
Functional Constraints vs. Test Compression in Scan-Based Delay Testing

Ilia Polian Hideo Fujiwara

Graduate School of Information Science
Nara Institute of Science and Technology, Japan

polian@informatik.uni-freiburg.de fujiwara@is.naist.jp

Abstract

We present an approach to prevent overtesting in scan-based delay test. The test data is transformed with
respect to functional constraints while simultaneously keeping as many positions as possible unspecified in order
to facilitate test compression. The method is independent of the employed delay fault model, ATPG algorithm
and test compression technique, and it is easy to integrate into an existing flow. Experimental results emphasize
the severity of overtesting in scan-based delay test. Influence of different functional constraints on the amount of
the required test data and the compression efficiency is investigated. To the best of our knowledge, this is the first
systematic study on the relationship between overtesting prevention and test compression.

Keywords: Overtesting prevention, Functional constraints, Scan-based delay test, Test compression

1 Introduction
Extensive use of design for testability (DFT) techniques, including scan and test points, and non-nominal test meth-
ods such as low-voltage test and IDDQ test [1, 2] lead to overtesting, i.e., the IC is demonstrated to fail, but under
conditions which cannot occur in its normal operation mode. One reason for overtesting is the presence of latent
defects, which are too small to cause a failure under nominal conditions or logically redundant. A further reason is
the elevated level of IR drop and crosstalk effects which is caused by atypical power consumption during test that
does not correspond to the power consumption profile in normal operation [3]. Last but not least, behavior which
does not contradict the specification could be classified as “faulty behavior” by the test process if design tricks such
as cycle stealing are employed.
There appears to be no broad consensus whether overtesting should be maximized or prevented. On one hand,

overtesting is assumed to be an efficient (and often the only) approach to detect latent defects, which are not critical
yet but may deteriorate and become early-life failures due to phenomena including electromigration, hot-carrier
aging, dielectric breakdown and mechanical stress-induced migration [1, 4]. (For instance, the coverage of defects
that are provably undetectable under nominal conditions by low-voltage testing has been investigated in [5].) As a
consequence, massive use of DFT in combination with stress tests (burn-in) is advocated to reduce early-life failures.
On the other hand, it is argued that overtesting results in detections which are not necessarily due to a defect and that
it mainly leads to yield loss, i.e., discarding good chips. It has also been reported that a non-functional test sequence
can damage the chip by inducing heat dissipation that exceeds the limit the chip is designed for [6]. From this, the
need to prevent overtesting by using only functional test data, which can occur in the IC’s normal operation mode,
is deduced [3, 6, 7, 8, 9, 10, 11].
Several methods exist to prevent overtesting. They include generating functional patterns by a special ATPG

[8, 9], transforming existing non-functional test sets into functional test sets [6] and providing on-chip hardware to
block non-functional patterns from being applied [10]. Whether test data is functional or not, is decided based on

1

2nd IEEE International GHz/Gbps Test Workshop (GTW 2005), pp. 91-100, Nov. 2005.



functional constraints. There are different types of such constraints and different exact and approximate methods
for their computation, as will be explained in detail later.
In this paper, we study overtesting prevention in a test compression scenario. Test compression is an essential

technique for handling the growth of test data [12]. Modern test compression approaches work in two stages: first, an
ATPG is used to generate test patterns, and then an encoding algorithm is run over these patterns. Since the efficiency
of the encoding grows with the fraction of don’t care values in the test data, the ATPGs used in test compression
are tuned to specify as few bits as possible. One goal in the design of our method is to minimize the impact on the
existing flow. Thus, we do not propose any modifications to the existing ATPG tool (such as done in [8]) if it does
not support functional constraints or supports only a subset of the needed constraints. We are also not considering
adding any hardware to the design like in [10]. We focus on the use of scan in delay test as the source of overtesting
(see [7] for arguments why overtesting poses a larger problem in delay test than in stuck-at test).
We introduce a tool, called FUJISAN (FUnctional constraint JustIficator and Statistical ANalyzer). FUJISAN

accepts a delay test pair set (with don’t cares) as an input. In the conventional test compression flow (without
overtesting prevention) this test pair set would be handed directly to the encoding algorithm. Each of the test pairs
may have functional instances, i.e., instances which satisfy functional constraints, and non-functional instances.
Several types of functional constraints are supported, each of which can be switched on or off. First, FUJISAN
creates statistics, which can be used to quantify the chance that test compression run over the original test set
(untreated by FUJISAN) would hit functional instances. Then, FUJISAN transforms those test pairs for which it is
possible into pairs having only functional instances. The resulting test pairs still have a high number of don’t cares,
which is beneficial for test compression. This is the main advantage over the method from [6], which ends up with
fully specified instances that are unlikely to be good to compress. Moreover, FUJISAN employs exact algorithms
while [6] is based on approximations, and it supports more constraints than [6]. FUJISAN does not require any
modification of the ATPG nor the encoding software for test compression. Hence, it is easy to integrate into the flow.
We apply FUJISAN to path delay fault test sets generated for the combinational core of the circuit without

considering any constraints. We discuss the required amount of test data depending on the considered functional
constraints. We track the percentage of don’t cares in the test sets before and after applying FUJISAN and make
conclusions on the suitability of the data for test compression based on this information. We validate our conclusions
by applying a simple representative test compression algorithm to the respective test sets.
The remainder of the paper is organized as follows. The next session discusses the constraints considered in the

paper. The tool FUJISAN is introduced in Section 3. Experimental results are reported in Section 4. Section 5
concludes the paper.

2 Functional Constraints
This section discusses the constraints Cube, FT, RS and SI, and the incorporation of further constraints. We call a
test pair with don’t care values a test pair cube and a fully-specified test pair which matches all the specified positions
of a test pair cube an instance of that test pair cube. An instance is called functional with respect to some constraints
if it satisfies these constraints, otherwise it is called non-functional. A test pair cube is called (non-)functional if all
its instances are (non-)functional, and partially functional if some of its instances are functional and some are not.
Speaking simply, our goal is to transform a partially functional test pair cube into a functional test pair cube while
preserving as many don’t cares as possible.
Constraint Cube is not a functional constraint in a strict sense. It is defined in connection with other functional

constraints in order to guarantee that the transformation will result in a cube, which is suited as an input to test
compression encoding software, rather than in an arbitrary set of instances. For example, the test pattern 1XX has
four instances 100, 101, 110 and 111. Suppose that only the last instance has been identified as violating a
functional constraint (75% of the instances are functional). However, there is no cube representing the set {100,
101, 110}. But current test compression encoding algorithms require cubes as input. Hence, a cube representing a

2



subset of {100, 101, 110} must be used. It should have a maximal number of don’t care values. In our example,
the cubes 10X and 1X0 both represent an optimal solution. Note that satisfying Constraint Cube dropped the share
of functional pairs from 75% to 50%.
Constraint FT (functional transition) makes sure that the transition between the first and second vector of the test

pair exists.
Constraint RS (reachable state) requires that the first vector of the test pair is reachable from an initial state of

the circuit and thus can occur in normal operation. Reachable states are related to illegal states that have been
considered for speeding up backtracking in sequential test generation [13, 14, 15, 16, 17], but they are not identical.
An illegal state is inconsistent with any legal value assignment to the lines in a circuit. While an illegal state is
always unreachable, there may be unreachable states which are not illegal.
Constraint SI (steady input) assumes that the external frequency (I/O frequency) of a chip is lower than its internal

frequency, which is true for some of today’s designs. As a consequence, no at-speed transitions are allowed at the
chip’s primary inputs (PIs), but they are allowed at the flip-flops. Note that a similar restriction was used in the LSI
Logic study [18] (it was motivated by the shortcomings of the tester). If the ATPG does not support this constraint
but the chip’s I/Os are slow, there will be test pairs with opposite logic values assigned to a PI for the first and the
second vector. Such pairs cannot be applied to the chip. Note that no path delay faults for paths starting at a PI can
be tested, which is acceptable as these paths are not switched at-speed. If additional constraints (such as FT and RS)
are considered, some of the don’t care bits on the PIs in the original test set can become specified and lead to the
violation of Constraint SI.
While Constraints FT and RS are valid for any digital synchronous circuit, Constraint SI is an example for a

design-specific constraint which is derived from the knowledge about the characteristics of the chip (here, the differ-
ence in external and internal speed). Other design-specific constraints are possible, such as one-hot state encoding
constraints. These constraints can be extracted from the HDL code if the designers formulate such restrictions as
assertions. Using assertions is a good specification style, and many formal verification tools critically depend on
the existence of assertions. Hence, assertion-based constraint extraction can be done automatically. Although it is
straightforward to integrate such constraints into our framework, in this paper we do not consider any constraints
beyond those described in this section.

3 FUJISAN
FUJISAN transforms a set of delay test pair cubes with don’t cares into functional test pair cubes with respect to all
the constraints from the last section or an arbitrary subset of the constraints (any constraint can be switched on or
off). First, FUJISAN identifies for every test pair its functional instances. Based on this information, a statistical
profile of the test set is created. Each pair is classified as belonging to one of seven classes 0%, 0–20%, 20–40%,
40–60%, 60–80%, 80–100% and 100%. A pair belongs to Class 0% if it has no functional instance. It belongs to
Class 100% if all of its instances are functional. It belongs to Class 0–20% if it has at least one functional instance,
but less than 20% of its instances are functional, and so on. For brevity, we write “Class <20%” for “Class 0–20%”
etc.
If test compression is performed without running FUJISAN first, any pair from Class 0% will result in an ap-

plication of a non-functional test. A pair from Class 100% will not contribute to overtesting. Assuming that the
encoding algorithm assigns the don’t cares randomly, a pair from Class 0–20% will result in a non-functional test
with a probability between 80 and 100% (the probability is a lower bound if the encoding procedure is allowed to
apply the same test several times). Hence, FUJISAN can be used to estimate the extent of overtesting in order to
decide whether any corrective measures are necessary.
FUJISAN is implemented using BDDs [19]. The check for Constraint FT is performed by restricting the transition

function of the circuit to a given test pair cube; the functional instances are given as the onset of the resulting BDD
and their number as its cardinality. Constraint RS is implemented by a state traversal from the initial state until a

3



Circuit Prim. Flip- Test Percentage of test pairs belonging to a class CPU Peak
inputs flops pairs 0% 0–20% 20–40% 40–60% 60–80% 80–100% 100% time memory

s27 4 3 32 56.2 0.0 3.1 0.0 0.0 0.0 40.6 0.01 4.5
s298 3 14 177 74.6 18.6 0.0 1.1 0.0 0.0 5.6 0.01 4.5
s208.1 10 8 209 79.4 11.0 3.3 2.4 0.0 0.0 3.8 0.01 4.6
s344 9 15 369 87.8 1.6 3.0 1.9 5.1 0.0 0.5 0.03 4.6
s349 9 15 369 87.8 1.6 3.0 1.9 5.1 0.0 0.5 0.03 4.6
s382 3 21 339 84.4 9.4 2.7 0.6 1.5 0.3 1.2 0.01 4.6
s386 7 6 232 81.0 6.5 1.7 4.7 1.7 0.0 4.3 0.02 4.5
s420.1 18 16 641 89.1 7.0 0.9 0.6 0.0 0.0 2.3 0.16 9.1
s444 3 21 303 82.5 13.2 1.0 1.3 0.7 0.0 1.3 0.03 4.6
s510 19 6 369 85.1 4.1 5.7 3.3 0.3 0.0 1.6 0.03 5.0
s526 3 21 356 87.4 8.1 0.3 1.4 0.0 0.0 2.8 0.04 4.7
s713 35 19 522 49.2 40.0 1.1 0.8 2.9 2.9 3.1 0.37 5.5
s820 18 5 475 76.0 8.2 4.6 4.4 2.5 0.0 4.2 0.11 4.7
s832 18 5 488 76.4 8.6 4.3 4.7 2.3 0.0 3.7 0.10 4.7
s953 16 29 839 65.9 20.7 1.2 4.1 1.8 0.8 5.5 0.37 5.0
s1488 8 6 738 93.5 2.0 1.4 1.2 1.2 0.3 0.4 0.08 4.7
s1494 8 6 725 92.4 2.8 1.2 1.7 1.2 0.3 0.4 0.04 4.6
s1196 14 18 1494 23.8 4.5 10.2 8.5 5.4 3.2 44.3 0.11 4.9
s1238 14 18 1502 24.6 4.5 11.9 8.3 7.9 1.1 41.7 0.14 5.0
s1423 17 74 12756 88.4 11.4 0.0 0.0 0.0 0.0 0.0 94.51 15.1
s5378 35 179 8471 35.2 61.1 1.2 1.4 0.1 0.4 0.6 12.45 27.9
s9234.1 36 211 9446 72.7 27.2 0.0 0.0 0.0 0.0 0.0 22.13 31.0
s13207.1 62 638 7310 79.2 20.3 0.2 0.3 0.0 0.0 0.0 28.02 13.6
s15850.1 77 534 29871 60.9 36.1 1.7 0.6 0.5 0.1 0.2 324.70 43.1
s35932 35 1728 2016 75.3 6.3 4.3 8.3 2.3 0.0 3.5 32.85 7.9
s38584.1 38 1426 27729 85.8 13.7 0.3 0.1 0.0 0.0 0.1 24h 248.1
Average 72.9 13.4 2.6 2.4 1.6 0.4 6.6

Table 1: Statistical profiles considering Constraint FT (numbers are in per cent)

fixed point is reached. This is the exact algorithm for finding all reachable states (which is an NP complete problem).
Numerous approximate methods exists for this purpose. Some of them simplify the BDDs during the traversal by
increasing or decreasing the onset, resulting in an over- or underapproximation. There are also heuristics not based
on state traversal. An underapproximation is calculated in [9] and papers on illegal state identification mentioned
earlier. The method in [6] can be considered an overapproximaton, as a state for which a path from an initial state
exists but is not found by the algorithm is counted as unreachable although it is reachable. At this moment, FUJISAN
does not incorporate any approximate technique. Constraint SI is implemented by propagating a specified value on
a PI of first or second vector of a test pair to the respective position of the other vector of that pair.
If Constraint Cube is specified, FUJISAN writes out test pair cubes which have only functional instances (if any

such instances exist). FUJISAN tries to find the largest functional sub-instance, i.e., one with a maximal number of
don’t cares, in order to help subsequent encoding. This is done by finding the shortest path of the transition function
BDD and extending it to a prime implicant.
It is interesting that the amount of data to be provided for the testing depends on the employed functional con-

straint. If no functional constraint is imposed, then any bit position (both PIs and flip-flops) can have an arbitrary
logic value. Thus, for a circuit with N PIs and F flip-flops 2N + 2F bits must be provided per applied test pair.
(While the question how to actually deliver this test data to the chip and trigger an at-speed transition is out of scope
of this paper, enhanced scan [20] is one possibility). If Constraint FT is enforced, then there is no need to provide
the values for the flip-flops in the second time frame, as they can be calculated by the circuit using broadside test
application (launch-by-capture) [21]. This reduces the amount of bits to be delivered per test pair to 2N + F . If, in

4



Circuit 0% < 20% < 40% < 60% < 80% < 100% 100%
s298 132 (132) 33 (33) 0 (0) 2 (2) 0 (0) 0 (0) 10 (10)
s344 324 (324) 10 (6) 7 (11) 26 (7) 0 (19) 0 (0) 2 (2)
s382 286 (286) 35 (32) 8 (9) 6 (2) 0 (5) 0 (1) 4 (4)
s420.1 571 (571) 45 (45) 6 (6) 4 (4) 0 (0) 0 (0) 15 (15)
s713 257 (257) 225 (209) 13 (6) 11 (4) 0 (15) 0 (15) 16 (16)
s832 373 (373) 43 (42) 20 (21) 34 (23) 0 (11) 0 (0) 18 (18)
s1488 690 (690) 15 (15) 10 (10) 20 (9) 0 (9) 0 (2) 3 (3)
s1196 356 (356) 192 (67) 167 (153) 117 (127) 0 (81) 0 (48) 662 (662)
s5378 2982 (2982) 5308 (5177) 47 (103) 85 (115) 0 (7) 0 (38) 49 (49)
s15850.1 18177 (18177) 11090 (10770) 344 (514) 192 (175) 0 (141) 0 (26) 68 (68)
s35932 1519 (1519) 237 (127) 49 (86) 141 (167) 0 (47) 0 (0) 70 (70)
Total +/- 0 +854 -239 +67 -521 -161 +/- 0
change (0%) (+1.1%) (-0.3%) (+0.1%) (-0.7%) (-0.2%) (0%)

Table 2: Implications of Constraint Cube. Numbers in parentheses are valid if the constraint is not satisfied. The
total change is calculated over all considered circuits

Circuit |RS| 0% < 20% < 40% < 60% <80% <100% 100%
s208.1 100.0 166 (166) 23 (23) 7 (7) 5 (5) 0 (0) 0 (0) 8 (8)
s349 5.2 331 (324) 38 (6) 0 (11) 0 (7) 0 (19) 0 (0) 0 (2)
s386 20.3 193 (188) 17 (15) 4 (4) 10 (11) 2 (4) 0 (0) 6 (10)
s420.1 100.0 571 (571) 45 (45) 6 (6) 4 (4) 0 (0) 0 (0) 15 (15)
s510 73.4 318 (314) 17 (15) 16 (21) 16 (12) 1 (1) 0 (0) 1 (6)
s526 0.4 312 (311) 44 (29) 0 (1) 0 (5) 0 (0) 0 (0) 0 (10)
s713 0.3 436 (257) 86 (209) 0 (6) 0 (4) 0 (15) 0 (15) 0 (16)
s820 78.1 361 (361) 39 (39) 33 (22) 21 (21) 1 (12) 0 (0) 20 (20)
s953 10−6 558 (553) 281 (174) 0 (10) 0 (34) 0 (15) 0 (7) 0 (46)
s1488 75.0 690 (690) 15 (15) 15 (10) 12 (9) 3 (9) 0 (2) 3 (3)
Total +3.4% +1.1% -0.4% -0.7% -1.5% -0.4% -1.5%
+Cube +3.4% +1.3% -0.4% -0.7% -1.7% -0.4% -1.5%

Table 3: Implications of Constraint RS

addition, Constraint SI is considered, this amount is reduced to N + F , because the values on the PIs in the second
time frame are simply the same as in the first time frame. Constraint RS has no influence on the amount of test data.
It seems that considering more constraints results in test data reduction. On the other hand, in a test compression

flow (which we are considering) the relevant number is the amount of compressed data that needs to be stored in the
tester memory and not the data that is actually applied to the IC. It can be expected that justifying functional con-
straints will decrease the proportion of don’t care values in the test pair cubes even though FUJISAN will minimize
this decrease. Hence, the compression ratio will probably be lower after justification. It is an interesting question
whether the worsening in compression ratio overweighs the reduction in the size of the data to be encoded. The
answer will be given by the experimental results.

5



Circuit Rem 0% <20% <40% <60% <80% <100% 100%
s344 8 324 (324) 5 (6) 10 (10) 2 (1) 19 (19) 0 (0) 1 (1)
s386 58 151 (150) 8 (9) 2 (2) 4 (6) 1 (2) 1 (0) 7 (5)
s420.1 88 524 (524) 10 (11) 1 (2) 2 (1) 0 (0) 0 (0) 16 (15)
s1488 123 574 (574) 8 (14) 14 (10) 14 (7) 3 (8) 0 (0) 2 (2)
s1196 1395 47 (41) 4 (18) 10 (16) 8 (12) 12 (11) 6 (0) 12 (1)
s1423 898 10495 (10482) 1357 (1371) 3 (3) 3 (1) 0 (1) 0 (0) 0 (0)
s9234.1 1177 5995 (5970) 2273 (2298) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
s13207.1 1563 4850 (4684) 875 (1039) 11 (13) 6 (6) 2 (2) 2 (2) 1 (1)
s15850.1 16550 10062 (10021) 3192 (3207) 23 (29) 41 (61) 2 (3) 0 (0) 1 (0)
s35932 538 1178 (1178) 82 (97) 51 (42) 118 (108) 10 (14) 0 (0) 39 (39)
Total +0,96 -1,02 +0,01 +0,02 -0,03 +0,02 +0,06
+ Cube +0,96 -0,78 -0,08 +0,07 -0,22 -0,01 +0,06
+ RS +2,56 +0,27 -0,50 -0,23 -1,45 -0,06 -0,59

Table 4: Implications of Constraint SI

4 Experimental Results
We applied FUJISAN to test sets generated by the tool TIP [22, 23] to ISCAS-89 circuits assuming no functional
constraints whatsoever (enhanced-scan mode). The test sets have 100% robust path delay coverage and are not
compacted.
Table 1 quotes the results considering only Constraint FT (functional transition). This first four columns contain

the name of the circuit, number of PIs, flip-flops and test pairs generated by TIP. The subsequent seven columns
report the percentage of the test pairs belonging to one of the seven classes introduced above. The final columns
show FUJISAN’s run time in seconds and peak memory consumption in MB.
It can be seen that few test pair cubes have only functional instances (6.6% on average), even with respect to

Constraint FT, which is the weakest criterion. Hence, running test compression on the test data as generated by
TIP would result in a large number of non-functional transitions applied to the circuit and thus overtesting. A
significant amount of test pair cubes have no functional instances at all (Class 0%). If this is unacceptable but no
ATPG supporting the required functional constraints is available, the following heuristic could reduce the number
of such pairs: re-run the ATPG with different parameters (such as a different decision strategy) targeting faults
which resulted in Class 0% pairs and apply FUJISAN to determine whether these newly generated pairs have any
functional instances.
Table 2 reports the implications of Constraint Cube. Note that it quotes absolute numbers of pairs and not

percentages. The change due to the constraint is the difference between a table entry and the number in parentheses
(which is the number of pairs in a class if constraint Cube is not considered). The final row contains the sum of
changes over all considered circuits. Since not all circuits are shown in the table due to space limitations, the sum of
changes over the circuits in the table is not equal to the number in the last row.
Constraint Cube has no influence on Classes 0% and 100%. If a test pair cube has a non-empty subset of

functional instances, then there must also be a non-empty subset of that subset which is a cube, so no pair can move
to Class 0% from a different class due to Constraint Cube. If all of the instances of a cube are functional, then the
cube determined by FUJISAN is just the original cube itself and it still belongs to Class 100%. For other classes, a
shift from high-probability to low-probability classes can be observed. Hence, the need to represent data in a format
which encoding algorithms can read makes the overtesting problem more severe, although the extent is limited.
Table 3 illustrates the consequences of enforcing Constraint RS (reachable state) assuming the all-0 state as the

initial state. Column 2 (|RS|) shows the percental fraction of reachable states compared to all states. The implications
are significant if that fraction is low. The second-last row shows the changes aggregated over all circuits for which

6



Circuit orig. pairs fct. pairs orig. pairs fct. pairs
US %DC US %DC CS CR CS CR CRov

s298 6018 71.3 5388 68.7 3528 1.7 3374 1.6 1.8
s208.1 7524 58.2 7180 57.4 4510 1.7 4347 1.7 1.7
s382 16272 71.6 15159 70.5 8068 2.0 7936 1.9 2.1
s510 18450 72.6 18120 73.2 10067 1.8 9564 1.9 1.9
s526 17088 71.1 16143 69.6 9464 1.8 9928 1.6 1.7
s713 56376 81.1 51341 79.8 21661 2.6 21383 2.4 2.6
s953 75510 79.7 67216 78.1 31754 2.4 30845 2.2 2.4
s1488 20664 46.1 20376 46.3 20183 1.0 20059 1.0 1.0
s1238 96128 67.1 75752 58.2 58277 1.6 56344 1.3 1.7
s1423 2321592 71.1 2212442 69.7 1170620 2.0 1173415 1.9 2.0
s5378 3625588 93.3 2643057 90.0 794653 4.6 705188 3.7 5.1
s9234.1 4666324 93.0 4122577 92.0 849864 5.5 815466 5.1 5.7
s13207.1 10234000 97.9 9264878 97.7 1447921 7.1 1309730 7.1 7.8
s15850.1 36502362 95.0 30257766 94.2 5824025 6.3 5017880 6.0 7.3
s35932 7108416 99.6 6249600 99.6 915100 7.8 808779 7.7 8.8

Table 5: Test compression results considering Constraint FT (all test pairs)

Circuit orig. pairs fct. pairs orig. pairs fct. pairs
US %DC US %DC CS CR CS CR CRov

s298 1530 74.2 900 60.7 760 2.0 636 1.4 2.4
s208.1 1548 61.5 1204 58.0 921 1.7 744 1.6 2.1
s382 2544 74.8 1431 65.0 1234 2.1 827 1.7 3.1
s510 2750 73.4 2420 78.3 1440 1.9 991 2.4 2.8
s526 2160 79.3 1215 65.6 868 2.5 769 1.6 2.8
s713 28620 80.7 23585 77.7 11045 2.6 10455 2.3 2.7
s953 25740 79.2 17446 72.8 10678 2.4 9699 1.8 2.7
s1488 1344 49.3 1056 52.2 1129 1.2 901 1.2 1.5
s1238 72448 68.0 52072 55.4 44273 1.6 41459 1.3 1.7
s1423 268450 76.4 159300 61.0 108438 2.5 117063 1.4 2.3
s5378 2349292 94.2 1366761 88.4 492941 4.8 409252 3.3 5.7
s9234.1 1273038 93.7 729291 88.5 216434 5.9 181517 4.0 7.0
s13207.1 2126600 98.2 1157478 96.8 294209 7.2 172193 6.7 12.4
s15850.1 14290068 94.9 8045472 92.0 2310583 6.2 1528542 5.3 9.3
s35932 1752422 99.7 893606 99.5 224440 7.8 118123 7.6 14.8

Table 6: Test compression results considering Constraint FT (pairs with functional instances)

reachable states could be calculated. The last row shows aggregated data if Constraints RS and Cube are considered
simultaneously. The additional influence of Constraint Cube appears to be limited.
The implications of Constraint SI (steady input) are given in Table 4. The pairs which violated the constraints

by having opposite values on matching PIs of the first and second vector have been removed beforehand, and their
number is reported in Column Rem. Their fraction varies from insignificant (s344) to over 50% for s15850.1. It
is interesting that the number of pairs in Class 100% increases. This is because some non-functional instances are
removed by specifying additional PI values. Apart from that, the changes are not very significant. In particular,
not too many pairs lose all of their functional instances due to Constraint SI. The final rows show the aggregated
numbers for Constraint SI only; in combination with Cube; and in combination with Cube and RS.

7



Circuit orig. pairs fct. pairs orig. pairs fct. pairs
US %DC US %DC CS CR CS CR CRov

s298 986 76.2 580 28.1 (60.7) 443 2.2 685 0.8 1.4 (2.4)
s382 2208 75.9 1242 32.1 (65.0) 1038 2.1 1308 0.9 1.7 (3.1)
s526 2112 79.5 1188 31.5 (65.6) 855 2.5 1335 0.9 1.6 (2.8)
s713 9288 82.8 7654 71.4 (77.7) 3226 2.9 3960 1.9 2.3 (2.7)
s953 25290 79.1 17141 41.3 (72.8) 10590 2.4 14708 1.2 1.7 (2.7)
s1488 1344 49.3 1056 51.4 (52.2) 1129 1.2 905 1.2 1.5 (1.5)

Table 7: Test compression and Constraint RS

CRov = 1.9CRov = 2.5

Original data

(no constraints)

FT FT + RS

= 2.2

Compressed Compr.

CR

= 1.9CR

%DC: −3.6%
Size: −23.9% Size: −25.4%

%DC: −20.8%

= 1.4CR

Compressed

Figure 1: Aggregated results for Constraints FT and RS (only circuits for which reachable states have been calcu-
lated)

Tables 5 and 6 give results on test compression. Table 5 reports results for all of the test pairs generated by TIP.
Columns 2 and 4 contain the number of bits before and after FUJISAN was run (US stands for “uncompressed
size”), and columns 3 and 5 give the percentage of don’t cares in the respective test sets. As discussed above, the
amount of test data is reduced from 2N +2F to 2N +F if a test pair has at least one functional instance. Otherwise,
FUJISAN does not modify it (based on the philosophy that it is better to detect a fault with a non-functional test than
not to detect it at all) and 2N +2F bits are stored. We applied the 9C compression algorithm [24], which is a simple
yet representative technique, to both of the test sets. We used the codewords and the parameter K = 8 given in
[24]. The number of bits in the compressed data is denoted as CS (”compressed size”) and the compression ratio is
denoted as CR. The overall compression ratio CRov is defined as US of a test set before running FUJISAN divided
by CS of the functional test set obtained by FUJISAN. Table 6 contains the same information for the subset of the
test set consisting of test pairs with at least one functional instance.
The percentage of don’t cares goes down in most (but not all) cases after application of FUJISAN. The com-

pression ratio also goes down, and the extent of the decrease is well correlated with the extent of the decrease of
the percentage of don’t cares. However, the size of the compressed functional test is always below the size of the
compressed original test, with one notable exception of s1423. For this circuit, the compression ratio reduction is
so heavy that it outweighs the decrease in bits to be saved from 2N + 2F to 2N + F per pair. Finally, the results
for the complete data (Columns 2–10) and the subset with functional instances (Columns 11–19) show the same
trend but the magnitude of changes is larger for the subset. This is because the complete data is amortized by the
non-functional test pair cubes which are not modified by FUJISAN. Consequently, from this point we present only
the data for the subset.

8



Original data

(no constraints)

FT

Compressed Compr.

CR

CR CR

Size: −43.1%
%DC: −6.2%

Size: −46.8%
%DC: −8.1%

= 5.8

= 4.4 = 4.4
CRov CRov

= 7.9 = 8.3

Compr.

FT + SI

Figure 2: Aggregated results for Constraints FT and SI (all circuits)

Table 7 shows the impact of adding Constraint RS for circuits with a small fraction of reachable states. Numbers
in parentheses are taken from Table 6 for comparison. The reductions in both the don’t care fraction and the com-
pression ratio are severe. Sometimes the compression ratio falls below 1, i.e., the “compressed” data is larger than
the original data. The situation that the compressed functional set is larger than the compressed original test set now
occurs for several circuits.
Figure 1 shows the aggregated results for Constraints FT and RS in diagram form. Imposing Constraint FT

allows to reduce the amount of applied data (“Size”) because 2N +F instead of 2N +2F bits are now required, but
the percentage of don’t cares (“%DC”) also decreases. As a consequence, the compression ratio declines, but the
overall compression ratio CRov is still higher than CR of original data. However, if Constraint RS is considered,
the percentage of don’t cares drops so much that CRov falls below CR of the original data (note that the slight
difference in average size reduction is due to exclusion of a different number of non-functional pairs). This means
that, although less data is to be compressed, the size of the compressed data is larger for functional testing.
Figure 2 presents the aggregated results for Constraints FT and SI (only pairs without conflicting PI assignments

in the original test data have been considered). The decrease in don’t care percentage is much less than for Constraint
RS, and additional N bits per test pair can be saved as described above. As a consequence. considering both
constraints results in the most compact compressed data. Note that the reduction in size and the compression ratios
are higher than in Figure 1, because larger circuits with many more flip-flops than PIs and a higher fraction of don’t
cares are considered.

5 Conclusions and Future Work
We proposed a methodology to prevent overtesting due to scan-based delay test in a test compression flow. We
introduced a tool, called FUJISAN, which restricts test pair cubes generated by an ATPG with respect to a given set
of functional constraints and hands them to the encoding routine. In contrast to existing approaches, the resulting
test pairs have a significant number of don’t cares and thus can be compressed. FUJISAN works with any ATPG
which is suitable for a test compression flow, i.e., can generate tests with don’t cares, and any encoding procedure.
The ATPG does not have to support any functional constraints, although such support will help yield better results.
There is no requirement on the targeted delay fault model. FUJISAN is minimally intrusive for the existing flow as
no modification of ATPG or the encoding procedure is needed.
We used FUJISAN to study the extent of overtesting for an off-the-shelf path delay fault ATPG with respect to

various constraints and found it to be severe. In particular, the state reachability constraint lead to a significant de-
crease of functional instances. We also evaluated the effect of imposing functional constraints on test compression.
We explored the tradeoff between the reduction in the size of the data to be compressed because of implicit relation-

9



ships induced by the functional constraints on one hand and the decline of the compression ratio due to increased
specification on the other hand. We found that most functional constraints result in decrease of the overall test data.
One exception was again the state reachability constraint for which a drop in compression ratio was observed.
FUJISAN currently supports only exact methods. We plan incorporation of approximate techniques and hierar-

chical techniques such as [25] to make it scale for industrial-size circuits as future work. A further needed feature is
the automatic import of functional constraints from assertions in high-level HDL code.

6 References
[1] H. Hao and E.J. McCluskey. Resistive shorts within CMOS gates. In Int’l Test Conf., pages 292–301, 1991.
[2] A. Fudoli, A. Ascagni, D. Appello, and H. Manhaeve. A practical evaluation of IDDQ test strategies for deep submicron

production test application. experiences and targets from the field. In European Test Workshop, pages 65–70, 2003.
[3] J. Saxena, K.M. Butler, V.B. Jayaram, S. Kundu, N.V. Arvind, P. Sreeprakash, and M. Hachinger. A case study of IR-drop

in structured at-speed testing. In Int’l Test Conf., pages 1098–1104, 2003.
[4] M.G. Pecht, R. Radojic, and G. Rao. Managing Silicon Chip Reliability. CRC Press, 1998.
[5] P. Engelke, I. Polian, M. Renovell, B. Seshadri, and B. Becker. The pros and cons of very-low-voltage testing: An analysis

based on resistive short defects. In VLSI Test Symp., pages 171–178, 2004.
[6] I. Pomeranz. On the generation of scan-based test sets with reachable states for testing under functional operation condi-

tions. In Design Autom. Conf., pages 928–933, 2004.
[7] J. Rearick. Too much delay fault coverage is a bad thing. In Int’l Test Conf., pages 624–633, 2001.
[8] X. Liu and M. Hsiao. Constrained ATPG for broadside transition testing. In Int’l Symp. on Defect and Fault Tolerance in

VLSI Systems, pages 175–184, 2003.
[9] Y.-C. Lin, F. Lu, K. Yang, and K.-T. Cheng. Constraint extraction for pseudo-functional scan-based delay testing. In Asia

and South Pacific Design Autom. Conf., pages 166–171, 2005.
[10] Y.-C. Lin, F. Lu, and K.-T. Cheng. Pseudo-functional scan-based bist for delay fault. In VLSI Test Symp., pages 229–234,

2005.
[11] A. Krstić, J.-J. Liou, K.-T. Cheng, and L.-C. Wang. On structural vs. functional testing for delay faults. In Int’l Symp. on

Quality Electronic Design, pages 438–441, 2003.
[12] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded deterministic test. IEEE Trans. on CAD, 23(5):776–792, 5

2004.
[13] M.H. Konijnenburg, J.T. van den Linden, and A.J. van de Goor. Test pattern generation with restrictors. In Int’l Test Conf.,

pages 598–605, 1993.
[14] M.H. Konijnenburg, J.Th. van der Linden, and A.J. van der Goor. Illegal state space identification for sequential circuit

test generation. In Design, Automation and Test in Europe, pages 741–746, 1999.
[15] N. Gouders and R. Kaibel. Advanced techniques for sequential test generation. In European Test Conf., pages 293–300,

1991.
[16] D.E. Long, M.A. Iyer, and M. Abromovici. Identifying sequential untestable faults using illegal states. In VLSI Test

Symp., pages 4–11, 1995.
[17] H.-C. Liang, C.L. Lee, and J.E. Chen. Invalid state identification for sequential circuit test generation. In Asian Test

Symp., pages 10–15, 1996.
[18] R. Madge, B.R. Benware, and W.R. Daasch. Obtaining high defect coverage for frequency-dependent defects in complex

ASICs. IEEE Design $&$ Test of Comp., 20(5):46–53, 10 2003.
[19] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.
[20] B.I. Dervisoglu and G.E. Stong. Design for testability: Using scanpath techniques for path-delay test and measurement.

In Int’l Test Conf., pages 365–374, 1991.
[21] J. Savir. Broad-side delay test. IEEE Trans. on CAD, 13(8):1057–1064, 1994.
[22] M. Henftling and H. Wittmann. Bit Parallel Test Pattern Generation for Path Delay Faults. In European Design andTest

Conf., pages 521–525, Mar. 1995.
[23] P. Tafertshofer, A. Ganz, and M. Henftling. A SAT-based implication engine for efficient ATPG, equivalence checking,

and optimization of netlists. In Int’l Conf. on CAD, pages 648 – 655, 1997.
[24] M. Tehranipour, M. Nourani, and K. Chakrabarty. Nine-coded compression technique with application to reduced pin-

count testing and flexible on-chip decompression. In Design, Automation and Test in Europe, pages 173–178, 2004.
[25] V.M. Vedula and J.A. Abraham. A novel methodology for hierarchical test generation using functional constraint compo-

sition. In Int’l High-Level Validation and Test Workshop, pages 9–14, 2000.

10


