
A Functional Test Method for State Observable FSMs

Toshinori Hosokawa† and Hideo Fujiwara‡

†College of Industrial Technology, Nihon University
 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan

‡Graduate School of Information Science, Nara Institute of Science and Technology (NAIST)
8916-5, Takayama, Ikoma, Nara 630-0192, Japan

E-mail: † t7hosoka@cit.nihon-u.ac.jp, ‡fujiwara@is.naist.jp

Abstract

Scan testing is the most popular test method for
VLSIs. However, because the shift operation during
the test causes over testing, the yield loss of VLSIs
may occur. It is important to test VLSIs using the
given function. On the other hand, it is well known
that state-observable and completely specified FSMs
are completely functionally tested by performing all
possible state transitions. This method, however,
drastically increases the test cost. This paper
proposes two test methods, a fault independent
functional test method and a fault dependent test
generation method, for state-observable FSMs to
reduce the yield loss while improving the test quality
over scan testing at a reasonable test cost. Fault
dependent test generation is based on a single
pattern test for a logical fault model and a two-
pattern test for a timing fault model. Experimental
results using MCNC'91 benchmark circuits show that
the proposed method reduces the average area by
13.2% while increasing the state transition coverage
4.3 times by using only 29.4% additional test
sequences compared with the conventional non-scan
test method for FSMs.

keywords : State-observable FSMs, Constrained
ATPG, Over testing, Fault dependent test generation,
Fault independent functional test, State transition
coverage

1. Introduction
In recent years, VLSI (Very Large Scale

Integrated circuit) testing has become more important
because the number of gates on VLSIs is rapidly
increasing and their complexity is growing with
advances in semiconductor technology. Currently,
scan testing for the stuck-at fault model [1, 2] is one
of the most popular test methods for VLSIs. However,
it has been reported that scan testing for the stuck-at
fault model may not detect defective VLSIs [4] and

delay testing [3] and at-speed functional testing can
effectively improve test quality.

VLSI design methodologies employing hardware
description languages have recently been adopted to
reduce VLSI design time. VLSIs are designed at RTL
(Register Transfer Level) and the RTL circuits
consist of a data path part and a controller part. The
data path contains a hardware element (e.g., registers,
multiplexers, and operational modules) and signal
lines and the controller is represented by an FSM
(finite state machine). A non-scan based DFT
(Design For Testability) method of data path parts is
proposed in [5], while a non-scan based DFT method
for controller parts is proposed in [6]. At-speed
testing is easily applicable and test patterns for a
stuck-at fault model are completely generated by the
non-scan based DFT methods. As mentioned above,
if at-speed functional testing and/or delay testing are
applied to VLSIs with a non-scan based DFT, the test
quality can be further improved. It was reported in
[7] that state-observable and completely specified
FSMs are thoroughly functionally tested by
performing all of the state transitions. Thus, complete
at-speed functional testing can be applied to FSMs
whose states are made observable by performing all
of the state transitions at-speed.

As mentioned above, scan testing is currently the
most popular test method. Scan testing is not based
on the function, but the structure of the circuit. In this
method, the states of the circuits are transferred to
invalid states by shift operation during the testing in
order to detect faults. This method is considered over
testing and a yield loss of VLSIs may occur. It is
important to test using the function, and the test
method described in [7] can functionally test state-
observable FSMs completely, but at a dramatically
increased test cost.

This paper proposes two test methods, a fault
independent functional test method and a fault
dependent test generation method, for state-
observable FSMs in order to reduce the yield loss

IEEE 6th Workshop on RTL and High Level Testing, pp. 123-130, July 2005.

caused by over testing while improving the test
quality over that of scan testing within a reasonable
test cost. This paper also proposes state transition
coverage as the measure of test quality for functional
testing. State transition coverage is defined as the
ratio of the number of state transitions executed by a
test sequence to the entire number of state transitions.
Moreover, problems are formulated from the points
of view of both fault independent functional tests and
fault dependent tests for state-observable FSMs, and
test generation methods are proposed to solve these
problems.

This paper is organized as follows. In Section 2, a
functional testing method for state-observable and
completely specified FSMs is detailed. In Section 3,
the optimization problems for both functional and
fault dependent tests are formulated for state-
observable FSMs, and their test generation methods
are proposed. The proposed methods are applied to
MCNC’91 FSM benchmarks [9] in Section 4, and the
experimental results are presented. Finally, Section 5
concludes the paper and discusses future research
possibilities.

2. Functional Test for State-Observable
and Completely Specified FSMs

Fig. 1 shows an example of an FSM. In this figure,
ST0 through ST5 and T0 through T11 show the states
and the input values of the state transitions (the value
of each primary input ∈{0, 1, X}, where X denotes
don’t care), respectively. The DFT makes the outputs
of the status registers in the FSM observable and a
synchronous sequential circuit is synthesized from
the FSM using logic synthesis. Fig. 2 shows the logic
circuit model that corresponds to an FSM after logic
synthesis. Because the PPI, which is the outputs of
the status registers, is observable in this figure, the
PPI is treated as the primary output. PI, PO, SR, PPI,
PPO, and R denote primary inputs, primary outputs,
status registers, pseudo primary inputs (the outputs of
the status registers), pseudo primary outputs (the
inputs of a the status registers), and a reset input,
respectively. The combinational circuit part is called
the test generation model because combinational test
generation is applied to the circuit.

It has been reported that state-observable and
completely specified FSMs are completely
functionally tested by performing all of the possible
state transitions [7]. Thus, complete at-speed

functional testing can be applied to FSMs whose
states are made observable by performing all of the
state transitions at-speed.

3. A Test Method for State-Observable
FSMs

From now on, state-observable and completely
specified FSMs will only be called state-observable
FSMs due to simpkification.

3.1 Preliminaries

(Definition 1: Functional test for state-observable
FSMs)

In this test, the PI value is applied to a state-
observable FSM, the state is then transferred from the
current state to the next state, and the resulting PPI
and PO values are observed. A series of these
procedures are referred to as a functional test for
state-observable FSMs.

Fig. 1 An example of an FSM

Fig. 2 A logic model for a state-observable FSM

 ST0

ST1

ST4

ST3

ST5

ST2

T0

T１ T3

T4 T5

T10

T7
T9

T2

T6

T11

T8

ST0

ST1

ST4

ST3

ST5

ST2

T0

T１ T3

T4 T5

T10

T7
T9

T2

T6

T11

T8

Combinational
Circuit

State-Observable

POPI

SR

PPI PPO

R

Example 1: In Fig. 1, T0 is applied to state ST0 on
the state-observable FSM and the state is transferred
from ST0 to ST1. T1 is then applied, and the state is
transferred from ST1 to ST2. Fig. 3 depicts the
timing chart for this functional test for a state-
observable FSM. R is activated and the values of the
status registers are initialized to ST0 at the first cycle.
At the second cycle, T0 is applied and the values of
the POs for (PI, PPI)=(T0, ST0) are observed just
before the rising edge of the clock. Here, (PI, PPI)
denotes that the value of PI is applied to the PPI
value (state) for a state-observable FSM. Moreover,
the PPI value is observed after the rising edge of the
clock. Thus, it is verified that the state is successfully
transferred from ST0 to ST1. At third cycle, T1 is
applied and the PO values for (PI, PPI) =(T1, ST1),
which are observed just before the rising edge of the
clock. The resulting PPI value is observed after the
rising edge of the clock. Thus, it is verified that the
state is successfully transferred from ST1 to ST2.

(Definition 2: FSM test generation graph)
An FSM test generation graph is a directed graph

G(V, E, r, s) where a vertex v ∈ V denotes a state.
Each vertex has a label s: V → A (A={PPI1PPI2…

PPIm}, PPI1, PPI2, … , PPIm ∈ {0, 1}, where m
denotes the number of status registers). The label s
indicates the state assignment. For any vertices u, v
∈ V, an edge (u, v) ∈ E denotes the state transition
from u to v, and each edge has a label r: E → B
(B={PI1PI2…PIn}, PI1, PI2, …, PIn∈ {0, 1}, where n
denotes the number of primary inputs). The label
indicates the input values for a state transition.

Example 2: Fig. 4(a) shows an example of the state-
observable FSM and Fig. 4(b) shows an example of
an FSM test generation graph. A code is assigned to
each state in Fig. 4(b), and input values containing
“don’t care” for a state transition are expanded into
those without “don’t care.” (ST0, ST1) and XX,
represented by a cube, are expanded into four edges
and 00, 01, 10, and 11 are represented by vectors.

 (Definition 3: State transition coverage)
State transition coverage is defined as the ratio of

the number of state transitions executed by a test
sequence to the total number of state transitions.
When state transitions are executed by a test
sequence, it is referred to as the state transitions are
covered by the test sequence. In this paper, only state

transitions specified in an FSM are used to calculate
the state transition coverage. On state-observable
FSMs, the input value for each state transition is
represented using two types of notation. One notation
is a cube that consists of 0’s, 1’s, and don’t cares
(Xs). The other notation is a vector that consists of
0’s and 1’s. While generating an FSM test generation
graph, state transitions and their input values initially
represented by a cube in a state-observable FSM are
expanded into state transitions and input values that
are represented by a vector. If the input value for a
state transition includes k don’t cares in an FSM, the
state transition is expanded into 2k state transitions in
an FSM test generation graph. Thus, state transitions
with an input value represented by a vector in an
FSM test generation graph are used to calculate the
state transition coverage. State transition coverage is
then used as a measure of the test quality for a
functional test.

Fig. 3 A functional test for a state-observable FSM

Fig. 4(a) A state-observable FSM

PI : Apply T0
PO:(PI,PPI)= (T0,ST0)→Observe
PPI: Observe the state transition to ST1

ST0

ST1

ST2

CLK

RESET

ST0 ST1 ST2SR

T0

T1

PI T1T0

PPI

PO

(ST0=Reset state)

ST0

ST1

ST2

ST3

ST4

ST5

RESET

XX

X0X1 00

01

10
11

0X

1X XX

XX

Fig. 4(b) An FSM test generation graph for a
state-observable FSM

Example 3: When the test sequence (11, 00, 00) is
applied to the FSM test generation graph in Fig. 4(b)
on the current state 000, the state transition coverage
is 12.5% (3/24).

(Definition 4: Detectable stuck-at faults on valid
states)

When a state is defined in a state-observable FSM
and is reachable from the reset state, the state is
called a valid state. Stuck-at faults detected by
performing a state transition on a current state are
called detectable stuck-at faults on valid states.

Example 4: The input value for state transition 00 is
applied to the valid state 001 shown in Fig. 4(b), and
the subsequent state 010 and output value are
observed. Stuck-at faults detected by the above-
mentioned procedures are detectable stuck-at faults
on valid states.

(Definition 5: Detectable delay faults on the
transition between valid states)

The transition between valid states refers to
performing state transitions between valid states in
state-observable FSMs. After a transition between
valid states, delay faults detected by performing a
continuous state transition are defined as detectable
delay faults on the transition between valid states.

Example 5: The input value for state transition 11 is
applied to the valid state 000 shown in Fig. 4 (b), and
the state is transferred to valid state 001. Next, the
input value for state transition 00 is continuously
applied to valid state 001, and the subsequent state
010 and output value are observed. Delay faults
detected by the above-mentioned procedures are

detectable delay faults on the transition between valid
states.

3.2 Fault Independent Functional Test Method

State-observable FSMs are considered to be
completely functionally tested for a specified
function by performing all of the state transitions.
The following two problems are formulated for a
functional test of state-observable FSMs.

(Formulation 1a)
Input: a state-observable FSM
Output: a test sequence such that the state
transition coverage is 100% (All state transitions in
the FSM test generation graph are performed.)
Optimization: minimizing the test length

The test generation for Formulation 1a does not
use ATPG (Automatic Test Pattern Generation) for a
specific fault model. An FSM test generation graph is
generated from the state-observable FSM and it
searches the path so that all of the edges are traversed
at least once. If the path length is minimized, the test
length is also minimized. This test sequence can
functionally test a state-observable FSM completely,
although this method generates a huge amount of test
sequences, causing the test cost to drastically increase.

(Formulation 1b)
Input: a state-observable FSM
Output: a test sequence such that state transitions
with an input represented by a cube and state
transitions with an input represented by a vector in
a state observable FSM are covered (Hence, on
each state transition with an input represented by a
cube, at least one state transition from among the
corresponding state transitions in the FSM test
generation graph is performed.)
Optimization: minimizing the test length

The test of Formulation 1b aims at improving the
quality of the functional test by formulating a more
reasonable test length. The test generation for this
method also does not use ATPG for a specific fault
model. An FSM test generation graph is generated
from a state-observable FSM. When the graph is
generated, each state transition with an input
represented by a cube is expanded into state
transitions with inputs represented by vectors. The
method then searches the path so that all of the
original state transitions with an input represented by
a vector and at least one state transition from among

000

001

010

011

100

101

RESET

00

0001 00

01

10
11

00

10 01

00
11
01

10

11

10

01

11 00

10
11

01

10

11

the expanded state transitions are traversed at least
once. If the path length is minimized, the test length
is also minimized. This test generation is expected to
have a longer test length, but the state transition
coverage becomes higher than the fault dependent
test generation formulated in the next sub-section.

3.3 Fault Dependent Test Generation Method

In this sub-section, problems are formulated for
both one pattern testing for a logical fault model and
two pattern testing for a timing fault model on state-
observable FSMs. In this paper, a stuck-at fault
model is used as the representative of one pattern
testing and a delay fault model is used as the
representative of two pattern testing. The purpose of
these test generations is to reduce the yield loss
caused by over testing while maintaining a high
quality test sequence. Problems are formulated for a
stuck-at fault model and a delay fault model in the
following two test generations.

(Formulation 2a)
Input:
- a state-observable FSM
- a test pattern set with 100% stuck-at fault
efficiency
Output: a test sequence for a state-observable
FSM so that all detectable stuck-at faults on valid
states are detected
Optimization: minimizing the test length

After logic synthesis, a combinational circuit part
(test generation model) is extracted from the
synthesized sequential circuit. The valid states are
assigned to the PPI values as constraints. A
constrained ATPG is performed on the stuck-at faults
for a test generation model and a test pattern set is
generated. After that, an FSM test generation graph is
generated and test patterns are assigned to the
corresponding edges of an FSM test generation graph.
Finally, paths are searched on the FSM test
generation graph so that all of the edges where test
patterns are assigned are traversed at least once. If the
path length is minimized, the test length is also
minimized. For this test generation, it is expected that
the state transition coverage decreases, but the test
length become shorter than those for the functional
test in Formulation 1b.

Example 6: Fig. 5 shows an FSM test generation
graph that is generated from the state-observable
FSM shown in Fig. 4(a) and a test pattern set with

100% stuck-at fault efficiency for the test generation
model. Each test pattern is assigned to the
corresponding edge in this graph. For example, t1 is
assigned to the edge that represents the state
transition from the state 001 through the input value
11.

(Formulation 2b)
Input:
- a state-observable FSM
- a two test pattern set with 100% delay fault
efficiency
Output: a test sequence for a state-observable
FSM so that all detectable delay faults on the
transition between valid states are detected
Optimization: minimizing the test length

After logic synthesis, a time expansion model [10]
for two time frames is generated from a synthesized
sequential circuit. The valid states are assigned to the
PPI values as constraints. A constrained ATPG for
delay faults is performed for the time expansion
model and a two test pattern set is generated. Because
the delay fault test generation for state-observable
FSMs is a future work, the test generation method is
not discussed in this paper.

4. Experimental Results
The test generation methods for Formulations 1a,

1b, and 2a were implemented and were applied to
MCNC’91 benchmark circuits [9].

The platform used for the experiments is as
follows.

CPU: Pentium 4
Frequency: 1.8 GHz
Memory: 1 Gbyte

Fig. 5 An FSM test generation graph for stuck-at
fault testing

000

001

010

011

100

101

RESET

00

0001 00

01

10
11

00

10 01

00
11
01

10

11

10

01

11 00

10
11

01

10

11

t1

t2

t3

t4

t5

t6

t7

The characteristics of MCNC’91 benchmark
circuits are shown in Table 1. In this figure, Circuit,
#PI, #PO, #Reg, #Vertex, #Edge, and TL denote the
circuit names, the number of primary inputs, the
number of primary outputs, the number of status
registers, the number of states, the number of state
transitions and the test length with 100% state
transition coverage generated by the test generation
of Formulation 1a, respectively. “NA” indicates that
the test generation was not completed within 10
hours. It was discovered that extremely large test
lengths and CPU times were required to perform a
complete functional test. In these experiments, FSMs
were made state-observable by DFT and the three test
generations were performed for state-observable
FSMs.

The logic syntheses for the FSMs were performed
by the Synopsys Design Compiler® and the test
generations for the combinational circuits were
performed by Synopsys TetraMax®.

Table 2 compares the experimental results for the
proposed methods with those for [6], denoted by
“JETTA’00” in the table. In [6], testing for both valid
and invalid states was performed for FSMs and
stuck-at faults were completely tested. “Proposed
methods” denotes the experimental results of the
proposed methods. “1b” denotes the experimental
results of the functional test method for Formulation
1b and “2a” denotes the experimental results of the
stuck-at fault test generation method for Formulation
2a. Circuit, FE, Area, TL, #CE, STC, and FC denote
the circuit name, the stuck-at fault efficiency, the area
of synthesized sequential circuit with DFT that was
calculated based on the standard library for logic
synthesis, the test length, the number of edges
covered by the test sequence, the state transition
coverage, and the stack-at fault coverage,
respectively.

Compared to “JETTA’00,” “2a” reduced the area
by 1.9 to 27.7% (average 13.2%), while increasing
the state transition coverage from 1.5 to 10.8 times
(average 4.3 times) by using -18.1 to 160.4%
(average 29.4 %) additional test sequences. After the
state is transferred to a test state in [6], the PI values
of the test patterns are applied one after another while
holding the PPI value in the status registers.
Therefore, the path is searched so that all of the test
states are traversed at least once. This method
reduced the test length, making it smaller than that of
“2a.” On the other hand, because the stuck-at faults

were tested by performing state transitions in “2a,”
the state transition coverage was higher than for
“JETTA’00.” As for the area, “2a” made the outputs
of status registers observable by DFT, while
“JETTA’00” made the inputs of status registers
observable. Moreover, “JETTA’00” added the circuit
that was going to be transferred to invalid test states,
the multiplexers switched the valid state transitions
and the invalid state transitions, and the hold function
of status registers by DFT. Therefore, “2a” reduced
the area compared to “JETTA’00.”

Test length of “1b” compared “2a” was 1.3 to 13.3
times longer (average 3.4 times), and the state
transition coverage was 0.5 to 8.2 times higher
(average 1.8 times). “1b” detected all of the
detectable stuck-at faults on the valid states for the
FSMs, but the ratio of detected faults to detectable
stuck-at faults on the valid states was 92.4 to 97.7%
for cse, ex6, lion, opus, s386, and train11.

5. Conclusion
This paper proposed both a fault independent

functional test method and a fault dependent test
generation method for state observable FSMs. This
paper also proposed state transition coverage as the
measure of test quality for a functional test. The
following conclusions were obtained from applied
the proposed methods to MCNC’91 benchmark
circuits.

(1) The test generation of Formulation 2a
reduces the average area by 13.2% while
increasing the state transition coverage by
4.3 times, while adding only 29.4% test
sequences compared with [6].

(2) The functional test of Formulation 1b
increases the average state transition
coverage 1.8 times by using 3.4 times
additional test sequences compared with that
of Formulation 2a.

Future work includes proposing a test generation
for a delay fault model in state-observable FSMs
(Formulation 2b).

Acknowledgements
The authors would like to thank Mr. Seiji

Hamamoto of System JD Co., Ltd. for his invaluable
discussion and comments.

Table 1 FSM benchmark characteristics

References
[1] H. Fujiwara, “Logic Testing and Design for

Testability,” The MIT Press, 1985.
[2] M. Abramovici, M. A. Breuer, and A. D.

Friedman, “Digital systems testing and testable
design,” IEEE Press, 1995.

[3] A. Krstic, and K.-T. Cheng, “Delay Fault
Testing for VLSI Circuits,” Kluwer Academic
Publishers, 1998.

[4] P.C. Maxwell, R.C. Aitken, R. Kollitz, and A. C.
Brown, “IDDQ and AC Scan: The War Against
Unmodelled Defects,” Proc. of IEEE Int. Test
Conf., pp.250-258, Oct., 1996.

[5] H. Wada, T. Masuzawa, K.K. Saluja, and H.
Fujiwara, “Design for strong testability of RTL
data paths to provide complete fault efficiency,”
Proc. of 13th Int. Conf. on VLSI Design,
pp.300-305, 2000.

[6] S. Ohtake, T. Masuzawa, and H. Fujiwara, "A
non-scan approach to DFT for Controllers
Achieving 100% Fault Efficiency," Journal of
Electronic Testing: Theory and Applications
(JETTA), Vol. 16, No. 5, pp.553-566, Oct. 2000.

[7] H. Fujiwara, and K. Kinoshita, “Design of
Diagnosable Sequential Machines Utilizing
Extra Outputs,” IEEE Trans. on Computers, Vol.
C-23, pp.138-145, Feb., 1974.

[8] T. Sasao, “Switching Theory for Logic
Synthesis,” Kluwer Academic Pub., 1999.

[9] S. Yang, "Logic synthesis and optimization
benchmarks user guide," Technical Report
1991-IWLS-UG-Saeyang, Microelectronics
Center of North Carolina, 1999.

[10] T. Inoue, T. Hosokawa, T. Mihara,, and H.
Fujiwara, “An optimal time expansion model
based on combinational ATPG for RT level
circuits”, IEEE Proc. Asian Test Symp., pp.190-
197 , Dec. 1998.

bbara 4 2 4 10 160 3730
bbtas 2 2 3 6 24 46
beecount 3 4 3 7 56 671
cse 7 7 4 16 2048 NA
dk14 3 5 3 7 56 95
dk15 3 5 2 4 32 49
dk16 2 3 5 27 108 228
dk17 2 3 3 8 32 81
dk27 1 2 3 7 14 34
ex1 9 19 5 20 10240 NA
ex3 2 2 4 10 40 108
ex4 6 9 4 14 896 304949
ex5 2 2 4 9 36 103
ex6 5 8 3 8 256 1592
keyb 7 2 5 19 2432 NA
kirkman 12 6 4 16 65536 NA
lion 2 1 2 4 16 34
lion9 2 1 4 9 36 61
mc 3 5 2 4 32 95
opus 5 6 4 10 320 15185
planet 7 19 6 48 6144 NA
pma 8 8 5 24 6144 NA
s1 8 6 5 20 5120 NA
s1488 8 19 6 48 12288 NA
s1494 8 19 6 48 12288 NA
s208 8 2 5 18 4608 NA
s27 4 1 3 6 96 650
s298 3 6 8 218 1744 NA
s386 7 7 4 13 1664 NA
s420 8 2 5 18 4608 NA
s510 19 7 6 47 24641536 NA
s820 18 19 5 25 6553600 NA
s832 18 19 5 25 6553600 NA
sand 11 9 5 32 65536 NA
shiftreg 1 1 3 8 16 32
styr 9 10 5 30 15360 NA
tav 4 4 2 4 64 189
tbk 6 3 5 32 2048 NA
tma 7 6 5 20 2560 NA
train11 2 1 4 11 44 172
train4 2 1 2 4 16 28

TLCircuit #PI #Edge#PO #Reg #Vertex

Table 2 Experimental results

TL #CE FC STC TL #CE FC FE STC

bbara 100.00% 207 40 9 5.63% 163 121 60 98.28% 37.50% 52 36 98.28% 100.00% 22.50%
bbtas 100.00% 83 16 5 20.83% 60 46 24 97.40% 100.00% 19 17 97.40% 100.00% 70.83%
beecount 100.00% 248 30 7 12.50% 226 63 33 98.31% 58.93% 33 23 98.31% 100.00% 41.07%
cse 100.00% 410 95 19 0.93% 394 278 95 94.31% 4.64% 155 130 100.00% 100.00% 6.35%
dk14 100.00% 213 41 9 16.07% 191 95 56 98.95% 100.00% 56 40 98.95% 100.00% 71.43%
dk15 100.00% 113 25 3 9.38% 105 49 32 100.00% 100.00% 28 25 100.00% 100.00% 78.13%
dk16 100.00% 507 93 34 31.48% 455 228 108 98.12% 100.00% 93 69 98.12% 100.00% 63.89%
dk17 100.00% 146 29 8 25.00% 134 81 32 100.00% 100.00% 41 24 100.00% 100.00% 75.00%
dk27 100.00% 80 21 8 57.14% 58 34 14 97.50% 100.00% 21 12 97.50% 100.00% 85.71%
ex1 100.00% 807 101 26 0.25% 728 396 156 99.18% 1.52% 128 123 99.18% 100.00% 1.20%
ex3 100.00% 185 46 13 32.50% 142 102 37 94.96% 92.50% 51 28 94.96% 100.00% 70.00%
ex4 100.00% 332 41 13 1.45% 297 138 35 98.07% 3.91% 43 42 98.07% 100.00% 4.69%
ex5 100.00% 177 43 10 27.78% 132 97 33 94.95% 91.67% 50 25 94.95% 100.00% 69.44%
ex6 100.00% 326 41 7 2.73% 314 69 35 95.86% 13.67% 43 41 100.00% 100.00% 16.02%
keyb 100.00% 386 94 18 0.74% 332 497 170 96.78% 6.99% 197 122 96.78% 100.00% 5.02%
kirkman 100.00% 573 73 15 0.02% 557 716 398 100.00% 0.61% 163 162 100.00% 100.00% 0.25%
lion 100.00% 45 13 3 18.75% 37 27 12 92.45% 75.00% 12 9 100.00% 100.00% 56.25%
lion9 100.00% 273 27 8 22.22% 216 58 34 95.30% 94.44% 26 18 95.30% 100.00% 50.00%
mc 100.00% 44 11 3 9.38% 36 16 10 100.00% 31.25% 9 8 100.00% 100.00% 25.00%
opus 100.00% 242 41 10 3.13% 200 113 30 94.30% 9.38% 59 55 96.14% 100.00% 17.19%
planet 100.00% 700 204 82 1.33% 602 723 115 97.70% 1.87% 196 194 97.70% 100.00% 3.16%
pma 100.00% 755 116 29 0.47% 689 339 97 98.81% 1.58% 147 143 98.81% 100.00% 2.33%
s1 100.00% 680 111 26 0.51% 606 245 107 97.67% 2.09% 139 135 97.67% 100.00% 2.64%
s1488 100.00% 1160 219 84 0.68% 1062 1997 251 97.96% 2.04% 262 260 97.96% 100.00% 2.12%
s1494 100.00% 1115 211 81 0.66% 1019 1903 250 98.07% 2.03% 244 242 98.07% 100.00% 1.97%
s208 100.00% 316 48 17 0.37% 246 1060 153 91.95% 3.32% 125 122 91.95% 100.00% 2.65%
s27 100.00% 132 27 6 6.25% 105 57 34 93.53% 35.42% 31 27 93.53% 100.00% 28.13%
s298 100.00% 4394 646 280 16.06% 4305 4162 1108 99.18% 63.53% 849 548 99.18% 100.00% 31.42%
s386 100.00% 329 59 15 0.90% 290 225 64 95.11% 3.85% 100 95 97.31% 100.00% 5.71%
s420 100.00% 319 48 17 0.37% 249 957 137 91.95% 2.97% 119 118 91.95% 100.00% 2.56%
s510 100.00% 390 121 46 0.00% 308 1110 1109 97.36% 0.00% 138 137 97.36% 100.00% 0.00%
s820 100.00% 661 133 30 0.00% 598 1351 1350 97.92% 0.02% 222 221 97.92% 100.00% 0.00%
s832 100.00% 670 131 32 0.00% 609 1347 1346 97.99% 0.02% 237 236 97.99% 100.00% 0.00%
sand 100.00% 904 181 44 0.07% 884 315 189 100.00% 0.29% 156 148 100.00% 100.00% 0.23%
shiftreg 100.00% 67 22 9 56.25% 55 32 16 100.00% 100.00% 24 14 100.00% 100.00% 87.50%
styr 100.00% 724 151 39 0.25% 685 492 167 98.95% 1.09% 212 211 98.95% 100.00% 1.37%
tav 100.00% 49 16 3 4.69% 41 63 49 100.00% 76.56% 14 13 100.00% 100.00% 20.31%
tbk 100.00% 1019 222 44 2.15% 999 2998 1568 100.00% 76.56% 224 191 100.00% 100.00% 9.33%
tma 100.00% 593 98 25 0.98% 526 203 63 98.52% 2.46% 106 92 98.52% 100.00% 3.59%
train11 100.00% 287 50 13 29.55% 251 71 36 90.85% 81.82% 46 33 98.17% 100.00% 75.00%
train4 100.00% 43 12 3 18.75% 35 28 16 100.00% 100.00% 11 10 100.00% 100.00% 62.50%

TL #CE STC Area

1b 2a
Circuit

JETTA'00[6] Proposed methods

FE Area

