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Abstract

Testing of VLSI circuits is challenged by the increasing
volume of test data that adds constraints on tester mem-
ory and impacts test application time substantially. Space
compactors are commonly used to reduce the test volume
by one or two orders of magnitude. However, such level of
compaction reduces the quality of the diagnostic of faults
because it is difficult to identify the locations of errors in
the compacted response. In this paper, we introduce a de-
sign of space compactors that can be used in pass/fail mode
as well as in diagnostic mode with enhanced performance
by trading off compaction ratio for diagnostic ability. We
analyze the properties of the compactors and evaluate their
performance through simulations.

1 Introduction

With the increase of logic density, the amount of data
required to test the chips with scan design is reaching ter-
abytes. The time necessary to transfer that data between
the tester and the chip suffers from the limited bandwidth
available through the test pins. To overcome that bottle-
neck, the test volume can be reduced by compressing the
stimuli and compacting the test response. Reduction of two
orders of magnitude are achieved at the input side, in par-
ticular by exploiting the low fill rate of test cubes. At the
output side, space compactors can reduce the response vec-
tors into a single output and time compactors can reduce the
response sequence to a signature of a few bits. Such com-
paction can be done without impacting the fault coverage,
although such performance may require to derive a special
test set or add extra inputs to modify the output data prior to
compaction. However, the compaction severely impacts the
diagnostic capability because many faults produce the same
erroneous pattern or signature at the compacted outputs.

Diagnostic can be performed using time and space infor-
mation about the erroneous test response. Time informa-
tion, given by the set of failing test patterns, can be used for
fault model dependent diagnostic. Space information, given

by the set of scan cells where errors occurred, can be used
for diagnostic based on cone of logic methods. Both types
of information can be used concurrently to achieve higher
diagnostic resolution, but it requires obtaining the exact po-
sition of the errors in the test response. In the presence of a
compactor, the space and time information are not directly
available. Indeed, compactors transform blocks of output
bits that can span in the space dimension, time dimension
or both. Therefore, an error observed at the compacted out-
puts can be caused by an error or errors occurring at several
locations and several clock cycles.

To fully identify the errors in the test response, the com-
pactor can be bypassed during diagnostic mode in order to
directly observe a subset of all the outputs. Such strategy re-
quires multiple applications of the test in order to fully ob-
serve all the outputs, thus increasing substantially the test
application time during diagnostic. The problem consid-
ered in this paper is to derive the space and time informa-
tion from the compacted outputs. The diagnostic scheme
proposed works with a smaller compaction ratio during di-
agnostic mode than during fault detection (pass/fail) test.
Thus, it requires multiple applications of the test set but
some compaction is still performed during diagnostic to re-
duce the test application time.

In this paper, we first present an overview of the schemes
proposed for diagnostic in the presence of compactors.
Then, in Section 3, we present the model of space com-
paction used and introduce the main idea driving the pro-
posed scheme. In Section 4, we propose the space com-
pactor design and derive its properties, both during pass/fail
and diagnostic mode. Simulation results of our design im-
plementation are discussed in Section 5.

2 Previous work

We first describe the works related to diagnostic with
time compactors. Compactors used during pass/fail test
mode usually have some but limited diagnostic capabilities.
For time compaction with a linear feedback shift register
(LFSR) of size n, it was shown that a single error can be lo-
calized in a stream of m bits if m < 2n [10]. However, the
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occurrence of more errors in the response stream results in
diagnostic aliasing. Such aliasing can be avoided by reap-
plying the test and directly observing the identified error
location. If the error is not observed, the signature can be
analyzed again with different assumptions on the error pat-
tern [4]. The size of the LFSR can also be chosen to obtain
a desired diagnostic resolution for a given size of circuit, al-
though high resolution usually requires impractical size of
LFSR [15]. Furthermore, the diagnostic aliasing probabil-
ity can be reduced by using signature analysis registers that
work with non-primitive polynomials [20].

Many techniques have been developed to modify the
compaction scheme during diagnostic to allow localization
of errors in time and space dimensions. The techniques
have the common property to decrease the compaction ra-
tio compared to the pass/fail mode, either by increasing the
size of the data observed or by applying the test sequence
multiple times. One of the approaches used in time com-
paction schemes is to check the signature multiple times
during test application, thus splitting the test sequence into
windows [18]. Windows resulting in fault free signatures
consist of non erroneous response while other windows can
be applied again with full response observation to identify
the errors. The efficiency of the scheme can be improved
by using windows of varying length [5]. Another approach
is to compact only part of the scan cells at a time and ap-
ply the test multiple times with different cell partitions until
all the erroneous scan cells are identified [1, 2, 3, 7, 9, 16].
Such scheme can only gather space information for diag-
nostic and requires special control to select the scan cells
observed at a given test instance. Yet another approach is to
compute multiple signatures by applying the test sequence
multiple times with different feedback polynomials in the
LFSR [22]. Beside increasing substantially the test applica-
tion time, such a scheme requires solving a large set of com-
plex equations to identify the errors in the input sequence.
Finally, a general approach is to suppress time compaction
during the diagnostic phase, for example by removing the
feedback line on LFSR and observing the full quotient [21].

Approaches that tradeoff hardware overhead for reduced
test application time have also been proposed. Some meth-
ods use cycling registers beside the signature analyzer to
improve the diagnostic [6, 19]. Other schemes use very
long signatures or multiple signature analyzers, requiring
again to solve a large set of complex equations in order to
identify the errors within the input sequence.

In the case of space compaction, the most common ap-
proach is to bypass the compactor during diagnostic and ob-
serve only a limited number of scan chains for a given test
instance [21]. However, some error patterns can also be
identified from the compacted response. For a compactor
implementing the check matrix of an error correcting code
of distance d, t errors in the presence of x unknown val-

ues can be identified within the compactor input vector if
2t + x < d [13, 17]. In [8], such compactors are used to
compute one bit of the signature at a time by loading succes-
sive columns of the check matrix during diagnostic phase.
Errors can also be identified from the outputs of convolu-
tional compactors but the diagnostic operation is complex
and prone to aliasing [11].

3 Model and main idea

In this paper, we propose a space compactor that can be
used in pass/fail mode as well as diagnostic mode. The
general architecture of the circuit under test (CUT) and the
compactor is presented in Figure 1. The CUT has n out-
puts that can either be scan chain outputs or primary out-
puts. These outputs xi are fed to a block of masking logic
that can either let the signal through, i.e. yi = xi, or set
yi = 0 depending on the value of the control inputs. Mask-
ing is used for two reasons. First, unknown values in the
test response are masked to avoid corrupting the compacted
output [12, 14]. Secondly, masking is used in diagnostic
mode to select the set of outputs to be observed at a given
test instance by replacing the outputs that are not observed
at the given step by zero values. That procedure effectively
cancels the contribution of the masked output because the
compactor used is linear. Finally, the test architecture con-
tains a linear space compactor that transforms the n signals
yi into m signals zi to be observed by a tester.
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Figure 1. Test architecture.

The linear compactor is based on the check matrix H of
an error correcting code of distance d so that z = y.H . In
other words, z is a linear combination of the n rows of H .
During pass/fail test, the compaction ratio is n/m and up to
d − 1 single errors in y are guaranteed to be detected. Re-
garding diagnostic, t single errors in y can be diagnosed if
2t < d, assuming that unknown values are masked out by
the logic inserted so that the vectors y are fully specified. In
diagnostic mode, the masking logic is set to observe only k
outputs at a given test instance so that ⌈n/k⌉ test instances
are necessary for diagnostic. Reducing the number of out-
puts observed improves the quality of diagnostic because it
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Figure 2. Structure of the compactor matrix
H .

is now possible to identify t errors in the modified vector ŷ
of length k with k < n, provided that 2t + 1 < d. How-
ever, the smaller the value of k, the larger the number of
test instances required and therefore the longer the test ap-
plication time. For a given k, the quality of diagnostic can
nevertheless be improved by properly designing the linear
compactor.

During diagnostic, the compacted output ẑ is a linear
combination of the rows from a submatrix Ĥ that corre-
sponds to an error correcting code of distance d̂ with d̂ ≥ d.
The main idea of this paper is to design the compaction ma-
trix H in such a way that the submatrices Ĥ have higher
distance than H in order to further improve the quality of
diagnostic.

4 Compactor design

The check matrix H used in the linear space compactor
is built by repeating the rows of a check matrix H0 of a
shorter code (a k × m0 matrix) and adding extra columns
as described in Figure 2. The maximum number of rows
of H depends on k and the number of extra columns m1

and is given by nmax = k.2m1−1. Therefore the maximum
compaction ratio attainable is Rmax = k.2m1−1/(m0 +
m1). Note that by appropriate choice of k, any arbitrarily
large compaction ratio is achievable by this method. The
matrix presented in Figure 2 corresponds to the special case
where n = k.2m1−1. In general, a submatrix consisting of
a subset of the rows of the matrix presented in Figure 2 can
be used according to the number of CUT outputs n.

Let d0 be the distance of the code corresponding to the
check matrix H0. During diagnostic when k CUT outputs
are observed concurrently, the compaction matrix Ĥ con-
sists of H0 with the m1 extra columns that are identical and
non all zero as shown in Figure 3. Therefore the distance
d̂ is d0 if d0 is even and d0 + 1 if d0 is odd. Indeed, the
distance corresponds to the minimum number of rows that
can add up to the zero row through binary bitwise addition.
Since the last m0 bits need to add up to zero, it takes at least
d0 rows of Ĥ to add up to the zero row of length m. Fur-
thermore, if d0 is odd, then adding an odd number of rows
cannot add up to the zero vector on the first m1 bits because
the columns are not all zero.

...

a1 a2 ... am1

kĤ =

a1 a2 ... am1
a1 a2 ... am1

H0

m1 m0

Figure 3. Structure of the matrix Ĥ .

In pass/fail mode, the n outputs are observed together
and the detection properties depend on the distance of H
that is given by the following expression.

d =
{

4, if d0 ≥ 4
d0, if 1 < d0 < 4 (1)

Again, the distance d is given by the minimum number of
rows of H that add up to the zero row. Irrespective of d0,
rows 1, 2, k+1 and k+2 add up to zero, which shows that
d ≤ 4 in any case. Assume first that d0 ≥ 4. All the
rows of H are non zero and different (the rows of H0 are
different since d0 > 2), thus d ≥ 3. Furthermore, if three
rows add up to zero, then their subrows corresponding to
the last m0 bits add up to zero. These subrows are rows
of H0 that can be all different, all identical or two identical
and one different. In the second and third cases, the sum
cannot be zero because two cancel out and the other subrow
remains (and the subrows are non zero since d0 > 1). In the
first case, the three different subrows cannot add up to zero
since d0 > 3. Therefore, there does not exist a set of three
rows of H that add up to zero, which shows that d > 3.
Assume now that d0 = 3. Every row of H is non zero and
different, which guarantees d > 2. Furthermore, if subrows
i1, i2 and i3 of H0 sum up to zero, then rows i1, k+i2 and
2k+i3 of H sum up to zero also. Therefore the distance of
H is d = 3 = d0. Finally, assume d0 = 2. Every row of
H is non zero, which guarantees d > 1. Furthermore, H0

has two identical rows i1 and i2 so that rows i1 and i2 of H
sum up to zero. Therefore the distance of H is d = 2 = d0.

The case d0 = 1 happens when H0 has one or more zero
rows. If d0 is odd, a zero row can be added to H0 when
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constructing H to improve the compaction ratio while ob-
taining distance d0 + 1 for the augmented matrix Ĥ and
distance d = 3 for the pass/fail matrix H (the rows 1, k+1
and 2k+1 add up to zero, therefore the distance cannot ex-
ceed three).

In pass/fail mode, up to d-1 errors out of n outputs are
guaranteed to be detected, although many more combina-
tions of errors are detected in practice as will be shown in
Section 5. The matrix H presented here also guarantees to
detect up to d0-1 errors that are located within k consecutive
bits.

5 Application with Golay code

In this section, we show how the Golay code can be used
to construct a space compactor following the procedure pro-
posed above. The Golay code is a perfect code of distance
seven, which means that it can perfectly identify up to three
errors but cannot identify any group of four errors or more.
We propose using the Golay code by setting H0 = HG

where HG is the parity check matrix for the Golay code.
We also propose using the augmented Golay code by adding

a zero row to HG so that H0 =
[

HG

00 . . . 0

]
. We first

describe the algorithms used for error detection and diag-
nostic, and derive the algorithm properties for both modes.
Then, we evaluate the compactors performance in terms of
aliasing and misdiagnostic probabilities through simulation.

5.1 Algorithms and properties

First, we look at the simple Golay code, whose check
matrix HG has 23 rows and 11 columns. The diagnostic
algorithm consists of three steps and uses a dictionary that
contains error signatures with the corresponding group of
one, two or three error bits within the possible 23. Note
that all the possible 211-1 erroneous signatures are in the

dictionary since 211 − 1 =
(

23
1

)
+

(
23
2

)
+

(
23
3

)
.

That property comes from the perfectness of the code. The
diagnostic procedure is described below for a given error
signature s = (sl, sr), where sl and sr correspond to the
m1 left bits and m0 right bits respectively.

Diagnostic procedure 1: for a given error signature
(sl, sr),

• Find the group g of error bits corresponding to sr in
the dictionary.

• Compute s′l, the left error signature for group g.

• If s′l = sl, conclude that the group of error bits is g.
Else, conclude that the errors cannot be diagnosed.

The properties of the diagnostic procedure 1 can be de-
rived as follows by considering varying number of bit errors
within the 23 compactor inputs. If there are three or fewer
errors, they are correctly diagnosed because every such er-
ror combination corresponds to a different entry in the dic-
tionary. If there are four errors, sl will be zero because the
same left part of the row is added an even number of times.
Furthermore, sr will correspond to a group g of three errors
in the dictionary. Indeed, it cannot correspond to a group
of one or two errors because the Golay code is of distance
seven so that five or six rows of HG cannot add up to zero
(which is same as saying that the sum of one or two rows
cannot equal the sum of four rows). However, the left hand
side signature for g cannot be zero because the same left
part of the row is added an odd number of times. Therefore
s′l ̸= sl and the procedure concludes that the error cannot be
diagnosed. Finally, if there are five or more errors, sr may
or may not correspond to a group of error with same par-
ity as the real error set. Therefore, the procedure can cause
misdiagnostic by returning a set of errors that differs from
the real set. It can also conclude that the errors cannot be
diagnosed. We evaluate the misdiagnostic probability later
in this section.

Regarding error detection in pass/fail mode, the proce-
dure consists merely in comparing the signature obtained
with the signature expected. As analyzed in Section 4, the
matrix H has distance four and therefore it is guaranteed to
detect up to three errors. Again, we will evaluate the alias-
ing probability for four or more errors later in this section.
Note however that careful analysis shows that five errors
are also guaranteed detectable with Golay code. Indeed, by
looking at the right hand side of the rows of H correspond-
ing to the errors and noting that identical right hand sides
cancel in pairs, we conclude that an odd number of right
hand sides remain with a maximum of five. Therefore, the
right hand sides cannot add to zero because the Golay code
has distance seven.

Now we consider the augmented Golay code so that H0

has 24 rows and 11 columns. The diagnostic algorithm is
given below for a given error signature s = (sl, sr). The
procedure first looks for errors within the first 23 bits and
then decides if bit 24 is also faulty.

Diagnostic procedure 2: for a given error signature
(sl, sr),

• Find the group g of error bits corresponding to sr in
the dictionary.

• Compute s′l, the left error signature for group g.

• If s′l = sl, conclude that the group of error bits is g.
Else, if s′l ̸= sl and group g contains two elements or
less, conclude that both the bits of group g and bit 24
are erroneous. Else, conclude that the errors cannot be
diagnosed.
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Figure 4. Aliasing probability for 4-8 errors
with simple Golay code.

Let us consider varying number of errors within the 24
compactor inputs to derive the diagnostic properties. If
there are three or fewer errors within the first 23 bits, they
are identified by the dictionary with correct parity s′l. If bit
24 is erroneous and two or less bits are erroneous within the
remaining 23 inputs, these errors will be identified by the
dictionary (note that the erroneous bit 24 does not modify
the right hand side of the signature sr). Then, the algorithm
will conclude that bit 24 is also erroneous because of the
parity mismatch. Therefore, three or fewer errors are guar-
anteed to be correctly diagnosed. If there are four errors
within the first 23 bits, then the dictionary returns a group
of three errors so that the parity does not match and the al-
gorithm concludes the error is not diagnosable. If bit 24 is
erroneous and there are three errors within the first 23 bits,
the dictionary again returns a group of three errors and the
algorithm concludes the error is not diagnosable. Note that
in that last case, the group of three errors returned by the
dictionary was correct but the algorithm cannot conclude
because it cannot differentiate that case from others where
it would make mistakes. Finally, if there are five or more er-
rors, the algorithm may misdiagnose the errors or conclude
that the errors are undiagnosable. However, if the number of
errors is odd, then the dictionary will either return a group of
odd patterns that match the error parity, or a group of zero
or two pattern, in which case bit 24 is declared erroneous
together with the group. Therefore, misdiagnostic always
occurs when the number of errors is odd and greater than
five.

Regarding error detection in pass/fail mode, the proce-
dure consists again in comparing the signature obtained
with the signature expected. As analyzed in Section 4, the
matrix H has distance three and therefore it is guaranteed to
detect up to two errors. We evaluate the aliasing probability
for three or more errors later in this section.

1.E-06

1.E-05

1.E-04

1.E-03

13 15 17 19

Number of outputs

A
lia

si
ng

 p
ro

ba
bi

lit
y

3 errors

4 errors

5 errors

6 errors

Figure 5. Aliasing probability for 3-6 errors
with augmented Golay code.

5.2 Performance evaluation

We now evaluate both the aliasing and the misdiagnos-
tic probabilities for the compactors based on the simple and
augmented Golay code. The aliasing probability is evalu-
ated for a number of outputs ranging from 13 to 20, which
corresponds to a number of compactor inputs ranging from
69 to 11753 for the simple Golay code and 72 to 12264 for
the augmented Golay code. These numbers correspond to
compaction ratios between 5 and about 600. The proba-
bilities reported are averaged observations over 107 trials.
Figure 4 shows the aliasing probability when using the sim-
ple Golay code for four, six, seven and eight errors (it was
shown above that sets of one, two, three or five errors are
guaranteed to be detected). Note that errors of multiplicity
greater than eight are not considered here as their occur-
rence is usually marginal. However, we observed that their
aliasing probability matches closely the results obtained for
eight errors. The graph shows that the aliasing probability
decreases as the number of outputs increases. The results
shows the same trend as LFSR based time compactors for
which the aliasing probability decreases by a factor two for
every extra bit in the signature. Overall, aliasing is very un-
likely, especially for compactors with many inputs. Figure 5
shows the aliasing probability when using the augmented
Golay code. Results are presented for three, four, five and
six errors. The graphs show again that the aliasing probabil-
ity decreases as the number of outputs increases. Errors of
multiplicity three and four are about ten times more likely
to cause aliasing than other errors.

Finally, we measure the probability of misdiagnostic
with the matrix Ĥ based on the simple Golay and the aug-
mented Golay codes. Misdiagnostic occurs when the diag-
nostic procedure returns an error set different from the one
that produced the erroneous signature. We showed that such
event can happen when five or more errors are present at the
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Number of Conditional misdiagnostic probability
errors simple Golay augmented Golay

5 84% 100%
6 14% 16%
7 88% 100%
8 12% 13%
9 88% 100%

10 12% 12%

Table 1. Misdiagnotic probability

compactor inputs. The results presented in Table 1 show
that misdiagnostic is very frequent for odd number of er-
rors and less frequent for even number of errors. It is due to
the fact that the dictionary contains entries that correspond
mainly to three errors (1771 entries correspond to combi-
nations of three errors, 253 for two errors and 23 for single
errors). When using the augmented Golay code, errors of
multiplicity greater than five and odd are always misdiag-
nosed because the procedure declares the input number 24
erroneous whenever the erroneous signature corresponds to
an error of multiplicity two in the dictionary. Note that the
diagnostic procedure is still very efficient because it guaran-
tees correct diagnostic of errors of multiplicity three or less
and no misdiagnostic for errors of multiplicity four, which
are very predominant events in general. Assuming that er-
rors are uniformly distributed, the misdiagnostic probability
is 3.7 10−3 if the error probability is 5% and it remains be-
low 2.4 10−6 if the error probability is below 1%.

6 Conclusion

This paper proposes a linear space compaction scheme
that can be used during pass/fail mode to detect the pres-
ence of errors in the test response and also during diagnos-
tic mode to identify the location of errors within the test
response while observing merely the compacted outputs.
Enhanced diagnostic capabilities are achieved by reducing
the compaction ratio during diagnostic mode in such a way
that the distance of check matrix used in the compactor in-
creases.

The method can be used with various basic blocks to
achieve different diagnostic performance and compaction
ratio. We presented a detailed analysis of the compactor ob-
tained using the Golay code and its augmented version. Any
combination of three errors out of 23 inputs can be identi-
fied from only 12 outputs, thus preserving a compaction ra-
tio of almost two during diagnostic. The use of other codes
such as BCH codes of arbitrary distance remains to be stud-
ied. Also, the impact of X values on diagnostic performance
should be evaluated and the design of compactors for diag-
nostic in the presence of X values should be considered.
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