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Abstract

Occurrence of unknown values in scan chains in response to
test vectors is a common phenomenon. This paper presents a
method for designing matrices for linear test output compactors
by using rows of multiple weights. Compared to previously pro-
posed compactors, the method reduces the masking caused by un-
knowns by an order of magnitude provided that the unknowns are
non-uniformally distributed among the scan chains. Also, using
multiple rather than single weight compactors increases the com-
paction ratio and reduces the hardware overhead. The effective-
ness of multiple weight compactors is demonstrated through anal-
ysis, simulations and experiments with test response from an in-
dustrial design.

1 Introduction

Testing of VLSI circuits is challenged by the increasing test vol-
ume and number of scan cells, contrasting with the limited band-
width available at the input and output pins. To reduce the test ap-
plication time, hundreds or thousands of scan chains are required
to be loaded and unloaded in parallel while only a limited amount
of data can be loaded from and unloaded to the tester [14]. Such
test volume reduction also cuts the memory and computing re-
quirements for the tester.

On the input side, lossless compression techniques can be used
to reduce the amount of data stored on the tester and loaded on the
chip to generate the test stimuli. As test cubes generated by ATPG
tools have generally a low fill rate, coding schemes can achieve
high compression ratios by properly choosing the unspecified bits.
The techniques for test stimuli compression include the statisti-
cal coding [11], LFSR reseeding [12] and parallel serial scan [6]
schemes. These approaches have been shown to achieve up to two
orders of magnitude compression.

On the output side, the data unloaded from the chip is used to
decide if the chip is faulty and to localize the errors in the case
of diagnosis. To perform such analysis, a signature of the test re-
sponse, rather than the full data, is sufficient in general. Therefore
lossy compaction techniques can be used with the desired prop-
erty that errors propagate through the compactor to avoid any loss
in coverage. Two types of masking, namely error masking and
X masking, can prevent errors from propagating to the signature.
Error masking occurs when a combination of errors cancel each
other while X masking occurs when unknown values mask errors.
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Unknown values are results of the circuit simulation that occur
when the value of a line cannot be predetermined. X states have
various sources such as bus contentions, uninitialized states, inac-
curate simulation models, and timing uncertainties during at-speed
testing for delay faults.

While error masking is relatively unlikely for well designed
compactors, X states severely impact the observability of scan
cells at the outputs of the compactors. To prevent X masking, solu-
tions can be proposed at different levels. First, sources of X states
can be removed or blocked through design modification [14]. Such
a technique requires substantial design effort and it cannot be guar-
anteed in general to fix all sources of X states. Second, test sets
can be modified to reduce the number of X states produced during
test [24]. Such modification selectively fills test vectors to prevent
X states to propagate to the scan cells. That extra filling has the
drawback of reducing the freedom used for test set compression
and also it does not guarantee that no X state reaches the scan cells.
Third, a circuit can be inserted in front of the compactor to mask
the unknown values that reached the scan cells, by replacing them
with arbitrary but known values. Such circuit can be designed for a
given test set [19] or need to receive inputs from the tester to know
which position to mask [5, 17]. Also, while aiming at masking
unknown values, known values can also be allowed to be masked
to reduce the complexity of the masking circuitry. However, that
masking of known values can result in a drop of coverage of un-
modeled faults [25]. Last, compactors can be designed to reduce
the impact of X states, which is one of the objectives of this study.

In this paper, we investigate a class of compactors called multi-
ple weight compactors based on the linear block compactors [26].
We establish that, compared to single weight compactors, multiple
weight compactors have reduced hardware overhead and higher
compaction ratios. Also, we demonstrate that the tow types of
compactors have comparable error masking performance. Finally,
we show that multiple weight compactors reduce the X mask-
ing effect given that the X states are not uniformally distributed
among the scan chains. Before introducing the underlying model
of linear block compactors and the multiple weight compactors in
Section 3, the paper presents an overview of compaction schemes
previously proposed in Section 2. The properties of the multiple
weight compactors are derived in Section 4. To demonstrate the ef-
fectiveness of the compactors, experimental results are presented
in Section 5. Experiments were conducted to evaluate the X mask-
ing, error masking, and the combination of X and error masking
using industrial circuits. The paper concludes with Section 6.
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2 Previous work

Test response compactors have three main characteristics: their
space and time compaction capability, their dependence on the
circuit or the test set, and their linearity or nonlinearity. A
number of schemes were developed to compact a given test re-
sponse [1, 2, 4, 10, 13, 23]. They can achieve high compaction
ratios with minimum impact on fault coverage, but they can be
designed only once the test set has been derived. Furthermore,
they need to be redesigned every time the circuit or the test set is
modified. Such schemes can be used for testing of IP cores as the
knowledge of the circuits may not be required for compacting a
given test response. Other schemes [3, 20] are only circuit depen-
dent, thus constraining that the compactor can be designed only
after the circuit is fully designed. Also the compactor needs to be
modified every time the circuit is modified. This study focuses on
circuit independent compactors whose design only requires coarse
information about the circuit such as the number of outputs. Such
compactors are usually linear to maximize the observability of the
scan outputs, thus we also restrain this study to linear compactors.

Regarding space and time compaction capabilities, compactors
can be divided into three classes: infinite memory compactors,
finite memory compactors, and zero memory compactors. Each
class of compactors can also combine some space compaction with
time compaction, zero memory compactors being purely space
compactors. When a scan output sequence is fed to an infinite
memory compactor, the signature produced depends on all the
scan-out values, no matter how long the sequence is. Thus, these
compactors are used to achieve very high compaction ratios in the
time dimension. They are frequently used, for example in BIST
environments, and well developed techniques for infinite time
compaction include linear feedback shift register (LFSR), multiple
input shift register (MISR), and counting based techniques. Note
that, while performing time compaction, a MISR also performs
space compaction when the number of memory elements used is
smaller than the number of scan chains. When producing signa-
tures, compactors should propagate errors occurring at the scan
outputs. Although linear compactors have good signal propagation
property, some errors can cancel each other during compaction,
possibly leading to a drop in fault coverage. That effect, referred
to as error masking (or aliasing) can be marginalized in MISR de-
signs by increasing the size of the shift register. However, the loss
of information due to compaction still impacts severely the fault
diagnostic based on compacted outputs. Similarly, the presence of
X states in the scan chains also affects the compactor performance.
The impact of X states, referred to as X masking, is severe because
each X state in the output sequence multiplies by two the num-
ber of possible signatures corresponding to the fault free behavior.
That makes signature analysis impossible when the test response
sequence contains more X states than the size of the shift register.
As mentioned in the introduction, methods to contain X values can
be used at several levels but each method alone may not guarantee
to fix all the X values or may achieve that goal only at a high cost.
Therefore one objective of this work is to study how compactors
can handle the X values present at the scan outputs. Since infinite
memory compactors have very limited X tolerance, we focus on
zero memory and finite memory compactors.

Zero memory compactors are combinational circuits that only

achieve space compaction. Some zero memory compactors, such
as Saluja-Karpovsky compactors, are based on check matrices of
error correcting codes [22]. Their error masking properties and di-
agnostic capabilities depend directly on the distance of the code
corresponding to the check matrix used. In the presence of X
states, these compactors can be used with post-processing of the
compacted output to compare it with a set of possible compacted
outputs for the fault free circuit, each possible compacted output
corresponding to a different realization of the X states [18]. Other
compactors named X-compactors avoid that post-processing by
building compaction matrices guaranteeing that a given number
of errors are directly observable, i.e. by simple comparison with
the fault free compacted output, in the presence of a given num-
ber of X states at the scan output [15]. Zero memory compactors
are limited in the compaction ratio attainable by the relative small
number of scan chains. Indeed, much higher compaction ratio
can usually be obtained by compacting more values at a time. Fi-
nite memory compactors can improve the compaction ratio of zero
memory compactors by expending compaction in the time domain.
When a scan output sequence is fed to a finite memory compactor
of depth d, the signature produced at a given time ¢ depends on
the output values between time ¢ — d + 1 and ¢. For example,
a MISR whose content is checked and reset every d cycles is a
finite memory compactor. Recently, two block compactors were
proposed, namely convolutional compactor [8,21] and block com-
pactor [26]. They are able to provide one output compaction while
preserving low error masking and X masking. Also, when com-
pared with the X-compact scheme for equal compaction ratio, they
demonstrate lower X masking probability. Another finite memory
compactor produces X folerant signatures by generating random
rows for the linear operation and compacting in the time dimen-
sion [16].

3 Model and main idea

The compactors developed in this paper are based on block com-
pactors. This section describes the block compactor model in de-
tail and presents the main idea of multiple weight compactors.

3.1 Block compactor model

A block compactor of depth d compacts n scan chains into m out-
puts by considering blocks of time depth d. It can be described
with a binary matrix with d.n rows and d.m columns. Each row is
associated with one of the last d cells of the scan chains, the set of
d.n such cells forming an input data block as shown in Figure 1.
The matrix compacts the input data block into an output data block
of size d.m, which is then scanned out in d cycles through the m
outputs as the next input data block is formed during regular shift-
ing of the scan chains. The entry in row ¢ and column j of the
compaction matrix is “1” if and only if the input block cell asso-
ciated with row ¢ is connected to the XOR tree feeding the output
block cell associated with column j. Otherwise, the entry is “0”.
The circuit realizing the linear operation is described in Figure 2.
It corresponds directly to the compaction matrix. Note that this
model of data blocks is valid for memoryless compactors, such as
X-compact, in which case a data block consists of scan cells lo-



cated at the scan chain outputs which are observed during a single
scan-out cycle, i.e. depth d = 1. Note also that Figure 1 suggests
that block compactors are intrusive of the scan chains. However,
there exist non-intrusive designs for which the compactor inputs
are merely the scan chain outputs. Of course, these designs have
extra memory elements within the linear compactor.
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Figure 1: Block compactor architecture.
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Figure 2: Linear compactor.

The error masking and X masking properties of block com-
pactors depend essentially on the properties of their matrices. The
block compactors previously proposed use matrices with rows of
equal and odd weights, the weight being the number of ones in a
row [15, 26]. Such single weight matrices guarantee to detect 1, 2
or any odd number of errors occurring within the same data block
if all the matrix rows are different. In the presence of one X state
in a data block, the matrices of equal weight guarantee detection
of any single error.

3.2 Multiple weight compactors

Using multiple weights when choosing the rows of the compactor
matrices can improve the compaction ratio and/or the hardware
cost, and can also reduce the X masking of the compactors. From
the compaction ratio point of view, considering multiple weights
increases the number of different rows to choose from when build-
ing the matrix. Indeed, for a given weight w, the number of dif-

ferent rows of weight w is < d'utn > . Furthermore, rows of differ-

ent weight are always different. If more rows can be found while
maintaining the error and X masking probabilities, then more scan
chains can be compacted into the same number of outputs, thus in-
creasing the compaction ratio while keeping the same compactor
performance. From the overhead point of view, the number of
XOR gates needed to implement the tree feeding the compactor
output ¢ is w; — 1 where w; is the weight of the column ¢ (as-
suming that XOR trees do not share logic). Therefore, overhead
decreases when low weights are used in general. By using rows
of multiple weights instead of single weight, one may achieve the
same compaction ratio at a lower cost.

Although multiple weight compactors were considered in pio-
neer work on compaction [9, 22] and in compactors with random
rows [16], recent schemes for block compaction in the presence
of X values only use single weight matrices. From the X mask-
ing point of view, non identical rows of same weight cannot fully
cover each other. Therefore, a single X value cannot mask a sin-
gle error when single weight matrices are used. That property
may not hold anymore for multiple weight matrices but, never-
theless, multiple weight matrices can have lower X masking on
average. Considering X masking, it was observed that matrices
with low weight outperformed matrices with higher weight when
scan chains produced a large number of X states [21]. But the op-
posite observation was made when scan chains produced only few
X states. Indeed, increasing the weight makes scan chains outputs
propagate to more compactor outputs, and become more observ-
able. However, increasing the weight also increases the number of
compactor outputs that are made unobservable by each X state pro-
duced. Another observation is that the X state distribution among
the scan chains is not uniform in general, i.e. the majority of the X
states is produced by a small fraction of the scan chains. Indeed,
the sources of X states are often localized within a circuit and,
therefore, affect some scan chains more than others. For example,
observation of some industrial circuit showed that over 90% of the
X states were produced by only 10% of the scan chains [21]. We
also make the same observation for the designs considered in this
paper and presented in Section 5.

Therefore the main idea of this study is to build compactors
using matrices with multiple weights. Rows of small weight are
assigned to scan chains producing many X states, while rows of
larger weight are assigned to scan chains producing fewer X states.
Note that a method to build multiple weight matrices considering
convolutional compactors rather than block compactors has also
been proposed recently [7]. Also, the scheme proposed for X-
tolerant signature analysis allows rows of multiple weights but it
does not assign the rows according to the X distribution.

4 Compactor properties

In this section, we study the general properties of multiple weight
block compactors. In particular, we prove that, in the absence of
X states, the error masking is identical for the compactors with
rows of multiple weights and of single weight. The diagnostic
capability is also proven identical for both types of compactors.
In the presence of X states, we describe the X masking properties
of multiple weight compactors. Finally, we study the achievable
compaction ratio and overhead of multiple weight compactors.



4.1 Properties in the absence of X states

First, we look at cases for which no X states are produced in a data
block.

Property 1: A multiple weight compactor detects errors from
any one or two scan cells in a data block, provided that no scan
cell produces X states in the data block, if the rows of its matrix
are nonzero and different.

Property 1 simply states that any error can propagate to the
compacted outputs if the rows are nonzero, and two errors can-
not cancel each other if two rows cannot add up to zero, i.e. two
rows are different. That property corresponds to well known re-
sults from error correcting code theory since a check matrix with
nonzero and different rows corresponds to a Hamming code (short-
ened or not) of distance three [22].

Property 2: A multiple weight compactor detects errors from
any one, two, or k scan cells, with k odd, in a data block, provided
that no scan cell produces X states in the data block, if the rows of
its matrix are nonzero, different, and all the entries of one column
of its matrix are “1”.

Such a matrix corresponds to an augmented Hamming code
with overall parity check, which has distance four. Therefore,
detection of 1, 2, and any odd number of errors is guaranteed.
Note that this property is identical to the one derived for the sin-
gle weight compactors previously proposed. In general, multiple
weight matrices can be built using check matrices of error cor-
recting codes of any given distance. The code needs to be chosen
so that its check matrix has enough rows of each desired weight.
Code with overall parity check require that all the scan cells are
connected to one of the compactor outputs, thus creating a very
deep XOR tree. To solve timing issues that such a design may cre-
ate, it is possible to pipeline the linear compactor, thus introducing
latency and extra overhead. Therefore, the following approach us-
ing only odd weights may be preferred and it is the scheme used
in the remainder of this paper.

Property 3: A multiple weight compactor detects errors from
any one, two, or k scan cells, with k odd, in a data block, provided
that no scan cell produces X states in the data block, if the rows of
its matrix are nonzero, different, and have odd (but not necessary
equal) weight.

Adding the condition that all the weights are odd gives again
identical detection performance for multiple weight and single
weight compactors. That property derives from the fact that errors
cancel in pairs, therefore if an odd number of errors are propagated
an odd number of times, they cannot fully cancel out. Note that de-
tection of four errors can also be guaranteed by choosing the rows
in a manner such that four rows cannot add up to zero [21]. We
will demonstrate such compactors in the following section.

Regarding error diagnosis ability, the following property holds.

Property 4: A multiple weight compactor uniquely identifies
any single erroneous cell in a data block, provided that no scan
cell produces X states in the data block, if the rows of its matrix
are nonzero and different.

Property 4 also relates to error correcting code theory, the ma-
trix corresponding to a code of distance three. The result of Prop-
erty 4 is again equivalent to the diagnostic capability of single
weight compactors.

4.2 Properties in the presence of X states

When using rows of multiple weights, it is possible that one row r1
with high weight covers a row r2 with low weight, i.e. the entry
in any column of 71 is “1” whenever the entry in the same col-
umn of r5 is “1”. In such a case, an X state produced by the scan
cell associated with 1 will make the scan cell associated with r»
unobservable. Therefore, no error detection is guaranteed in the
presence of X states for multiple weight compactors when consid-
ering all the scan cells together. Note that single error detection in
the presence of single X state is guaranteed by single weight com-
pactors. Nevertheless, some properties hold for multiple weight
compactors when considering groups of scan cells separately. For
simplicity of the presentation, we assume that only two different
weights are used in the compactor matrix, namely w; for weight
low and wy, for weight high.

Property 5: A multiple weight compactor using weights w; and
wy, detects any single erroneous cell in a data block, provided that
an X state is produced by one of the scan cells associated with a
row of low weight in the data block, if the rows of its matrix are
nonzero and different.

Indeed, a row of low weight cannot cover another row of low
weight (since the rows are different) and cannot either cover a row
of large weight.

Property 6: A multiple weight compactor using weights w;
and wy, detects any single erroneous cell in a data block associated
with a row of high weight, provided that an X state is produced by
any scan cell in the data block, if the rows of its matrix are nonzero
and different.

Indeed, a row of high weight cannot be covered by any other
row in the matrix.

Property 7: A multiple weight compactor using weights w;
and wy, with wy, > 2w, detects any single erroneous cell in a data
block associated with a row of high weight, provided that two X
states are produced by any two scan cells associated with rows of
low weight in the data block, if the rows of its matrix are nonzero
and different.

Indeed, the condition wy, > 2w; prevents any two rows of low
weight to cover a row of high weight. Note that such a property
does not hold for single weight compactors.

The intrinsic properties of the matrices presented here only par-
tially indicate the X masking performance of the compactors. Al-
though multiple weight matrices do not guarantee to detect any
error in the presence of one X value, it can still outperform single
weight compactors when X values are nonuniformly distributed
among the scan chains. Indeed, it has weaker properties for un-
likely events, e.g. occurrence of an X in a scan chain associated
with a row of high weight. But it has stronger properties for likely
events, e.g. occurrence of Xs in two scan chains associated with
rows of low weight. In Section 5, we demonstrate the effectiveness
of multiple weight compactors in reducing X masking by evalu-
ating the X masking probability in various cases including some
industrial scenarios.

4.3 Compaction ratio and cost analysis

The compaction capability of a compactor can be measured by the
maximum number of scan chains supported for a given number of



outputs m and a given compactor depth d. Let w;,1 < ¢ < p be
p different odd weights used to build the rows of the compactor
matrix. Then, the maximum number of scan chains N (d, m) that
can be supported, is given by the following equation.

1 o d.m
N@mﬁ:b§:<@i” )
i=1
The maximum number of scan chains supported by a single
weight compactor would be only one of the terms in the sums
specified. Therefore, the maximum number of scan chains sup-
ported by the multiple weight compactor is substantially greater.
That property can be used to achieve higher compaction ratio for a
given output size m. Note however that single weight block com-
pactors are able to compact any number of scan chains into a single
output by increasing the depth d. In that sense, compaction ratio
can be improved for a given d. Also, multiple weight compactors
can reduce the depth d necessary to achieve a given compaction
ratio. In that sense, the complexity can be reduced for a given
compaction ratio. More importantly, these benefits from multiple
weight compactors are obtained while keeping the same proper-
ties for error masking and we will also show that the X masking
probability decreases.

| m

max n

single weight 10 | 28 | 126 | 396 | 1716 | 5720

max n

mult. weight 16 | 64 | 256 | 1024 | 4096 | 16384

max n

single weight 6 | 42 | 264 | 2145 | 16206

max n

mult. weight 10 | 85 | 682 | 5461

43690

(byd=3

Table 1: Maximum number of scan chains for varying num-
ber of outputs and depth.

Table 1 shows the maximum number of scan chains supported
by single and multiple weight compactors for two different depths
(d = 2,d = 3) and for varying number of outputs . In the case
of single weight, the maximum number of supported scan chains
is reached for weight w = LdTmJ . For multiple weight, the max-
imum is reached when using all the odd weights ranging from 1
to d.m. The table shows that for a given depth d and output size
m, the multiple weight compactor can support substantially more
scan chains. Also, for a given number of scan chains n and output
size m, the depth can be reduced when using multiple weight com-
pactors. For example, to compact 60 scan chains into 4 outputs,
depth of two is sufficient for multiple weights whereas a depth of
at least three is required for single weight compactors.

With respect to overhead, multiple weight compactors can re-
duce the number of XOR gates needed to realize the linear opera-
tor. Assuming that the XOR trees corresponding to the m outputs
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Figure 3: Cost for varying number of scan chains with d =
2,m=2_8.

do not share logic, the total number of XOR gates, say C, is given
by the following expression.

C= w(i) —m.d )

where w(?) is the weight of the row associated with the input cell .
Starting with a given compactor of single weight wq, the cost can
be reduced by replacing rows of weight wo with rows of weight
wy with wy < wg. Figure 3 shows the cost C' as a function of the
number of scan chains n using single and multiple weight com-
pactors. The figure shows clearly that using multiple weights al-
ways results in lower cost.

S Experimental results

The properties described in the previous section indicate that mul-
tiple weight compactors have the same guarantees of error detec-
tion in the absence of X values but different guarantees in the pres-
ence of X values. In this section, we further study the error and X
masking characteristics of multiple weight compactors by evalu-
ating the average masking probability. First, we measure the X
masking probability assuming non uniform distribution of X val-
ues among the scan chains. Second, we evaluate the error masking
probability when four errors occur simultaneously in the input data
block. Last, we provide a study of the combination of error and X
masking of an industrial design.

5.1 X masking
5.1.1 Experimental evaluation

The properties described in the presence of X states show that in
some cases more X states can be supported by multiple weight
compactors than by single weight compactors, and vice versa.
Therefore, it is essential to evaluate the average X masking proba-
bility in order to compare the schemes. The X masking probability
depends on the distribution of X values in the test response. As
argued earlier, that distribution was observed to be non uniform
among the scan chains of industrial designs. In this experiment,



we assume that each input scan cell ¢ has a stationary probability
p; of producing X values. To model the non uniformity, we allow
Di # p; wWhenever scan cell ¢ and j do not belong to the same scan
chain. We evaluate the X masking probability by measuring the
average number of scan cells masked, including the scan cells pro-
ducing X values, when each scan cell ¢ produces an X value with
probability p;. The matrices used have 1600 rows and 16 columns
so they can be used to compact mdﬁ scan chains into % outputs
with a depth d. We considered four different distributions of X
values among the scan chains.

e Scenario S1: the X values are uniformly distributed among
the scan chains and single weight w = 7 is used.

e Scenario Sy: 90% of the X values are produced by 10% of
the scan chains. Two weights are used, w = 3 for rows as-
sociated with scan cells belonging to scan chains producing
many X values and w = 7 for the remaining rows.

e Scenario S3: scan chains are divided into four different
groups described in the following table. For each group, the
table specifies the size of the group as a percentage of the to-
tal number of scan chains, the percentage of the total number
of X values produced by the group, and the weight of rows
associated with scan cells belonging to scan chains from the

group.
Group # 1 2 3 4
Size (%) 10 | 30 | 60 | 9.0
X produced (%) | 50.0 | 200 | 20.0 | 10.0
Weight 1 3 5 7

For example, Group 1 consists of 1% of the scan chains
which produce 50% of the X values and have associated
weightw = 1.

e Scenario S4: scan chains are divided into five groups de-
scribed in the following table. Note that the scan chains in
the last group do not produce any X values and a relatively
high weight is associated with these scan chains.

Group # 1 2 3 4 5
Size (%) 1.0 3.0 60 | 200 | 70.0
X produced (%) | 50.0 | 20.0 | 200 | 100 | 0.0
Weight 1 3 5 7 11

The X masking probability is evaluated for the four scenarios
using Monte Carlo simulation. For each scenario, the average por-
tion of scan cells producing X states considering all the scan cells
(named X probability) varies from 0.01% to 1%. For every scan
cell 7, the probability p; of producing X values is computed ac-
cording to the X probability px and the group of scan chains to
which cell ¢ belongs. Precisely, p; = ‘;—: X px where a; is the
percentage of X values produced by the group to which cell ¢ be-
longs, and b; is the relative size of that group. For example, for
scan cell 7 belonging to group 1 of scenario S4 and for an X prob-
ability of 1%, p; = % x .01 = .5 so that scan cell ¢ produces
an X value with 50% probability. To build the matrices used in the

four scenarios, the desired number of rows of a given weight are
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Figure 4: X masking probability for four scenarios.

randomly picked among all the possible rows of that weight while
making sure that all the rows are different. Repeating the experi-
ment with different randomly picked matrices showed that the X
masking probability is robust to the selection process. However,
note that other row selection process, such as following the lexico-
graphic order, may result in different X masking probability. Such
selection scheme is not considered in this paper.

Figure 4 shows the X masking probability for the four scenar-
ios when the X probability varies from 0.01% to 1%. As expected,
the graph indicates that the X masking probability increases with
the X probability. Comparing the different scenarios, we see that
X masking is highest for scenario S, and then reduces for scenar-
i0s S2, S3 and S4. Although scenario S corresponds to uniform
distribution of X values among the scan chains, the X masking
probability with single weight w = 7 for the non uniform distri-
butions of scenarios Sz, S3 and S4 was also considered and found
to be identical to that of S;. Indeed, the rows of identical weight
being picked and ordered randomly, the distribution of X values
does not affect the X masking probability. Therefore, scenario Sq
gives the performance of single weight compactors for any X value
distribution. The graph shows the effectiveness of increasing the
number of weights in reducing the X masking. When only rough
knowledge of the X value distribution is known as in scenario S»,
the X masking effect can already be reduce by using only two dif-
ferent weight. As more detailed information is known about the
X value distribution, more weights can be used to further reduce
X masking. In particular, using rows of higher weights for scan
chains that produce no X values reduces X masking even further.

5.1.2 Analytical expression

An analytical expression of the X masking probability can help
find the optimal weight selection for a given X value distribu-
tion. Here we derive the X masking probability Px masking Of
single weight compactors assuming that X values are uniformly
distributed among the scan chains. We consider one row ¢ of the
matrix that contains a total of  rows. Let P.(7) be the conditional
probability that row ¢ is masked given that j scan cells contain X
values. Also, let Q(j) be the probability that j scan cells contain
X values. Then,

n—1
PXmasking = ch(])Q(J) 3)
j=1



We can derive Q(7) as a function of the X probability px:

Qy) = (" ; ! ) ph(l—ps)"

Let r(j, k) be the probability that j rows cover a given set of k
bits out of m. Then, P.(j) = r(j, w) where w is the weight of
the rows. Let s(I, k) be the probability that one row covers exactly
a given set of [ bits out of k. By considering that a single row
out of j can cover from 0 to k bits, leaving the remaining bits to
be covered by the remaining 7 — 1 rows, we derive the following
recursive relation for (3, k):

k—1
. k .

G k)= ( ; ) s(Lk)r(G—1,k=1) +7(1,k) &
1=0

Furthermore, 7(1, %) and s(l, k) can be found by counting the
number of rows of weight w that cover a given set of k bits and

the number of rows that cover exactly I out of & bits, with respect
to the total number of rows of weight w but different from row :.

<m—k:>
w—k
r(l,k) = ———%

By using the recursive expression in (4) to find p.(j), we eval-
uated the X masking probability given by Equation 3 for the X
probability varying from 0.01% to 1%. We found that the experi-
mental results corresponding to the scenario S; formerly presented
match the analytical results since they are within the confidence
level of the Monte Carlo simulation used. However, the expres-
sion derived here for the X masking probability may be impracti-
cal for determining the optimal weight due to its recursive nature.
Also, it only considers single weight compactors and uniform X
value distribution. Finding useful and general expression for the
X masking probability remains an open problem.

5.2 Error masking

We showed in Section 4 that single and multiple weight com-
pactors have identical error detection properties in absence of X
values when only odd weights are used. For both types of com-
pactors, errors of multiplicity four, six, eight, etc, can be masked
and we investigate here if the error masking probability increases
when using multiple rather than single weight compactors. When
evaluating the error masking probability, the different multiplic-
ities of errors bear different importance. Indeed, the probability
of masking of six, eight, or more even number of errors has been
reported to be much smaller than the probability of 4-error mask-
ing [21]. Furthermore, it is much less likely that a defective chip is
detected only through errors of multiplicity six or more rather than
multiplicity four [15]. Therefore, we focus here on 4-error mask-
ing. We conduct two experiments to compare 4-error masking for
single and multiple weight compactors. In the first experiment, we
measure the probability of 4-error masking and in the second ex-
periment we evaluate the compaction ratio reachable when build-
ing matrices that eliminate 4-error masking.

1.0E-03

> lexico 25
5 ——lexico 50
g / | —e—texico 100
& /.//.\\. —8— lexico 200
.E 1.0E-04 / random 25
2 !/./ - - -&- - - random 50
g .."D--""“‘ﬁ ---O---random 100
s - - -B- - - random 200
<
1.0E-05 .
3 5 7 9 1 13
weight
(a) Single weight.
1.0E-03
g lexico 25
g ——lexico 50
g —@—lexico 100
g’ 1 0E-08 ——lexico 200
< random 25
E - - -®- - -random 50
g ---0©---random 100
3 - - -E- - - random 200
1.0E-05 -

weight w2

(b) Two weights (w1=3, w2 varies).

Figure 5: 4-error masking probability with d.m = 16.

5.2.1 Masking probability of 4 errors

The 4-error masking probability is evaluated through Monte Carlo
simulation by injecting random sets of four errors in each data
block and checking if the errors cancel each other through com-
paction. We consider various matrices that have different number
of rows, columns and different building scheme. In the first ex-
periment, matrices have 16 columns and varying number of rows
to achieve compaction ratios ranging from 25 up to 200. Two
schemes are considered to build the matrices. In the first scheme,
rows are chosen following a lexicographic order. For example,
if rows are six bit long with weight three, the order is 111000,
110100, 110010... In the second scheme, rows are chosen ran-
domly.

Figure 5(a) shows the 4-error masking probability for sin-
gle weight matrices lexicographically and randomly picked, the
weight varying from 3 up to 13. We observe that the two schemes
for building matrices result in curves of opposite shapes. Matrices
built following the lexicographic order have higher 4-error mask-
ing probability because of the high correlation between the differ-
ent rows. Indeed, the rows picked tend to have entry “1” in their
first few positions and it is even more true as the total number of

possible rows of weight w, , is large, which happens for

w = 8. On the other hand, randomly picked matrices have low-
est 4-error masking when the weight is around 8. For compaction
ratio of 25 and weight of three, the two types of matrices perform
almost equally since most of the rows of weight three are being
used (400 out of 560 possible) so that the selection process has
less impact. Similar observation holds for weight 13 and com-
paction ratio of 25. Note that there are not enough rows of weight
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Figure 6: 4-error masking probability for 100x compaction.

3 or 13 to achieve compaction ratio of 50 and higher.

We run a similar experiment with matrices using two different
weights. In each case, ten percents of the rows have weight three
and the remaining rows have a higher weight that ranges from 5 to
13 in the experiment. The results presented in Figure 5(b) show a
similar trend than for single weight matrices. We conclude from
the results that lexicographically picked matrices result in higher
4-error masking probability. We also observe that the compaction
ratio has a very small impact on the 4-error masking probability
for randomly built matrices. Finally, we observe by comparing
the two graphs that single and double weight matrices result in
comparable 4-error masking probability.

Low High weigth
weights 5 7 9 11 13
0 (single) 4.1e-5 | 3.1e-5 | 3.2e-5 | 4.1e-5
1 4.1e-5 | 3.1e-5 | 3.1e-5 | 4.0e-5
13 59e-5 | 3.6e-5 | 3.2e-5 | 3.5e-5
135 43e-5 | 3.6e-5 | 3.5¢-5 | 4.9e-5
1357 3.4e-5 | 3.3e-5 | 3.6e-5
135,79 32e-5 | 3.2e-5
1,3,5,79,11 3.2e-5

Table 2: 4-error masking probability for varying number of
weights

To further compare single and multiple weight matrices, we
evaluated the 4-error masking probability for a compaction ration
of 100 and number of columns varying from 14 up to 24. Only ran-
domly built matrices are considered. The weight of single weight
matrices varies from 5 to 19. Multiple weight matrices have ten
percents of the rows of weight three and the remaining rows of a
higher weight that ranges from 5 to 19. The results are presented
in Figure 6 and they show that single and multiple weight matrices
result in almost identical 4-error masking probability.

Finally, we evaluated the 4-error masking probability while in-
creasing further the number of weights used in the matrices. We
built matrices with 1600 rows and 16 columns with up to seven
different weights. In each case, the matrices have the same num-
ber of rows of each weight except for rows of weight one since
there are only 16 such rows. For matrices with p weights, we set
the first p — 1 weights to be the lowest possible, i.e. 1,3, ..., 2p-3
and the last weight varies.

The 4-error masking probabilities are shown in Table 2. The
first column of the table specifies the low weights used and the
highest weight varies from 5 to 13. The results show that the 4-
error masking probability remains at the same level when increas-
ing number of weights are used.

5.2.2 Matrices free of 4-error masking

Another measure of the impact of multiple weights on error mask-
ing is the compaction ratio achievable with matrices that are free of
4-error masking. To build such matrices, let all the different rows
of all desired weights form a set S,,. The matrix building process
consists of randomly picking rows in .S}, one at a time. At each
step, the row picked is moved to the set of chosen rows S., then
the linear sum of all the combinations of three rows in S, is com-
puted and the sum obtained is rejected from S, if it belongs to .S),.
That process was initially proposed to build 4-error masking free
matrices of single weight [21]. We implemented it for building
matrices of multiple weight by modifying the random selection of
rows from S), so that every weight is as likely to be picked.

Single weight Multiple weigth
weight | #rows | weights | # rows
3 103 1-3 82
5 276 1-5 232
7 425 1-7 381
9 489 1-9 472
11 497 1-11 504
13 492 1-13 516

Table 3: Number of rows in 4-error masking free matrices
for m = 22.

Table 3 shows the number of rows found when building 4-error
masking free matrices of single and multiple weight. For each row
in the table, we consider a given weight w for the single weight
matrix and a weight range from 1 to w (and only odd weights) for
the multiple weight matrix. That choice guarantees that the multi-
ple weight matrix can be realized with less hardware than the sin-
gle weight matrix. We observe that for small weights, more rows
can be found with a single weight matrix. However, the highest
compaction ratio is obtained with a multiple weight matrix. Space
limitation prevents us from presenting more results here but we
observed similar results with various numbers of columns.

5.3 Combination of X and error masking

The combination of X and error masking is evaluated using the X
distribution in the test response of a microprocessor design. The
design has 4.4M gates and 147K flip flops organized in 40 scan
chains of maximum length 3853. The test set consists of 5814
test patterns and the test response contains 2.1% of X values. We
considered various scan chain configurations by breaking the orig-
inal scan chains into s smaller scan chains. Figure 7 shows the
distribution of X values among the scan chains for s = 1,4 and
10. The lowest curve (s = 1) corresponds to the original con-
figuration with 40 scan chains and the other curves correspond to
configurations with 160 (s = 4) and 400 (s = 10) scan chains.
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Figure 7: Distribution of X values among the scan chains.

As assumed throughout this paper, we observe that most of the X
values are produced by only a few scan chains and that non uni-
formity increases with the number of scan chains considered. For
the configuration with 400 scan chains, 10% of the scan chains
produce 95% of the X values and 80% of the scan chains do not
produce any X value.

The experiment consists in injecting errors with a given proba-
bility in the test response and measuring how many of these errors
are unobserved at the output of the compactor. As one block of
cells is compacted at a time, we consider that if at least one bit in
the compacted block is erroneous, all the errors within the input
block are observed. Indeed, detection of one error is sufficient to
detect a faulty device. On the other hand, if all the bits in a com-
pacted block are non erroneous or X, we consider that all the errors
within the input block are masked. We first study the original scan
configuration with 40 scan chains and consider three compactor
settings.

e Compactors for setting A1 have depth d = 1, number of
outputs m = 8 for a compaction ratio of 5.

e Compactors for setting A, have depth d = 2, number of
outputs mm = 5 for a compaction ratio of 8.

e Compactors for setting As have depth d = 3, number of
outputs m = 3 for a compaction ratio of 13.

For each setting, single weight compactors use weight w = 5 and
multiple weight compactors use weights w = 1, 3 and 5. The per-
centage of errors masked is presented in Figure § as a function of
the error probability that varies from 0.01% up to 1.0%. We ob-
serve that the percentage of errors masked is almost constant as
the error probability varies. Also, we observe that the use of mul-
tiple weights reduces the percentage of errors masked by a factor
of around 10 for setting A1, 5 for setting A, and 3 for setting As.

Next, we create three configurations, namely Bi, B2 and Bs,
by subdividing the 40 scan chains into 160 (s = 4),400 (s = 10),
and 800 (s = 20) scan chains respectively and study the error
masking for each configuration. The compactor settings used for
each configuration are described in Table 4.

Again, we measure the percentage of errors masked as the er-
ror probability varies from 0.01% up to 1.0%, as presented in Fig-
ure 9. We observe that the masking probability drops drastically as
the error probability increases. Indeed, for higher error probability,

25
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20
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single
15 ——d=1, m=8,
single
- < - -d=3, m=3,
multiple
- =& - -d=2, m=5,
multiple

Percentage of errors masked

- - 0 - -d=1, m=8§,
multiple

Error probability

Figure 8: Error masking for original scan chain configura-
tion.

conf. | d | m | comp. weights used
ratio | single | multiple
B1 1120 |8 3 odd from 1 to 11

Bs 113013 3
Bs 1140 |20 3

odd from 1 to 17
odd from 1 to 21

Table 4: Compactors settings

the error patterns in the input block are more likely to have higher
multiplicity and such error patterns have lower masking probabil-
ity. Note that the faults hardest to detect typically produce patterns
with very few errors and these patterns are the most likely to be
masked. Therefore, lower error probabilities are of more interest
when evaluating masking. We observe that multiple weight com-
pactors reduce the percentage of errors masked by a factor around
7 for configuration B1, 10 for configuration B2, and 10 for con-
figuration Bz for error probabilities smaller than 0.5%. That re-
duction factor increases because the X distribution is less and less
uniform as the number of subdivisions increases. Note that we
measured the X masking of single weight compactors for all possi-
ble single weights and only the best performance is reported here.
On the other hand, not every multiple weight assignment could be
evaluated and better performance may be achievable. A scheme
for finding the optimal multiple weight assignment remains to be
developed.
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Figure 9: Error masking for subdivided scan chains.



6 Conclusion

This paper presented a scheme for compacting test responses con-
taining X values. The linear compactors proposed use matrices
with rows of multiple weights and were compared to the previ-
ously proposed single weight compactors. They were shown to
reduce the hardware overhead and increase the compaction ratio
of the compactor. Also, the X masking of multiple weight com-
pactors is reduced by properly assigning the rows according to the
distribution of X values among the scan chains. Meanwhile, the
error masking of multiple and single weight compactors remain
equivalent. The effectiveness of multiple weight compactors was
demonstrated through analysis, simulations and experiments con-
ducted with industrial designs.

Multiple weight compactors were shown to reduce X mask-
ing even when very coarse information is know about the X value
distribution among the scan chains. Therefore, they can perform
circuit independent compaction. Furthermore, we showed that X
masking can be further reduced when very detailed information is
known about the X value distribution. Therefore, multiple weight
compactors are most effective for circuit or test set dependent com-
paction, e.g. in system on chip environment. High performance
multiple weight compactors can also be implemented for circuit
independent compaction by using programmable logic.

The performance of multiple weight compactors strongly de-
pends on the weight assignment and a systematic mechanism for
such assignment is under investigation. Also, the masking of non
uniformly distributed errors remains to be investigated.
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