDd-2, IS1, IS2) is 

needed to apply test vector. The instructions which can produce 
the transition at bit i of Ci can act as IP1, IP2. Constraints on the 
registers which have out-edge to Ro (with distance = d) must be 
considered under IP1, and IP2. The instructions which are marked 
on the in-edge of Ro (with distance = d) can act as IS1, IS2, and 
data constraints on those registers which have zero distance out-
edge to Ro must be considered under the control constraints of 
IS1, IS2 instructions.  

V. 

VI. 

TEST INSTRUCTION SEQUENCE GENERATION 
The generated test vector pairs as explained above are assigned 

to control signals and registers. A sequence of instructions is 
needed to apply these test vectors. A sequence of instructions 
which is responsible to launch the transition, propagate the 
launched transition, and latch the result, provided that desired data 
are available in the appropriate registers, is called test instruction 
sequence. These data are made available by the justification 
instruction sequence. Finally, the result must be transferred to 
memory by a sequence of instructions called observation sequence. 

It is clear from the earlier discussion that if an edge between 
registers Ri and Ro is marked [<Iset>, <Sj, Si>, d, LT], then we need 
a test instruction sequence (IP1, IP2, ID1, ……IDd-2, IS1, IS2) to 
apply the test vectors provided that test vectors are available in 
desired registers. Instructions IP1 (when d > 0) and IP2 (when d > 1) 
are decided by the control signals of the stage Sj, and instructions 
IS1 and IS2 are decided by the control signals of Si stage. If there are 
more than one potential candidates for these instructions then we 
must select easy to observe instruction (such as STORE) for IS2, 
and easy to justify instruction for the rest. Once IP1, IP2, IS1, IS2 
instructions are decided, we fill the rest of the instructions by NOP 
instructions, but these can be later on replaced by the justification 
instruction for IS1 and IS2 to reduce the number of instructions.  

EXPERIMENTAL RESULTS 
VPRO processor was synthesized using 2345 gates and 268 

sequential elements, and pipelined DLX processor [8] was 
synthesized with 34,347 gates and 1898 sequential elements.  
Complete PIEGs for both the processors are constructed by using 
instruction set architecture and RT level description. Note that the 
PIEG is extracted manually in this work but this can be automated.  

VII. 

PIEG is used for the constraint extraction and the path 
classification. A constrained ATPG is developed for delay faults as 
commercially available ATPG doesn’t handle the required 
constraints.  Results for VPRO and DLX processors for the Non 
Robust (NR) and Functional Sensitizable (FS) [7] tests are shown in 
the Tables 1 and 2 respectively. Less than 1% paths are classified as 
PCFTP which are further classified as FUTP. The results show that 
only a small number (about 24%) of paths are functionally testable. 
However, we achieve 100% fault efficiency.  

CONCLUSION 
A systematic approach for the delay fault testing of a pipelined 

processor cores using their instruction set has been presented. A 
graph theoretical model has been developed to model the complex 
pipeline behavior. This model can efficiently extract the constraints 
under which a processor can be tested. This model also assists the 
test instruction sequence generation process. Some paths can be 
declared as functionally untestable paths at the early stage. We 

would like to extend this model for the more complex processors 
such as super-scalar architecture in future. 

Table 1 Results for VPRO processor 

Datapath Controller  

NR FS NR FS 

No. of paths 112,752 112,752 98,786 98,786

No. of faults 225,504 225,504 197,572 197,572

No. of functionally 
testable paths 

32,134 52,092 27,512 42,282

No. of functionally 
untestable paths 

193,370 173,412 170,060 155,290

Fault coverage (%) 14.2 23.1 13.9 21.4

Fault efficiency (%) 100 100 100 100

Table 2 Results for pipelined DLX processor 

Datapath Controller  

NR FS NR FS 

No. of paths 372,459 372,459 190,542 190,542

No. of faults 744,918 744,918 381,084 381,084

No. of functionally 
testable paths 

148,718 185,247 57,502 89,974

No. of functionally 
untestable paths 

596,200 559,671 323,582 291,110

Fault coverage (%) 19.9 24.8 15.0 23.6

Fault efficiency (%) 100 100 100 100
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