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Abstract 

Scan testing is the most popular test method for 
VLSIs. However, because the shift operation during 
the test causes over testing, the yield loss of VLSIs 
may occur. It is important to test VLSIs using the 
given function. On the other hand, it is well known 
that state-observable and completely specified FSMs 
are completely functionally tested by performing all 
possible state transitions. This method, however, 
drastically increases the test cost. This paper 
proposes two test methods, a fault independent 
functional test method and a fault dependent test 
generation method, for state-observable FSMs to 
reduce the yield loss while improving the test quality 
over scan testing at a reasonable test cost. Fault 
dependent test generation is based on a single 
pattern test for a logical fault model and a two-
pattern test for a timing fault model. Experimental 
results using MCNC'91 benchmark circuits show that 
the proposed method reduces the average area by 
13.2% while increasing the state transition coverage 
4.3 times by using only 29.4% additional test 
sequences compared with the conventional non-scan 
test method for FSMs. 

keywords : State-observable FSMs, Constrained 
ATPG, Over testing, Fault dependent test generation, 
Fault independent functional test, State transition 
coverage  

1. Introduction 
In recent years, VLSI (Very Large Scale 

Integrated circuit) testing has become more important 
because the number of gates on VLSIs is rapidly 
increasing and their complexity is growing with 
advances in semiconductor technology. Currently, 
scan testing for the stuck-at fault model [1, 2] is one 
of the most popular test methods for VLSIs. However, 
it has been reported that scan testing for the stuck-at 
fault model may not detect defective VLSIs [4] and 

delay testing [3] and at-speed functional testing can 
effectively improve test quality. 

VLSI design methodologies employing hardware 
description languages have recently been adopted to 
reduce VLSI design time. VLSIs are designed at RTL 
(Register Transfer Level) and the RTL circuits 
consist of a data path part and a controller part. The 
data path contains a hardware element (e.g., registers, 
multiplexers, and operational modules) and signal 
lines and the controller is represented by an FSM 
(finite state machine). A non-scan based DFT 
(Design For Testability) method of data path parts is 
proposed in [5], while a non-scan based DFT method 
for controller parts is proposed in [6]. At-speed 
testing is easily applicable and test patterns for a 
stuck-at fault model are completely generated by the 
non-scan based DFT methods. As mentioned above, 
if at-speed functional testing and/or delay testing are 
applied to VLSIs with a non-scan based DFT, the test 
quality can be further improved. It was reported in 
[7] that state-observable and completely specified 
FSMs are thoroughly functionally tested by 
performing all of the state transitions. Thus, complete 
at-speed functional testing can be applied to FSMs 
whose states are made observable by performing all 
of the state transitions at-speed. 

As mentioned above, scan testing is currently the 
most popular test method. Scan testing is not based 
on the function, but the structure of the circuit. In this 
method, the states of the circuits are transferred to 
invalid states by shift operation during the testing in 
order to detect faults. This method is considered over 
testing and a yield loss of VLSIs may occur. It is 
important to test using the function, and the test 
method described in [7] can functionally test state-
observable FSMs completely, but at a dramatically 
increased test cost. 

This paper proposes two test methods, a fault 
independent functional test method and a fault 
dependent test generation method, for state-
observable FSMs in order to reduce the yield loss 
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caused by over testing while improving the test 
quality over that of scan testing within a reasonable 
test cost. This paper also proposes state transition 
coverage as the measure of test quality for functional 
testing. State transition coverage is defined as the 
ratio of the number of state transitions executed by a 
test sequence to the entire number of state transitions. 
Moreover, problems are formulated from the points 
of view of both fault independent functional tests and 
fault dependent tests for state-observable FSMs, and 
test generation methods are proposed to solve these 
problems. 

This paper is organized as follows. In Section 2, a 
functional testing method for state-observable and 
completely specified FSMs is detailed. In Section 3, 
the optimization problems for both functional and 
fault dependent tests are formulated for state-
observable FSMs, and their test generation methods 
are proposed. The proposed methods are applied to 
MCNC’91 FSM benchmarks [9] in Section 4, and the 
experimental results are presented. Finally, Section 5 
concludes the paper and discusses future research 
possibilities. 

2. Functional Test for State-Observable 
and Completely Specified FSMs 

Fig. 1 shows an example of an FSM. In this figure, 
ST0 through ST5 and T0 through T11 show the states 
and the input values of the state transitions (the value 
of each primary input ∈{0, 1, X}, where X denotes 
don’t care), respectively. The DFT makes the outputs 
of the status registers in the FSM observable and a 
synchronous sequential circuit is synthesized from 
the FSM using logic synthesis. Fig. 2 shows the logic 
circuit model that corresponds to an FSM after logic 
synthesis. Because the PPI, which is the outputs of 
the status registers, is observable in this figure, the 
PPI is treated as the primary output. PI, PO, SR, PPI, 
PPO, and R denote primary inputs, primary outputs, 
status registers, pseudo primary inputs (the outputs of 
the status registers), pseudo primary outputs (the 
inputs of a the status registers), and a reset input, 
respectively. The combinational circuit part is called 
the test generation model because combinational test 
generation is applied to the circuit.  

It has been reported that state-observable and 
completely specified FSMs are completely 
functionally tested by performing all of the possible 
state transitions [7]. Thus, complete at-speed 

functional testing can be applied to FSMs whose 
states are made observable by performing all of the 
state transitions at-speed. 

3. A Test Method for State-Observable 
FSMs 

From now on, state-observable and completely 
specified FSMs will only be called state-observable 
FSMs due to simpkification. 

3.1 Preliminaries 

(Definition 1: Functional test for state-observable 
FSMs) 

In this test, the PI value is applied to a state-
observable FSM, the state is then transferred from the 
current state to the next state, and the resulting PPI 
and PO values are observed. A series of these 
procedures are referred to as a functional test for 
state-observable FSMs.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 An example of an FSM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 A logic model for a state-observable FSM 
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Example 1: In Fig. 1, T0 is applied to state ST0 on 
the state-observable FSM and the state is transferred 
from ST0 to ST1. T1 is then applied, and the state is 
transferred from ST1 to ST2. Fig. 3 depicts the 
timing chart for this functional test for a state-
observable FSM. R is activated and the values of the 
status registers are initialized to ST0 at the first cycle. 
At the second cycle, T0 is applied and the values of 
the POs for (PI, PPI)=(T0, ST0) are observed just 
before the rising edge of the clock. Here, (PI, PPI) 
denotes that the value of PI is applied to the PPI 
value (state) for a state-observable FSM. Moreover, 
the PPI value is observed after the rising edge of the 
clock. Thus, it is verified that the state is successfully 
transferred from ST0 to ST1. At third cycle, T1 is 
applied and the PO values for (PI, PPI) =(T1, ST1), 
which are observed just before the rising edge of the 
clock. The resulting PPI value is observed after the 
rising edge of the clock. Thus, it is verified that the 
state is successfully transferred from ST1 to ST2. 

(Definition 2: FSM test generation graph) 
An FSM test generation graph is a directed graph 

G(V, E, r, s) where a vertex v ∈ V denotes a state. 
Each vertex has a label s: V → A (A={PPI1PPI2…

PPIm}, PPI1, PPI2, … , PPIm ∈  {0, 1}, where m 
denotes the number of status registers). The label s 
indicates the state assignment. For any vertices u, v 
∈ V, an edge (u, v) ∈ E denotes the state transition 
from u to v, and each edge has a label r: E → B 
(B={PI1PI2…PIn}, PI1, PI2, …, PIn∈ {0, 1}, where n 
denotes the number of primary inputs). The label 
indicates the input values for a state transition.  

Example 2: Fig. 4(a) shows an example of the state-
observable FSM and Fig. 4(b) shows an example of 
an FSM test generation graph. A code is assigned to 
each state in Fig. 4(b), and input values containing 
“don’t care” for a state transition are expanded into 
those without “don’t care.” (ST0, ST1) and XX, 
represented by a cube, are expanded into four edges 
and 00, 01, 10, and 11 are represented by vectors.  

 (Definition 3: State transition coverage) 
State transition coverage is defined as the ratio of 

the number of state transitions executed by a test 
sequence to the total number of state transitions. 
When state transitions are executed by a test 
sequence, it is referred to as the state transitions are 
covered by the test sequence. In this paper, only state 

transitions specified in an FSM are used to calculate 
the state transition coverage. On state-observable 
FSMs, the input value for each state transition is 
represented using two types of notation. One notation 
is a cube that consists of 0’s, 1’s, and don’t cares 
(Xs). The other notation is a vector that consists of 
0’s and 1’s. While generating an FSM test generation 
graph, state transitions and their input values initially 
represented by a cube in a state-observable FSM are 
expanded into state transitions and input values that 
are represented by a vector. If the input value for a 
state transition includes k don’t cares in an FSM, the 
state transition is expanded into 2k state transitions in 
an FSM test generation graph. Thus, state transitions 
with an input value represented by a vector in an 
FSM test generation graph are used to calculate the 
state transition coverage. State transition coverage is 
then used as a measure of the test quality for a 
functional test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 A functional test for a state-observable FSM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4(a) A state-observable FSM 
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Fig. 4(b) An FSM test generation graph for a 
state-observable FSM 

Example 3: When the test sequence (11, 00, 00) is 
applied to the FSM test generation graph in Fig. 4(b) 
on the current state 000, the state transition coverage 
is 12.5% (3/24). 

(Definition 4: Detectable stuck-at faults on valid 
states) 

When a state is defined in a state-observable FSM 
and is reachable from the reset state, the state is 
called a valid state. Stuck-at faults detected by 
performing a state transition on a current state are 
called detectable stuck-at faults on valid states. 

Example 4: The input value for state transition 00 is 
applied to the valid state 001 shown in Fig. 4(b), and 
the subsequent state 010 and output value are 
observed. Stuck-at faults detected by the above-
mentioned procedures are detectable stuck-at faults 
on valid states. 

(Definition 5: Detectable delay faults on the 
transition between valid states) 

The transition between valid states refers to 
performing state transitions between valid states in 
state-observable FSMs. After a transition between 
valid states, delay faults detected by performing a 
continuous state transition are defined as detectable 
delay faults on the transition between valid states. 

Example 5: The input value for state transition 11 is 
applied to the valid state 000 shown in Fig. 4 (b), and 
the state is transferred to valid state 001. Next, the 
input value for state transition 00 is continuously 
applied to valid state 001, and the subsequent state 
010 and output value are observed. Delay faults 
detected by the above-mentioned procedures are 

detectable delay faults on the transition between valid 
states. 

3.2 Fault Independent Functional Test Method 

State-observable FSMs are considered to be 
completely functionally tested for a specified 
function by performing all of the state transitions. 
The following two problems are formulated for a 
functional test of state-observable FSMs.  

(Formulation 1a) 
Input: a state-observable FSM 
Output: a test sequence such that the state 
transition coverage is 100% (All state transitions in 
the FSM test generation graph are performed.) 
Optimization: minimizing the test length 

The test generation for Formulation 1a does not 
use ATPG (Automatic Test Pattern Generation) for a 
specific fault model. An FSM test generation graph is 
generated from the state-observable FSM and it 
searches the path so that all of the edges are traversed 
at least once. If the path length is minimized, the test 
length is also minimized. This test sequence can 
functionally test a state-observable FSM completely, 
although this method generates a huge amount of test 
sequences, causing the test cost to drastically increase. 

(Formulation 1b) 
Input: a state-observable FSM 
Output: a test sequence such that state transitions 
with an input represented by a cube and state 
transitions with an input represented by a vector in 
a state observable FSM are covered (Hence, on 
each state transition with an input represented by a 
cube, at least one state transition from among the 
corresponding state transitions in the FSM test 
generation graph is performed.) 
Optimization: minimizing the test length 

The test of Formulation 1b aims at improving the 
quality of the functional test by formulating a more 
reasonable test length. The test generation for this 
method also does not use ATPG for a specific fault 
model. An FSM test generation graph is generated 
from a state-observable FSM. When the graph is 
generated, each state transition with an input 
represented by a cube is expanded into state 
transitions with inputs represented by vectors. The 
method then searches the path so that all of the 
original state transitions with an input represented by 
a vector and at least one state transition from among 
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the expanded state transitions are traversed at least 
once. If the path length is minimized, the test length 
is also minimized. This test generation is expected to 
have a longer test length, but the state transition 
coverage becomes higher than the fault dependent 
test generation formulated in the next sub-section.  

3.3 Fault Dependent Test Generation Method 

In this sub-section, problems are formulated for 
both one pattern testing for a logical fault model and 
two pattern testing for a timing fault model on state-
observable FSMs. In this paper, a stuck-at fault 
model is used as the representative of one pattern 
testing and a delay fault model is used as the 
representative of two pattern testing. The purpose of 
these test generations is to reduce the yield loss 
caused by over testing while maintaining a high 
quality test sequence. Problems are formulated for a 
stuck-at fault model and a delay fault model in the 
following two test generations. 

(Formulation 2a) 
Input:  
- a state-observable FSM 
- a test pattern set with 100% stuck-at fault 
efficiency 
Output: a test sequence for a state-observable 
FSM so that all detectable stuck-at faults on valid 
states are detected 
Optimization: minimizing the test length 

After logic synthesis, a combinational circuit part 
(test generation model) is extracted from the 
synthesized sequential circuit. The valid states are 
assigned to the PPI values as constraints. A 
constrained ATPG is performed on the stuck-at faults 
for a test generation model and a test pattern set is 
generated. After that, an FSM test generation graph is 
generated and test patterns are assigned to the 
corresponding edges of an FSM test generation graph. 
Finally, paths are searched on the FSM test 
generation graph so that all of the edges where test 
patterns are assigned are traversed at least once. If the 
path length is minimized, the test length is also 
minimized. For this test generation, it is expected that 
the state transition coverage decreases, but the test 
length become shorter than those for the functional 
test in Formulation 1b. 

Example 6: Fig. 5 shows an FSM test generation 
graph that is generated from the state-observable 
FSM shown in Fig. 4(a) and a test pattern set with 

100% stuck-at fault efficiency for the test generation 
model. Each test pattern is assigned to the 
corresponding edge in this graph. For example, t1 is 
assigned to the edge that represents the state 
transition from the state 001 through the input value 
11.  

(Formulation 2b) 
Input:  
- a state-observable FSM 
- a two test pattern set with 100% delay fault 
efficiency 
Output: a test sequence for a state-observable 
FSM so that all detectable delay faults on the 
transition between valid states are detected 
Optimization: minimizing the test length 

After logic synthesis, a time expansion model [10] 
for two time frames is generated from a synthesized 
sequential circuit. The valid states are assigned to the 
PPI values as constraints. A constrained ATPG for 
delay faults is performed for the time expansion 
model and a two test pattern set is generated. Because 
the delay fault test generation for state-observable 
FSMs is a future work, the test generation method is 
not discussed in this paper.  

4. Experimental Results 
The test generation methods for Formulations 1a, 

1b, and 2a were implemented and were applied to 
MCNC’91 benchmark circuits [9].  

The platform used for the experiments is as 
follows. 

CPU: Pentium 4 
Frequency: 1.8 GHz 
Memory: 1 Gbyte 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 An FSM test generation graph for stuck-at 
fault testing 
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The characteristics of MCNC’91 benchmark 
circuits are shown in Table 1. In this figure, Circuit, 
#PI, #PO, #Reg, #Vertex, #Edge, and TL denote the 
circuit names, the number of primary inputs, the 
number of primary outputs, the number of status 
registers, the number of states, the number of state 
transitions and the test length with 100% state 
transition coverage generated by the test generation 
of Formulation 1a, respectively. “NA” indicates that 
the test generation was not completed within 10 
hours. It was discovered that extremely large test 
lengths and CPU times were required to perform a 
complete functional test. In these experiments, FSMs 
were made state-observable by DFT and the three test 
generations were performed for state-observable 
FSMs.  

The logic syntheses for the FSMs were performed 
by the Synopsys Design Compiler® and the test 
generations for the combinational circuits were 
performed by Synopsys TetraMax®. 

Table 2 compares the experimental results for the 
proposed methods with those for [6], denoted by  
“JETTA’00” in the table. In [6], testing for both valid 
and invalid states was performed for FSMs and 
stuck-at faults were completely tested. “Proposed 
methods” denotes the experimental results of the 
proposed methods. “1b” denotes the experimental 
results of the functional test method for Formulation 
1b and “2a” denotes the experimental results of the 
stuck-at fault test generation method for Formulation 
2a. Circuit, FE, Area, TL, #CE, STC, and FC denote 
the circuit name, the stuck-at fault efficiency, the area 
of synthesized sequential circuit with DFT that was 
calculated based on the standard library for logic 
synthesis, the test length, the number of edges 
covered by the test sequence, the state transition 
coverage, and the stack-at fault coverage, 
respectively. 

Compared to “JETTA’00,” “2a” reduced the area 
by 1.9 to 27.7% (average 13.2%), while increasing 
the state transition coverage from 1.5 to 10.8 times 
(average 4.3 times) by using -18.1 to 160.4% 
(average 29.4 %) additional test sequences. After the 
state is transferred to a test state in [6], the PI values 
of the test patterns are applied one after another while 
holding the PPI value in the status registers. 
Therefore, the path is searched so that all of the test 
states are traversed at least once. This method 
reduced the test length, making it smaller than that of 
“2a.” On the other hand, because the stuck-at faults 

were tested by performing state transitions in “2a,” 
the state transition coverage was higher than for 
“JETTA’00.” As for the area, “2a” made the outputs 
of status registers observable by DFT, while 
“JETTA’00” made the inputs of status registers 
observable. Moreover, “JETTA’00” added the circuit 
that was going to be transferred to invalid test states, 
the multiplexers switched the valid state transitions 
and the invalid state transitions, and the hold function 
of status registers by DFT. Therefore, “2a” reduced 
the area compared to “JETTA’00.” 

Test length of “1b” compared “2a” was 1.3 to 13.3 
times longer (average 3.4 times), and the state 
transition coverage was 0.5 to 8.2 times higher 
(average 1.8 times). “1b” detected all of the 
detectable stuck-at faults on the valid states for the 
FSMs, but the ratio of detected faults to detectable 
stuck-at faults on the valid states was 92.4 to 97.7% 
for cse, ex6, lion, opus, s386, and train11. 

5. Conclusion 
This paper proposed both a fault independent 

functional test method and a fault dependent test 
generation method for state observable FSMs. This 
paper also proposed state transition coverage as the 
measure of test quality for a functional test. The 
following conclusions were obtained from applied 
the proposed methods to MCNC’91 benchmark 
circuits. 

(1) The test generation of Formulation 2a 
reduces the average area by 13.2% while 
increasing the state transition coverage by 
4.3 times, while adding only 29.4% test 
sequences compared with [6]. 

(2) The functional test of Formulation 1b 
increases the average state transition 
coverage 1.8 times by using 3.4 times 
additional test sequences compared with that 
of Formulation 2a.  

Future work includes proposing a test generation 
for a delay fault model in state-observable FSMs 
(Formulation 2b). 
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bbara 4 2 4 10 160 3730
bbtas 2 2 3 6 24 46
beecount 3 4 3 7 56 671
cse 7 7 4 16 2048 NA
dk14 3 5 3 7 56 95
dk15 3 5 2 4 32 49
dk16 2 3 5 27 108 228
dk17 2 3 3 8 32 81
dk27 1 2 3 7 14 34
ex1 9 19 5 20 10240 NA
ex3 2 2 4 10 40 108
ex4 6 9 4 14 896 304949
ex5 2 2 4 9 36 103
ex6 5 8 3 8 256 1592
keyb 7 2 5 19 2432 NA
kirkman 12 6 4 16 65536 NA
lion 2 1 2 4 16 34
lion9 2 1 4 9 36 61
mc 3 5 2 4 32 95
opus 5 6 4 10 320 15185
planet 7 19 6 48 6144 NA
pma 8 8 5 24 6144 NA
s1 8 6 5 20 5120 NA
s1488 8 19 6 48 12288 NA
s1494 8 19 6 48 12288 NA
s208 8 2 5 18 4608 NA
s27 4 1 3 6 96 650
s298 3 6 8 218 1744 NA
s386 7 7 4 13 1664 NA
s420 8 2 5 18 4608 NA
s510 19 7 6 47 24641536 NA
s820 18 19 5 25 6553600 NA
s832 18 19 5 25 6553600 NA
sand 11 9 5 32 65536 NA
shiftreg 1 1 3 8 16 32
styr 9 10 5 30 15360 NA
tav 4 4 2 4 64 189
tbk 6 3 5 32 2048 NA
tma 7 6 5 20 2560 NA
train11 2 1 4 11 44 172
train4 2 1 2 4 16 28

TLCircuit #PI #Edge#PO #Reg #Vertex



Table 2 Experimental results 
 

TL #CE FC STC TL #CE FC FE STC

bbara 100.00% 207 40 9 5.63% 163 121 60 98.28% 37.50% 52 36 98.28% 100.00% 22.50%
bbtas 100.00% 83 16 5 20.83% 60 46 24 97.40% 100.00% 19 17 97.40% 100.00% 70.83%
beecount 100.00% 248 30 7 12.50% 226 63 33 98.31% 58.93% 33 23 98.31% 100.00% 41.07%
cse 100.00% 410 95 19 0.93% 394 278 95 94.31% 4.64% 155 130 100.00% 100.00% 6.35%
dk14 100.00% 213 41 9 16.07% 191 95 56 98.95% 100.00% 56 40 98.95% 100.00% 71.43%
dk15 100.00% 113 25 3 9.38% 105 49 32 100.00% 100.00% 28 25 100.00% 100.00% 78.13%
dk16 100.00% 507 93 34 31.48% 455 228 108 98.12% 100.00% 93 69 98.12% 100.00% 63.89%
dk17 100.00% 146 29 8 25.00% 134 81 32 100.00% 100.00% 41 24 100.00% 100.00% 75.00%
dk27 100.00% 80 21 8 57.14% 58 34 14 97.50% 100.00% 21 12 97.50% 100.00% 85.71%
ex1 100.00% 807 101 26 0.25% 728 396 156 99.18% 1.52% 128 123 99.18% 100.00% 1.20%
ex3 100.00% 185 46 13 32.50% 142 102 37 94.96% 92.50% 51 28 94.96% 100.00% 70.00%
ex4 100.00% 332 41 13 1.45% 297 138 35 98.07% 3.91% 43 42 98.07% 100.00% 4.69%
ex5 100.00% 177 43 10 27.78% 132 97 33 94.95% 91.67% 50 25 94.95% 100.00% 69.44%
ex6 100.00% 326 41 7 2.73% 314 69 35 95.86% 13.67% 43 41 100.00% 100.00% 16.02%
keyb 100.00% 386 94 18 0.74% 332 497 170 96.78% 6.99% 197 122 96.78% 100.00% 5.02%
kirkman 100.00% 573 73 15 0.02% 557 716 398 100.00% 0.61% 163 162 100.00% 100.00% 0.25%
lion 100.00% 45 13 3 18.75% 37 27 12 92.45% 75.00% 12 9 100.00% 100.00% 56.25%
lion9 100.00% 273 27 8 22.22% 216 58 34 95.30% 94.44% 26 18 95.30% 100.00% 50.00%
mc 100.00% 44 11 3 9.38% 36 16 10 100.00% 31.25% 9 8 100.00% 100.00% 25.00%
opus 100.00% 242 41 10 3.13% 200 113 30 94.30% 9.38% 59 55 96.14% 100.00% 17.19%
planet 100.00% 700 204 82 1.33% 602 723 115 97.70% 1.87% 196 194 97.70% 100.00% 3.16%
pma 100.00% 755 116 29 0.47% 689 339 97 98.81% 1.58% 147 143 98.81% 100.00% 2.33%
s1 100.00% 680 111 26 0.51% 606 245 107 97.67% 2.09% 139 135 97.67% 100.00% 2.64%
s1488 100.00% 1160 219 84 0.68% 1062 1997 251 97.96% 2.04% 262 260 97.96% 100.00% 2.12%
s1494 100.00% 1115 211 81 0.66% 1019 1903 250 98.07% 2.03% 244 242 98.07% 100.00% 1.97%
s208 100.00% 316 48 17 0.37% 246 1060 153 91.95% 3.32% 125 122 91.95% 100.00% 2.65%
s27 100.00% 132 27 6 6.25% 105 57 34 93.53% 35.42% 31 27 93.53% 100.00% 28.13%
s298 100.00% 4394 646 280 16.06% 4305 4162 1108 99.18% 63.53% 849 548 99.18% 100.00% 31.42%
s386 100.00% 329 59 15 0.90% 290 225 64 95.11% 3.85% 100 95 97.31% 100.00% 5.71%
s420 100.00% 319 48 17 0.37% 249 957 137 91.95% 2.97% 119 118 91.95% 100.00% 2.56%
s510 100.00% 390 121 46 0.00% 308 1110 1109 97.36% 0.00% 138 137 97.36% 100.00% 0.00%
s820 100.00% 661 133 30 0.00% 598 1351 1350 97.92% 0.02% 222 221 97.92% 100.00% 0.00%
s832 100.00% 670 131 32 0.00% 609 1347 1346 97.99% 0.02% 237 236 97.99% 100.00% 0.00%
sand 100.00% 904 181 44 0.07% 884 315 189 100.00% 0.29% 156 148 100.00% 100.00% 0.23%
shiftreg 100.00% 67 22 9 56.25% 55 32 16 100.00% 100.00% 24 14 100.00% 100.00% 87.50%
styr 100.00% 724 151 39 0.25% 685 492 167 98.95% 1.09% 212 211 98.95% 100.00% 1.37%
tav 100.00% 49 16 3 4.69% 41 63 49 100.00% 76.56% 14 13 100.00% 100.00% 20.31%
tbk 100.00% 1019 222 44 2.15% 999 2998 1568 100.00% 76.56% 224 191 100.00% 100.00% 9.33%
tma 100.00% 593 98 25 0.98% 526 203 63 98.52% 2.46% 106 92 98.52% 100.00% 3.59%
train11 100.00% 287 50 13 29.55% 251 71 36 90.85% 81.82% 46 33 98.17% 100.00% 75.00%
train4 100.00% 43 12 3 18.75% 35 28 16 100.00% 100.00% 11 10 100.00% 100.00% 62.50%
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