
A DFT Method for RTL Data Paths Based on Partially Strong Testability
to Guarantee Complete Fault Efficiency

Hiroyuki Iwata , Tomokazu Yoneda , Satoshi Ohtake , Hideo Fujiwara
Graduate School of Information Science Nara Institute of Science and Technology

Kansai Science City 630-0192, Japan
Email:{hiroyu-i,yoneda,ohtake,fujiwara}@is.naist.jp

Abstract
This paper presents a non-scan design-for-testability

(DFT) method that guarantees complete fault efficiency
(FE) for register transfer level (RTL) data paths. We first
define the partially strong testability as a characteristic of
data paths. Then we propose a DFT method to make a
data path partially strongly testable and a test generation
method for partially strong testable data paths based on the
time expansion model (TEM). The proposed DFT method
can reduce hardware overhead drastically compared with
the previous method based on strong testability. Moreover,
the proposed DFT method can generate test patterns with
complete FE in practical time and allow at-speed test.
key words: design-for-testability, data paths, strong testa-
bility, partially strong testability, complete fault efficiency

1. Introduction
With the progress of semiconductor technology, testing

of VLSI becomes more difficult and the cost is increasing.
Therefore, it is important to achieve high FE with low cost.
For combinational circuits, test patterns with 100% FE

can be obtained by an automatic test pattern generator
(ATPG) [1]. For sequential circuits, the test generation can
be modeled by an iterative combinational arrays [1] so that
a combinational test generation method can be used. How-
ever, test generation for sequential circuits is more complex
than that for combinational circuits because of the num-
ber of time frames needed for the justification and the error
propagation. In the worst case, the number of time frames
is the exponential function of the number of FFs. To ease
the complexity of the test generation, DFT techniques have
been proposed.
The most widely used DFT techniques for sequential

circuits is the full scan approach [1, 2]. In the full scan
approach, test generation algorithm for combinational cir-
cuits can be applied. Therefore, this approach can achieve
100% FE. However, it requires large hardware overhead
and can not allow at-speed test.

To avoid these disadvantages, non-scan DFT methods
have been proposed [3, 4, 5]. A DFT method for RTL data
paths based on strong testability [4] can achieve 100% FE
and allows at-speed test. Moreover, compared with the full
scan design, it achieves shorter test application time and
lower hardware overhead. This method is based on hier-
archical test generation [6] that consists of the following
two steps. First, test patterns for each hardware element
are generated. Then, a test plan (control vector sequences)
for each hardware element is generated so that any test pat-
tern can be propagated from primary inputs to its inputs and
test responses can be propagated from its outputs to a pri-
mary output. Strong testability can be satisfied by adding
thru function to all operational modules and hold function
to some registers. Thru function propagates the value of the
input of the hardware element to the output of the hardware
element without changing the value. Hold function holds
the value of the register. However, we can propagate any
test pattern to each hardware element even if thru function
is not added to all operational modules. Moreover, it is not
necessary to propagate any test pattern to each hardware el-
ement. We can test each hardware element by applying all
the values that appear in normal operation to the inputs of
the hardware element.
In this paper, we introduce partially strong testability of

a data path and a DFT method for making a data path par-
tially strongly testable. Partially strong testability guaran-
tees that for every signal line l, any value that appears at
l in normal operation can be set to l while strong testa-
bility guarantees that every value whether it appears in
normal operation or not can be set to l. In the proposed
DFT method, only part of the hardware elements are aug-
mented with DFT elements in order to make a data path
partially strongly testable. Therefore, the hardware over-
head is drastically lower than that required strong testabil-
ity. Moreover, we propose a test generation method for par-
tially strongly testable data paths. In the proposed method,
a time expansion model (TEM) [7] is extended for partially
strongly testable data paths. The number of time frames

 IEEE the 14th Asian Test Symposium (ATS'05), pp. 306-311, Dec. 2005.

needed for justification and error propagation is the sum of
a sequential depth from a primary input to a primary out-
put along a simple path and a sequential depth of a loop.
Therefore, the method can achieve 100% FE in practical
test generation time by using a combinational ATPG. Fur-
thermore, the proposed method can achieve shorter test ap-
plication time than the method based on strong testability
and allow at-speed test.

2. Preliminary
2.1. Data Paths
In RTL description, a VLSI circuit generally consists of

a controller and a data path. In this paper, a data path and
a controller are separated and only a data path is the object
of testing. A data path consists of hardware elements and
signal lines. Hardware elements are primary input (PI), pri-
mary output (PO), hold register (HR), load register (LR),
multiplexer (MUX), operational module (CM) and obser-
vational module (OM). Inputs of a hardware element are
classified into data inputs and control inputs. Similarly,
outputs of a hardware element are classified into data out-
puts and status outputs. A data input is connected with a
data output of the other hardware element by a signal line.
A control input is fed the signal from a controller. A status
outputs feed the signal to a controller. We assume that con-
trol inputs are controllable and status outputs are observ-
able. Moreover, we assume that all data inputs and outputs
of hardware elements have the same bit width as a restric-
tion for a data path.
Each hardware element has at most two data inputs, at

most one control input, at most one status output, at most
one data outputs. We classify CM into two types : CMA
and CMB. CMA is a operational module that can be set any
value to the data output bycontrolling the data inputs. CMB
is a operational module except for CMA. MUXs, CMs and
OMs are called combinational hardware elements.

2.2. Strong Testability
Definition 1 (Strong Testability [4]) A data path is
strongly testable iff there exists a test plan for each
hardware element m that makes it possible to apply any
pattern to m and to observe any response of m.
If a data path DP is strongly testable, test patterns with

100% FE for m in DP generated by using a test generation
algorithm for combinational circuits can be applied the test
patterns from PIs to m and the responses can be observed
from m to a PO.
Let m be a hardware element in a data path, let dmi be

the number of time frames required for propagation of the
test patterns along a simple path from a PI to m, let dmo be
the number of time frames required for propagation of the
responses along a simple path from m to a PO. In the DFT
method based on strong testability, the length of a test plan
for m is dmi+dmo+1.

3. Partially Strong Testability
In this paper, we define partially strong testability to ap-

ply combinational ATPG to a TEM of a data path and guar-
antee that the number of time frames of the TEM is about
the same as the length of a test plan of strong testability. An
example of partially strongly testable data path and a TEM
is shown in Figure 1.
Definition 2 (The Range of a Signal Line) Let Rl be a set
of values that can appear at a signal line l by controlling
PIs. Then, Rl is called the range of line l. The range of the
inputs/outputs of hardware elements connected with line l
is defined as the range of line l.
Definition 3 (Dependency) Let Rli and Rl j be the range of
a signal line li and l j, respectively. There exists a depen-
dency between li and l j if li and l j can not be simultane-
ously set to any value in Rli and Rl j, respectively. A depen-
dency of the inputs/outputs of hardware elements connected
with li and l j is defined as the dependency between li and
l j.
Definition 4 (Partially Strong Testability) Let L be a set
of loops in a data path and let c be a loop in L. Let Mc
be a set of CMs with two data inputs and MUXs on c. A
data path DP is partially strongly testable iff L satisfies the
following conditions.
1. The data output of each hardware element mca 2 Mc

can be set to any value along a simple path.
2. Let mci be a hardware element in Mc Let dc be the

number of time frames required for propagation of the
values from mca to mci. There is no dependency be-
tween a data output of ma at time t and a data input
on c of mci at time t+d.

Theorem 1 If DP is partially strongly testable, any de-
tectable fault in DP are detectable in a TEM for partially
strong testable data path and the number of time frames of
the TEM is the maximum dmi +dmo +1+nmCM. Let nmCM
be the number of CMs with two data inputs exist on a sim-
ple path from a PI to a PO via m.
Proof: If DP is an acyclic structure, it is proved that any
detectable fault in DP are detectable in a TEM by [8].
By condition 1 and 2 of partially strongly testability, any
value in normal operation can be propagated to any hard-
ware element on any loop by performing time expansion
once along the loop. Moreover, any value in normal op-
eration can be applied from PIs to any hardware element
m by dmi frames and any value in normal operation can be
propagated from m to a PO by dmo frames. Then, at most
nmCM frames are needed so that there cannot exist a depen-
dency between data inputs of CMs on a simple path via
m. Therefore, if there are loops in DP and DP is partially
strongly testable, any detectable fault in DP are detectable
because a TEM of the DP can be treated as acyclic struc-
ture. The number of time frames of a TEM is the maximum
dmi+dmo+1+nmCM .

ADD

REG

0 1

PO

PI

loop c

mca

mci

(a) An example of a
partially strongly
testable data path

0 1

ADD

0 1
X

‘1’

PO

PI

PI

0

1

2ADD

PI

PO

mca

mci

mci

(b) An example of a TEM for
partially strongly testable data path

Figure 1. Partially strong testability

4. DFT for Partially Strong Testability
4.1. Problem Formulation
A given data path can be made partially strongly testable

by adding thru function and hold function. We first formu-
late a DFT problem for making a data path partially strong
testable as the following optimization problem.
Definition 5 (DFT for Partially Strong Testability)
input: a data path
output: a partially strongly testable data path and a TEM

of a partially strongly testable data path
Optimization: minimizing hardware overhead
For CMs such as adders and multiplexers, we realize

thru function by using a mask element instead of MUX be-
cause the former requires lower area.

4.2. Overview of DFT Algorithm
This subsection describes the overview of the proposed

heuristic DFT method. The DFT algorithm consists of the
following three phases.
1. Construct a control forest: To satisfy the condition
1 of partially strong testability, we construct a set of
simple paths which guarantee to propagate any value
in the range of each signal line. The simple path is
called a control path and a set of the paths is called a
control forest. Thru function is added to CMs to prop-
agate any value.

2. Resolve dependencies: To satisfy the condition 2 of
partially strong testability, we find whether there ex-
ists a dependency between data inputs of every hard-
ware element. Hold function is added to LRs to re-
solve a dependency.

3. Generate a time expansion model: For test generation,
we generate a TEM. Hold function is added to LRs so
that any detectable fault in a data path can be detected
in only one TEM.

4.2.1. Control Forest Construction In the proposed
method, in order to reduce the CMs to be added thru func-
tion, if there are paths such that any value can be prop-
agated along the paths without adding thru function, the
paths are included in a control forest as much as possible.
A control forest is constructed in order to decrease the de-
pendencies of the control paths as much as possible and the
ratio for the paths whose range is different from the range
of a PI used as a control forest is the minimal.
We select the hardware elements and the paths from PI

as the control forest. Let m be a hardware element, let mt
be a hardware element which is connected with a data out-
put of m and not yet selected from m, and let nm be the
number of mt . Let CC be a set of hardware elements such
that the paths connected with all the data inputs of the hard-
ware element are selected and there exists the path that is
connected with a data output of the hardware element and
is not yet selected. Let CM be a set of hardware elements
with the minimum nm in CC. Let CREG be a set of regis-
ters such that the path connected with a data inputs of the
register is selected and all the path connected with a data
output of the register are not yet selected. Let CCM be a set
of CMs such that at least one path connected with the data
inputs of the CM is selected and all the path connected with
a data output of the CM are not yet selected. The steps for
constructing a control forest are shown as follows.
1. CC is initialized to a set of PIs. CREG,CCM are set to
empty. All the hardware elements and the paths are
not selected.

2. This step is repeatedly performed until CM is empty.
CM is initialized to a set of hardware elements with
the minimum nm in CC. We select m 2CM and delete
m from CM . Then, if there is no mt , m is deleted from
CC. We select mt and the path between m and mt and
operate as follows.

• If mt is a MUX and mt is selected in the first
time, mt is added to CC.

• If mt is a HR or a LR, mt is added to CREG.
• Ifmt is a CMA, all the paths connected with data
inputs of mt are selected and mt is never added
to CC, mt is added to CC and deleted from CCM
iff mt exists inCCM .

• Ifmt is a CMAwhich does not satisfy above con-
dition or mt is a CMB, mt is added to CCM .

The selection from m is continuously performed until
mt which is never selected is selected.

3. If CC is not empty, the process returns to step 2.
4. IfCREG is not empty, all the registers inCREG is added
to CC and deleted from CREG and the process returns
to step 2.

5. If there exists a CMA m 2CCM , m is added to CC and
deleted from CCM and the process returns to step 2.
Then, if there exists no CMA in CCM and there exists

ADD1

REG30 1

REG1

PI

PO1

SUB1

REG2

ins0
MASK1

PO2

0 1
MUX1

MUX2

Figure 2. An example of a
data path

ADD1

REG3

REG1

PI

PO1

SUB1

REG2

ins0
MASK1

PO2

MUX1

MUX2

0 1

0 1

Figure 3. An example of a
control forest

0 1

SUB1

REG2REG1

PI

MUX2

Thru

ins0 MASK1ADD1

0 1
MUX1

REG3

‘1’

Figure 4. Control paths for
MUX2

a CMB m 2CCM , m is added to CC and deleted from
CCM and it returns to step 2.

6. Letm be a hardware element, let in1m be the data input
of m connected with the path selected in the first time
and let outm be a data output of m. If m satisfies at
least one of following conditions, thru function that
propagates from in1m to outm is added to m.

• There exists no register on the re-convergent
path in a control forest which re-converge with
m. And m exists on a loop or a loop exists on the
path connected with the output of m.

• On the step 5, m is a CMA included in CCM .
• m is a CMB. And m exists on a loop or a loop
exists on the path connected with the output of
m.

An example of a control forest for Figure 2 is shown in
Figure 3. In the example of Figure 2, after step 1-4, the
hardware elements and paths except SUB1 or subsequent
ones are selected. In step 6, thru function is added to SUB1.

4.2.2. Dependency Resolution It is assumed that there
exists a dependency between two data inputs of a hardware
elements if the control paths for the hardware element are
a re-convergent path in a control forest which re-converge
with the hardware element and the sequential depths of the
re-convergence path are same.
Let mc be a hardware element such that there is a de-

pendency between two data inputs of mc. If mc exists on
a loop or there exist HRs on the control paths from mc to
PIs, the dependency needs to be resolved. To resolve the
dependency, the hold time of the registers adjacent to one
data input of mc is figured out. If there exists the LRs in the
registers, hold function is added to the LRs.
An example of control paths is shown in Figure 4. There

exist control paths with the sequential depth 1 or 2 from the
PI to the left data input of MUX2. There exists a control
path with the sequential depth 1 from the PI to the right data
input of MUX2. Therefore, there exists the dependency
between the two data inputs of MUX2. The dependency

must be resolved because MUX2 exists on a loop. REG1 is
holded one cycle so that the dependency can be resolved.

4.2.3. Time Expansion Model Generation A TEM is
used for test generation of partially strongly testable data
path. In the proposed method, a hold function is added of
the process of a TEM generation so that only one TEM can
be generated.
Let t be the current time frame number of a TEM. Let

CO,CREG1.CREG2 be a set of hardware elements, respec-
tively. The steps for a TEM generation are shown as fol-
lows.
1. CO is initialized to a PO. CREG1,CREG2 are set to
empty. t is set to zero.

2. This step is repeatedly performed until CO is empty.
A hardware element md 2CO is deleted from CO and
md is added to the TEM at t. Then, we operate as
follows. If md is added to the TEM in the first time,
hardware elements connected with all the data inputs
of md are added to CO. If md is added to the TEM
in the second time or more, hardware elements con-
nected to md on the control forest are added to CO. If
md is a HR or a LR, md is added to CREG1. If there
exists the dependency between the two data inputs of
md , the registers are holded according to the already
figured out in 4.2.2 so that the dependency can be re-
solved. The signal lines between md and the hardware
elements added to CO are added to the TEM. More-
over, if the signal lines connected with POs, the POs
are added to the TEM.

3. IfCREG1 is not empty, the registers inCREG1 which are
loaded at t are added toCREG2. LetMD be a set of CMs
on the paths from the registers in CREG2 to POs in the
TEM. If there is the dependency between two data in-
puts ofm2MD andm exists on a loop, the dependency
is resolved in order to guarantee observation of the
values. The registers which are reached from a data
input of m in the TEM are holded so that the depen-
dency can been resolved and deleted from CREG2. If

0

-2

-3

-4

MUX1

ADD1

0 1

ins0

SUB1

ins0

SUB1

MASK1

MASK1

PI

-1

PO1

PO2

ThruX

0 1

ADD1

0 1
MUX1

PI

PI

MUX2

X
‘1’

PO1

PI

PO2

Figure 5. An example of a TEM

there exists LRs in the register, hold function is added
to the LRs. The hardware elements connected with the
data inputs of the registers in CREG2 are added to CO
and the signal lines between the registers and the hard-
ware elements are added to the TEM. The registers in
CREG2 are deleted from CREG1 and CREG2. Then, the t
is decremented one and the process returns to step 2.

4. One of the POs and OMs which are not added to the
TEM is added toCO. Then, the process returns to step
2 as t is the adequate time not to appear combinational
hardware elements redundantly as possible.

An example of a TEM for Figure 2 is shown in Figure
5. In Step 1,CO is initialized to PO1. In Step 2, there exists
the dependency between the two data inputs of MUX1 and
MUX2. Then, REG1 is holded one cycle at °1. In Step
5, the operation from PO2 is not performed because PO2
appears at °1,°2.
The hardware elements with the data input connected

with no hardware element in the TEM have thru function.
The control inputs of the hardware elements are controlled
according to the control forest and the data inputs are set
to unspecified values. A combinational ATPG is applied to
a generated TEM using the above-mentioned restrictions.
The generated test patterns are transformed so that the test
patterns can be applied to the original data path.

5. Experimental Results
We evaluate the effectiveness of the proposed method

by experiments. RTL benchmark circuits used for the ex-
periments are GCD, LWF, JWF and PAULIN, which are
popularly used circuits [4, 5], and RISC and MPEG, which

are more practical and larger circuits designed by a semi-
conductor company [4, 5]. Circuit characteristics of these
circuits are shown in Table 1. Column “bit” denotes the
bit width of the circuits. Column “#PI”, “#PO”, “#Reg”,
“#MUX”, “#CM” and “#OM” denote the numbers of pri-
mary inputs, primary outputs, registers, multiplexeres, op-
erational modules and observational modules, respectively.
In our experiments, we used AutoLogicII (MentorGraph-
ics) as a logic synthesis tool with its sample libraries to
synthesize those circuits. In Table 1, column “Area” de-
notes the total circuit size after synthesis.
We used TestGen (Synopsis) as a sequen-

tial/combinational ATPG tool on Sun Blade 2000 (Sun
Microsystems). Test generation for sequential circuits
using a TEM requires a combinational ATPG which can
deal with multiple stuck-at faults. In this experiments,
since TestGen can not deal with multiple stuck-at fault, we
use the circuit model which can express multiple stuck-at
faults in a time expansion model as single stuck-at fault
[9].
The results of the hardware overhead are shown in Ta-

ble 2 and the results of test generation are shown in Table 3.
Column “org”, “FS”, “ST” and “PST” denote results of the
original circuits (without DFT), of the circuits modified by
the full-scan design, of the circuits modified by the method
of [4] and of the circuits modified by the proposed method,
respectively. The value in parentheses in column “Fault
efficiency” shows the fault coverage. Column “Test gener-
ation time” denotes the time spent on the ATPG and does
not include the time spent on the DFT since the time spent
on the DFT is negligible as compared with the time spent
on the ATPG. The test application time of the full scan de-
signs are calculated by assuming the case where these cir-
cuits have single scan chain.
The proposed method can always achieve drastically

lower hardware overhead than both “FS” and “ST” can. Es-
pecially for GCD, LWF, JWF and RISC, there is no need
for DFT since the original circuits satisfies the partially
strong testability as they are.
We observe that the test generation time of FS, ST and

PST which can achieve 100% FE are much shorter than that
of org. Moreover, PST can achieve almost same test gener-
ation time as ST which is based on hierarchical test gener-
ation. We consider that faults were efficiently detected by
the fault simulation in PST since the whole circuit is the
target for test generation in PST. However, PST requires a
little bit long test generation time compared to FS. This is
because PST uses a TEM for test generation.
In the result of test application time, PST can achieve

shorter test application time than ST because faults were ef-
ficiently detected by the fault simulation in PST. Moreover,
PST can achieve much shorter test application time than
FS. This is because PST does not require scan-shift oper-

Table 1. Data paths characteristics
Circuits bit #PI #PO #Reg #MUX #CM #OM area
GCD 16 2 1 3 3 2 3 1010.7
LWF 16 2 2 5 5 3 0 1364.7
JWF 16 4 5 14 25 3 0 4208.3
Paulin 16 2 2 7 8 7 0 4329.0
Tseng 16 3 2 6 5 9 0 3163.9
Risc 32 1 3 40 84 20 3 39834.8
MPEG 8 56 148 241 207 161 0 48709.7

Table 2. Hardware Overheads.
Circuits Hardware overhead[%]

FS ST PST
GCD 16.5 3.8 0.0
LWF 20.4 9.6 0.0
JWF 18.5 3.1 0.0
Paulin 9.0 3.5 1.8
Tseng 10.5 8.4 2.4
Risc 16.9 7.1 0.0
Mpeg 14.0 8.0 0.8

Table 3. Test generation results.

Circuits
Fault efficiency[%] Test generation time[sec] Test application time[clock](Fault coverage)

org FS ST PST org FS ST PST org FS ST PST
GCD 100.00 100.00 100.00 100.00 3.18 0.20 0.83 0.39 133 2351 387 197(100.00) (100.00) (100.00) (100.00)
LWF 100.00 100.00 100.00 100.00 0.33 0.21 0.62 0.24 56 2674 250 70(99.90) (99.90) (100.00) (99.90)
JWF 100.00 100.00 100.00 100.00 3.63 0.60 0.62 1.74 244 14849 769 608(99.95) (99.95) (100.00) (99.95)
Paulin 99.23 100.00 100.00 100.00 297.50 0.83 0.86 4.69 147 2824 875 526(99.20) (100.00) (100.00) (100.00)
Tseng 99.01 100.00 100.00 100.00 703.90 0.34 1.08 0.87 590 4752 633 523(98.96) (100.00) (100.00) (100.00)
Risc 99.37 100.00 100.00 100.00 12210.81 55.17 76.56 60.02 2271 621284 5520 3420(99.34) (99.97) (100.00) (99.69)
Mpeg 88.30 100.00 100.00 100.00 68947.90 1.84 1.18 13.34 1216 185183 107359 8448(87.16) (99.45) (99.51) (99.45)

ations. Furthermore, FS cannot allow at-speed test while
other approaches can.

6. Conclusion
In this paper, we defined partially strong testability

as a characteristic of a data path. We also proposed
a DFT method for RTL data paths based on partially
strong testability. The proposed method achieves 100%
FE within practical test generation time by using combina-
tional ATPG. It also allows at-speed testing. Furthermore,
the hardware overhead required by the proposed method
is drastically lower and the test application time is shorter
compared with the method for strong testability [4].

Acknowledgments
The authors would like to thank Prof. Michiko Inoue

of Nara Institute of Science and Technology for her valu-
able discussions. This work was supported in part by 21st
Century COE Program and in part by Japan Society for the
Promotion of Science (JSPS) under Grants-in-Aid for Sci-
entific Research B(2)(No. 15300018).

References
[1] H. Fujiwara, Logic Testing and Design for Testability, The

MIT press, 1985.
[2] M. Abramovici, M. A. Breuer and A.D.Friedman, Digi-

tal Systems Testing and Testable Design, Computer Science
Press, 1990.

[3] R. B. Norwood and E. J. McCluskey, “Orthogonal
scan:Low overhead scan for data Paths,” Proc.1996 Int.Test
Conf.,pp.659-668(1996)

[4] H. Wada, T. Masuzawa, K. K. Saluja and H. Fujiwara, “De-
sign for strong testabillity of RTL data paths to provide com-
plete fault efficiency,” Proc. of 13th International Conf.on
VLSI Design, pp.300-305, Jan. 2000.

[5] S. Ohtake, S. Nagai, H. Wada and H. Fujiwara,“A DFT
method for RTL circuits to achieve complete fault effi-
ciency based on fixed-control testabillity,” Proc. of ASP-
DAC, pp.331-334, 2001.

[6] J. Lee and J.H. Patel, “Hierarchical test generation under
architectural level functional constraints,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 15, no. 9, pp. 1144-1151, Sept. 1996.

[7] T. Inoue, T. Hosokawa, T. Mihara, and H. Fujiwara, “An op-
timal time expansion model based on combinational ATPG
for RT level ciruits,” Proc. IEEE the 7th Asian Test Symp.,
pp. 190-197, Dec. 1998.

[8] T. Inoue, D. K. Das, T. Mihara, C. Sano and H. Fujiwara,
“Test generation for acyclic sequential circuits with hold
registers,” International Conference on Computer Aided De-
sign, pp.550-556, Nov. 2000.

[9] H. Ichihara, and T. Inoue, “A method of test generation for
acyclic sequential circuits using single stuck-at fault combi-
national ATPG,” IEICE Trans. Fundamentals, Vol. E86-A,
No. 12, pp. 3072-3078, Dec. 2003.

