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Abstract

This paper presents a design-for-testability method that
transforms a given SoC into consecutively testable one un-
der power constraint. When a power constraint and a user
defined importance ratio between area overhead and test
time are given, the proposed method can create an optimal
TAM design and a test schedule for the importance ratio
under the power constraint with low computational cost.
Experimental results show that the proposed method can
achieve area and time co-optimization under power con-
straint. Moreover, the proposed method can obtain better
results for SoCs without power constraint compared to test
bus method and our previous method based on consecutive
testability of SoCs.
keywords: system-on-chip, test access mechanism, test
scheduling, consecutive testability, power consumption

1 Introduction
In a core-based design environment, pre-designed,

reusable megacells known as cores are integrated to de-
sign an entire system on a single chip. This systems-on-
chip (SoC) design strategies help companies to reduce the
time-to-market and design cost for their new products sig-
nificantly. However, testing of SoCs introduces several new
challenges compared to testing of conventional IC designs
[1]. The general problem of SoC test includes design of test
access mechanism (TAM) architecture and test scheduling.
The goal is to develop TAM and test schedule that mini-
mize test time under given constraints. Recently, minimiza-
tion of power consumption during test is becoming a major
challenge for SoC designs.

A number of recent papers proposed several TAM ar-
chitectures which include a dedicated test bus [2], TES-
TRAIL [3] and transparency [4, 5] method. Moreover, vari-
ous test scheduling methods are also proposed [6, 7, 8]. [6]
presented a method for co-optimization of wrapper design
and test scheduling based on an integer-linear programming
(ILP) formulation. [7] proposed a 3D bin-packing formula-
tion for test scheduling under power constraint.

In [12], we also proposed an ILP-based method for test
time and TAM area co-optimization based on consecutive
testability [9] and consecutive transparency [10]. In [9], we
pointed out the necessity of consecutive test accessibility,
which is the ability to apply an arbitrary test sequence to
each core and observe its response sequence from the core
consecutively at the speed of the system clock, in order to
transport the given test sequence without information loss
while the other methods based on transparency don’t have
such accessibility. Since the consecutively transparent cores
can provide paths for test data transportation of other cores,
we can reduce area overhead of TAM by utilizing the cores’
consecutive transparencies . On the other hand, power con-
sumption will increase since not only the core under test
but also the other cores providing consecutively transparent
paths consume power. Therefore, minimization of power
consumption during test becomes more important when we
use the consecutive transparency for the test access.

In this paper, we extend the previous method so that we
can handle the power consumption problem. Moreover, we
introduce efficient and effective heuristics to create a TAM
and a test schedule based on the partitioned testing with run
to completion(classified by Craig et al.[11]) while our previ-
ous method are based on the non-partitioned testing and the
ILP formulation. In the non-partitioned test scheduling ap-
proach, test sets are grouped into sessions and new tests are
allowed to start only when all test in the preceding session
are completely executed. On the other hand, the approach
based on partitioned testing with run to completion does
not group tests into sessions, and new tests are therefore al-
lowed to start at any time. Therefore, the proposed method
can create an optimal TAM design and a test schedule for
a given co-optimization ratio under power constraint with
low computational cost. Experimental results show that the
proposed method can achieve area and time co-optimization
under power constraint. Moreover, the proposed method
can obtain better results for SoCs without power constraint
compared to test bus method and our previous method.

The rest of this paper is organized as follows. Section
2 gives SoC modeling and some definitions. In section 3,
we show a power-conscious area and time co-optimization
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Figure 1. SoC

method that creates a TAM design and a test schedule. Ex-
perimental results are discussed in section 4. Finally, sec-
tion 5 concludes this paper.

2 Preliminaries
2.1 SoC Modeling

We assume that an SoC consists of cores, primary in-
puts, primary outputs and interconnects and all cores oper-
ate using single clock frequency. Moreover, an SoC has
maximum allowable peak power consumption and floor
plan denoted by coordinates of its center of grav-
ity. For each core, a set of input/output ports, floor plan
and a set of permissible configurations together with the
peak power consumption are given. We consider three types
of cores; IEEE 1500 wrapped cores (wrapped cores)[13],
scan-designed cores (scan cores) and non-scan-designed
cores (non-scan cores). Wrapped cores and scan cores have
the input/output ports dedicated to test, and we consider that
wrapped cores can be tested by using only the test ports. For
each input/output port of a core, a set of test pattern sources
(TPS)/test response sinks (TRS) required to test the core
are given. The length of test/response sequence from the
TPS/TRS are also given. Here, if TPS/TRS for a core is in-
side(outside) of an SoC, it is said that the test method of the
core is internal(external). We consider the following three
types of configurations; test mode, CT (consecutively trans-
parent) mode (see Section 2.2) and TPS/TRS mode. When a
core is test mode, the core is under test. The CT mode core
is providing paths for other test mode core. The TPS/TRS
mode core is generating/observing test/response sequence
for other test mode core. Figure 1 shows an example SoC
we consider. Bit-width of each interconnect, the length of
test/response sequence and the floor plan of each core are
shown in Figure 1(a) and a set of configurations for each
core are shown in Figure 1(b). Configuration 1 of each core
represents test mode, and configuration 3 of core and

represent TPS/TRS mode where the shaded ports are

generating/observing test/response sequence. Other config-
urations represent CT mode where the shown paths are re-
alizing.

2.2 ConsecutiveTransparencyof a Core andCon-
secutive Testability of an SoC

We introduced concepts called consecutive transparency
of a core and consecutive testability of an SoC in [12].

Consecutive transparency of a core guarantees that, for
each port of the core, there exists a test mode called a con-
figuration which realizes consecutively transparent paths
for the port. Here, paths are consecutively transparent in
the sense that any test sequence can be propagated through
them without information loss, and used for test/response
sequence transportation for other core. In Figure 1(b), CT
modes (mode 2 of all cores and mode 3 of core 1, 3 and 5)
denote the configurations of the consecutively transparent
cores where the paths with bit width and sequential depth
shown in parentheses are realizing.

Consecutive testability of an SoC guarantees that it is
possible to apply/observe arbitrary test/response sequences
to/from all embedded cores and all interconnects with-
out information loss by using interconnects and consecu-
tively transparent cores. Figure 2 illustrates a consecutively
testable SoC and the consecutive test access to/from Core
3. A control signal is provided for each consecutively trans-
parent core by a test controller (either off-chip or on-chip)
and determines the configuration of the core.

3 Power-Constrained Area and Time Co-
Optimization

3.1 Problem Formulation
In this section, we present an area overhead and test

time co-optimization method based on consecutive testabil-
ity. When a power constraint and a user defined importance
ratio between area overhead and test time are given, the pro-
posed method creates TAM and a test schedule, and aug-
ments a given SoC into consecutively testable one where
area overhead and test time are co-optimized with respect
to the ratio.

When we create consecutively test accessible TAM, we
consider consecutive transparency, direct path (bus) from a
PI to a core (from a core to a PO) with multiplexers and
existing interconnect as the components of TAM. When a
core is not consecutively test accessible by using only the
existing interconnects and the consecutive transparency of
cores, we make other cores consecutively transparent or we
add direct paths to the core with multiplexers. Moreover,
even if we can utilize a consecutively transparent core, we
add a path to bypass the cores in order to reduce the power
consumption during test.

The more DFT elements we add, the shorter test time
we can achieve since it is possible to increase concurrency
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Figure 2. Consecutive test access

of test. There is a trade-off between area overhead and
test time. Therefore, we formulate area overhead and test
time co-optimization based on consecutive testability un-
der power constraint as the following optimization problem.

Definition 1 Power-constrained area and time co-
optimization problem based on consecutive testability

Input : An SoC, co-optimization ratio
Output : A consecutively testable SoC (including
TAM) and a test schedule
Constraint : peak power consumption and the
number of SoC pins
Optimization : Minimizing the following equation
(eq.(1))

(1)

3.2 Power-Constrained Area and Time Co-
Optimization Algorithm

In this subsection, we describe the proposed algorithm
(outlined in Figure 3, and detailed in Figure 4 and Figure
6).
(Step 1)We make all cores consecutively transparent using
the method proposed in [10].
(Step 2) We compute the target test time and target
test power which are the constraints in the schedul-
ing step (Step 4) where the objective is to minimize the
TAM area overhead. The main idea in this algorithm is
to compute and that appropriately represent
the user specified importance ratio between area overhead
and test time. We compute for the given consid-
ering the trade-off relation between test time and TAM area
overhead as follows.

(2)

(3)

Figure 3. Power-constrained area and time co-
optimization algorithm

(4)
Here, let be the test time of core , be the
total bit-width of input/output pins of core .

The power consumption during test can be classified into
the following three categories:power for the core in test
mode , power for the core in CT mode and power
for the core in TPS/TRS mode . When we al-
low to consume more power for under , there
exist many chances to achieve short test time since many
cores can realize test mode simultaneously. On the other
hand, when we allow to consume more power for , area
overhead can be reduced since we can utilize many consec-
utively transparent paths as TAM. Therefore, we compute

for the given considering the trade-off relation
among power, time and area as follows.

if is tested by external test

if is tested by internal test (5)

(6)
Here, let be the power consumption of test mode
core and let be the summation of the
power consumption of TPS/TRS cores for core .
(Step 3) We estimate the TAM (design temporary TAM)
for each core assuming that the core is tested independently
of other cores under no power constraint (detailed in Fig-
ure 4). In this procedure, first, we create all the possible
paths between ports that can be realized by a multiplexer
and a bus, and calculate the cost of the path (from line 1
to 6). Then, we estimate the area cost for each port by
finding the shortest path from the port to PI or PO (from
line 6 to 9). After that, we design the temporary TAM for
each port in the ascending order of the area cost by find-



Figure 4. TAM design algorithm

Figure 5. Estimation of TAMs

ing the independent shortest paths for the port (from line
10 to 18). From this temporary TAM design for each core,
we can get the for the TAM and the set of cores
that are used for testing the core. Examples of the esti-
mated TAM for core , , and are shown in Fig-
ure 5. Here, let be the set of cores that are used for
testing . From Figure 5, we can see that ,

, ,
. Moreover, we compute the co-optimization cost

for each core as follows.
(7)

(Step 4) We create a test schedule (detailed in Figure 6).
In the scheduling algorithm, we consider only and

, and and are used as the test time
and the test power constraints, respectively. The objective
is to minimize the area overhead of the TAM design un-
der the above constraints. For each core, we compute the
TAM conflict ratio for each section (the minimal time in-
terval separated by start or end time of some tests) as the
measure to predict the area overhead of the designed TAMs
(from line 1 to 3). We defined the TAM conflict ratio of core

Figure 6. Test scheduling algorithm

Figure 7. Conflict ratio of core

for a section as follows.

(8)

Here, let be the set of cores that is already scheduled
in section , and let be the number of elements in .
Examples of the TAM conflict ratio of core for all four
sections are shown in Figure 7. Then, iteratively, we select
a section in the ascending order based on its TAM conflict
ratio, and find the best section that satisfies all constraints
(from line 4 to 9). If there exists no section that satisfies
all constraints for the core , we update as follows
and do scheduling algorithm from the first core (from line
10 to 14).

(9)
Here, let be the core with the -th shortest test
application time, and be the number of iteration of this

process. Figure 8 shows the result of the test
scheduling for the SoC in the case of .
(Step 5) We pick a core in the descending order based
on its , and design the final TAM for in the
similar fashion to Step 2 except for considering the created
test schedule and power consumption for (from line 14
to 16 in Figure 4). In this step, we design the TAM under the
power constraint . We can consume at least

power for the CT mode cores in order to reduce
the TAM area overhead since we constrained the power for

and to during the test scheduling
step. Figure 9 shows the result of the added paths as the
TAM of the SoC in the case of .



Figure 8. A schedule example for ( )

Figure 9. A designed TAM example ( )

4 Experimental Results
In this section, we present the experimental results ob-

tained on a SunBlade 1000 workstation (900 MHz with
1GB RAM). Since our approach cannot apply the SoCs that
have no information about connectivity between cores, it
is not possible to make experiments by using ITC’02 SoC
benchmarks. Therefore, in this section, we present the ex-
perimental results for 3 randomly created SoCs. Charac-
teristic and connectivity information of SoC are shown
in Figure 1. Characteristics and connectivity informations
of other two SoCs are shown in Table 1 and Figure 10, re-
spectively. In Table 1, first four columns denote the name
of SoC, the number of SoC input/output pins , floor plan
represented by coordinates of its center of gravity,
and the number of cores, respectively. “in.” and “ex.” at
the column “TPS/TRS” denote the number of cores which
can be tested by internal and external test, respectively.
“wrapped”, “scan” and “non-scan” at the column “DFT”
denote the number of cores classified by their DFT tech-
nique. For each core, we gave a test time and a peak power
consumption randomly within the range shown in column
“time” and “power”, respectively. In this experiments, we
assume that each core has the same power consumption for
all configurations.

Table 2, 3 and 4 show the results for , and , re-
spectively. In the tables, column “ ” denotes the max-
imum allowable peak power of the SoC that is the percent-
age for the summation of the peak power consumption of
all cores. “Time”, “Area” and “CPU” denote test time, area
overhead and computational time, respectively. “wire” at
the column “Area” denote the wire area estimated as the
product of width and length on the floor plan. We use the

Figure 10. Connectivity information for SoC

Table 1. Characteristics of three target SoCs
SoC

pin
floorplan #core

TPS/TRS DFT
time power(#PI,#PO) in. ex. wrapped scan non-scan

(160,96) (20,20) 6 3 3 1 2 3 0-1000 0-100
(64,64) (50,50) 11 1 10 3 2 6 0-1000 0-1000

(160,96) (100,100) 22 1 21 3 3 16 0-10000 0-5000

Manhattan distance for calculating length of wires. “MUX”
at the column “Area” denote the total number of bit width
of the added multiplexers. From all these tables, we observe
that the proposed method can allow trade-off between area
overhead and test time according to user defined ration
under the given power constraint.

Table 5 shows the results for without considering
power constraint. In this table, we make a comparison
between the proposed method and other two methods in
order to show the effectiveness of the proposed method.
“Testbus[9]” denotes the method based on test bus archi-
tecture in [9]. “CT ILP[9]” denotes the method based on
consecutive testability in [9]. From this table, we ob-
serve that the proposed method can also achieve area and
time co-optimization for a given co-optimization ratio un-
der no power constraint. Moreover, the proposed method
can achieve lowest area overhead for all three . Espe-
cially, when , the proposed method can achieve
70% and 50% reduction of area overhead for “Testbus” and
“CT ILP”, respectively. This is because we considered all
the possible paths between two ports as the DFT candi-
dates in Design TAM procedure while only the paths be-
tween PI(PO) and core’s input(output) port were taken into
account in the previous methods. When , the pro-
posed method can also achieve 50% reduction of test time
for “CT ILP”, and the same test time for “Testbus”. This
is because “Testbus” and the proposed method are based on
partitioned testing with run to completion while “CT ILP”
is based on non-partitioned testing. Computational time of
the proposed method is negligible for all cases compared
to the other two methods. Therefore, we conclude that the
proposed method can create a TAM and a test schedule ef-
ficiently and effectively compared to our previous methods.



Table 2. Results for SoC
Time

Area
CPU(sec)wire MUX

60% 2864 1648 288 0.64
1(area) 80% 2889 1392 288 0.67

100% 2889 1384 288 0.72
60% 1850 2064 320 0.65

0.5 80% 1871 1904 320 0.67
100% 1896 1552 320 0.71
60% 1550 2640 400 0.50

0(time) 80% 1175 3408 432 0.47
100% 1175 3408 432 0.50

Table 3. Results for SoC
Time

Area
CPU(sec)wire MUX

40% 5098 752 256 9.45
1(area) 60% 5107 64 144 15.58

80% 5112 16 32 18.71
100% 5112 16 32 7.27
40% 3284 1008 272 9.04

0.5 60% 3286 1200 240 13.22
80% 3288 1024 240 14.61

100% 3293 624 128 5.58
40% 2529 3984 416 3.22

0(time) 60% 2271 6288 496 3.33
80% 2272 6416 512 3.29

100% 2272 6416 512 3.30

5 Conclusions
This paper proposed a design-for-testability method that

transforms a given SoC into consecutively testable one un-
der power constraint. In the proposed method, we intro-
duced efficient and effective heuristics to reduce the com-
putational cost compared to our previous method base on
ILP formulation. Therefore, the proposed method can cre-
ate an optimal TAM and a test schedule for a given co-
optimization ratio with low computational cost. Experimen-
tal results show that the proposed method can achieve area
and time co-optimization under power constraint. More-
over, the proposed method can obtain better results for the
SoCs without power constraint compared to test bus method
and our previous method based on consecutive testability of
SoCs. Especially for the case that area has high priority, the
proposed method can achieve 70% and 50% reduction of
area overhead compared to test bus approach and our previ-
ous method based on consecutive testability, respectively.
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