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A TESTABLE DESIGN OF PROGRAMMABLE LOGIC ARRAYS WITH UNIVERSAL CONTROL AND MINTMAL OVERHEAD
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ABSTRACT

In this paper we propose a new design tachnique
for designing tescable PLAs with minimal overhead.
In our method we marry a number of exiscing design
methods. We then define silicon area averhead as a
cost function and minimize the cost (i.e. overhead)
while maintaining the testability propercy of PLAs.

INTRODUCTION

With the growth in the complexity of VLSI cir-
cuits, the only way to carry out a circuit design
to completion is by not only enlisting the help of
design autcmation (DA} tools but by making use of
regular structures in the design process. Although,
with the use of DA tools almost any regular struc-
ture can be desigred without much difficulty, wet
some regular scructures have become integral parts
of DA svstams and of Incegrated Circuits (IC). Most
commonly used regular structuras being RAMs, ROMs
and PLAs (Programmable Logic Arravs}. Use of PlAs
in ICs is gaining increasing popularity for ressons:
(1} It is a puweriul struccure to realize arbitrary
cocmbinacional as well as sequential circuics.
Therefore, its use reduces the overall complex-
i1ty of the chip design.
PLAs can often be implemented as testable
structuresi=I! thus making the atherwise
plex problem of testing VLSI circuits of
manageable proportions.
It is easy to include engineering design changes
in IC's designed using PLAs.
Hardware and silicon area required to implement
a PLA can often be further reduced by using PLA
minimization methodsi?—13,

(2)
com-

(3)
(a)

In almost all testable designs of PLAs, enhance-
ment in testability is achieved through use of
additional logic to control individual product lines
in test mode. Typically, such a control is achieved
by one of the following two mechods:

(1) Using a shift te§1it&r (5R) or shift register
with multiplexerd-3=7,
(2) Using extra bit lines to form a decoder or

decoder like structuras. 9.9,

As both the methods provide almost equal fault-
coverage, the supericrity of a method depends on the
azcunt of silicon area overhead. Bozorgui-Mesbat
and MeCluskey® argue that it is diffieult to con-
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struct register cells with the same pizch as PLA
pitch, thus a design employing 5R is likely to be
inferior than a design which uses extra bit lines.
On the otherhand, Hua et al’ and others!? argue the
use of SR with multiplexers and 5R with extra inputs
ot 5R wrapped around a PLA Eo obtain a low silicon
area overhead.

In general depending on the function realized
by a PLA, number of inputs, number of product lines
and number of outputs; any of the two methods can
results into a testable design with lower silicen
area overhead. Although in Built-in Self Test PLAs,
use of shift registers and ;h%f: ragzig=er like struc-
tures are more prevalen:}’l =iy

In this paper we marry the two approaches ard
show that the resulting design not canly has the re-
quired fault coverage but results into an area over-
head lower than the either approach.

This paper is organised as follows. In Section
2 of this paper we give preliminaries and describe
the required notation and the details of the mechods
which are te be integrated in this paper. In Secrian
3 we propose the design of a Universal Contral and
discuss its properties. In Sectfon 4 we describe as
to how partitioning can be employed to merge the uni-
versal contrel and the use of 5R concepts. In
Section 5 we find the optimal length of SR and size
of control, analytically, such that overhead is mini-
mized. Asyaptotic bounds on overhesd and further
reduction of overhead for non-universal concrol are
discussed in Sectiens § and 7 respectively.

2. PRELIMIMARIES

In this Section we present the notation and
known testable designs. We also include some of the
known results for the sake of completeness of this
papar.

From logical description point of view, PLAs are
two level sum-of-product realizations of combination-
al logic functions. Although in a given techmology
their implementation may not be AND/OR. For example
nM0S PLAs are NOR-NOR implementations., However, for
our analysis and presencation of results we choose
AND/OR realization. Conversion of the tests derived
in this paper to suit MOR-NOR and other forms is a
simple maccer. Similarly, fault coverage results alse
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apply to other forms of PLas.

A general PLA structure is shown in Figure 1.
Input decoders, D , shown in this figure will be
assumed to be one=bit decoders providing true and
compliment bit lines to the AND plane. For sim-
plicity of presencation other details of a PLA
structure, (e.g. pull-ups, grounds, ete.) will now
be shown. Program points of a PLA are intersection
of bit lines and product lines in the AND-plane and
product lines and output lines in the OR=plane. A
FLA can be completely described by its personality
matrices for AND and OR planes. We shall denote the
gize of a PLA by an ordered triple (n, m, &) having
n: numher of inpurs; m: number of product-lines
and L: number of cutputs. The perscnalicy matrix A
for AND plane i= a mm metrix whose entries are from
the sec {1,0,-}, A 1(0) in the position a;; means
thaz 1t input {complement of if inpur) an& jth
product line have a crosspoint presemt in the BPLA.
Entry 2;; = - means jEP product line is independent
of 150 ffpur.

The pergsonality matrix § for OK plane is a fx=
matrix whose entries are from che sec {1,-}.

Typically, all tescable desipgns inecorporate ex-
tra logic to enhance testabilicy. A genaral struc-
ture of a testable PLA is shown in Figure 2. While
discussing different testable design we shall often
refer to this figure,

2.1 Faulr Madel

We shall assume that only following faults can
be present im a PLA:
(1) Any number of s-a-faults,
(2} Any number of extra devices, and
(37 Anv number of missing devices.

Though we do not assume the presence of adjacent
line bridging faults, yet they can be decected with
only a minor modification in some of the cases dis-
cussed in this paper. Also, as Saluja et aldl have
shown that s-a-faults in & PLA are equivalent te
missing device or output s-a-0 faults, therefore,
while presenting the proofs we shall only consider
the fault set modified accordingly.

2.2 Bororgui-Nesbat and McCluskev's (BM) Approach®

In this approach LP (Figure 2) consists of a
decoder-1like structure. Extra inputs are added such
that the resulting A matrix has cercain distance
properitles, LI essencfally consists of circulc
which can be enabled only during test mode (in n-MOS
it will consist of pull down transistors on extra
lines). We shall call the PLA obtained with this
approach a BM-PLA. In our notation, P; denotes {th
product line as well as function realized by ith
product line. An n-bit input wector will be denoted
as X = {nl, €y weey cn].

Definition 1l: A set of inputs 5,, is called a
select set of P; 1f Sy = (X/P,(X) = 1?.

Definition 2: An input vectar ty g is called
main test pattern of By if ¢ 1. £, :‘g .
2. dy(ry g.X) = 2 for all X and Sy such that XeS,

and § = 1. Where dy(a,b) is Hamming distance be-
tween vectors a and b.

Definition 3: For a main test pattern ty g =
(e), €34 ---» ) for P we define n auxiliary test
patterns of Py as ti’{ -z{cl + €41 €5
L] »

» €y ues
Ey#ls =ovs enl; 3 n.

ey

Definition 4: Test patterns for P, TPy, 1=
the set defined as: TPy = {tg g t4 1. «n, t4 g)-

Dafinirion 3;
defined as:

Test set for BM-PLA, Tgy is
Tgy = TP1“TT2”"+”TPW'

Theorem 1¥: A BM-PLA can be tested for all
faults by the test zet Topg-

A procedure for adding extra inputs such that
the resulcing PLA {5 easily testable is given im 5.
Humber of extra inputs depend on the A matrix of the
original FLA. Computacional complexity of the pro-
cedure which changes a PLA to BM-PLA i= O(m?),

2.3 Khakbaz's (K) &nprnach5

In this approach LF consists of a SR te control
the individual product linmes. Mo extra logic is re-
quired at LI. Anr extra observable cutput is added.
We shall call the PLA obtained by this approach a
E=PFLA. In deriving the tests for K-7LA, 4 test
vector will be denoted by a (m#n)-bit vector,
fFys Tgu sevs Pgi Gy Cuy =<e3 Cp)s The First
Engtﬂ denote the contents of 5R, and remaining
n-bits indicate the inputs. We shall often group
them together and demste the test vector as (R, X).
Following R and X vectors are of special intersst
for deriving tests for K-PLA.

Deficicion 6; YVectors RQ and B, are defined as
follows: R, = {0, 0, ..., 0); Ry =
g 0)

0,0, ..., 0, 1, D,
ith

Definition 7: An input X; is called a Test
Inpet for Py Af Kye8; (see Definirion 1 for 5y).

Definition 8: If ¥y (test input for By) is
denoted as (e, €, ..., 2,), we define n auxiliary
test inputs for P; as Xy ¢+ » {e,, 2., -y Tyy -ony
’Eu}i J=1; & «vs; ms d : 5 3

Dafinicion 9: Test Vectors for Py Tﬂi, is the
set TV; = {(Rg3Xg), (Rys¥g 1), (RysXg 2) ooes
(Ri.xi'nj}1

Definition 10:
fined as Ty = TV, TV WTV 0.
[RyiX,), (RysXyd, ovvy (RoiX)D:

Theorem 2%: A K-PLA ean be tested for all
faults by the cest set TK‘

2.4 Baluja et al ESRF}‘ and Fujiwara jFlE Approaches

In these appraaches LP consists of a SR to con-
trel the individual product lines. LI econsits of
addicienal esntrellable logic in the form of SRY or
gates® o provide inputs to the AND plane of the PLA
such that the resulting PLA can be tested by test

Test Set for K-PLA, Ty, is de-

+ o UTVy where TVD =
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sets independent of the personality of a PLA. We
do not describe the necessary test sets here, as it
will make this paper unduly long. However, follow-
ing theorems is a consequence of these works. In a
later section in this paper we will apply the key
{dea used in SEF-PLA and F-PLA to arrive at & new
design.

Theorem 39+6: SKF-PLA and F-PLA can be tested
for all faults by test sets independent of the PLA.
Furthermore, SEF-PLA and F-PLA can alsc be testaed
for adiacent line bridging faults.

2.4 Comparison
Comparative advantages and disadvantages of the

different designs discussed above are listed in
Table 1.

Table 1 Compariscn of pifferent Testable Designs

|l EE-PLA E-FLA SKF=FLA & F=PLA l
Excrs Loegle, Lh '
(1) Type Bacoder like 1] S5k |
(1} Depensence 1
an Pli Ten B o
(1) Excrs Lepucs |E(FLAY 1 1
{4) Compucatiom |
complaxity  |Mm') il Wil
(5] Cear frPLA) tim) fim)
I‘ a
1 Emera Legle LI |
(L] Typs Comgrellable Hil SR gates
#itra inputs
(2} Dmlimy
insareed Eil HEL Tew
[EA=-114 Cunitaat Hil fial}
Teni CeneTatlon
Llp Reguiced Tes | Y ne
{2} Lengeh Eln, ®) ] fin, m) fin, m)
{3 Fsule g=3 and s-a and =l ; CToRd=
Caverage cress—points eross-paintd polnts and
wridging
(4] Stoted (oSt
paAELETIE L] = censcanc {1}

fix, v, --) ssana & funeticn of x.¥ &L

TiPLRL) wesnd & fusccion af pececnallty of FLA

3. UNIVERSAL CONTROL

In this Secticn we propose a desiga of LP vhich
makes use of extra inputs and bit lines similar to
EM-PLAs. Howewver, the design proposed will be uni-
versal in nature, i.e. independent of the person-
ality of PLA. The algorithn described in 9 for
adding extra inputs to the PLA has a computatienal
complexity of Ofm?}. For large PLAs, use of such
an algerichm can be prohibitively expensive, thus
restricting the use of this method only to small
FLAs.

We shall first study some properties of a
special AND-array, called Decoder-Parity-AND-Array
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(DPAA) , defined below.

*

Definition 11 : A& DPAA is an AMND-Array with m
product lines Flug.?m'l 41 inputs ard with the A matriz
as follows: If m columns of Ap matrix are mum-
bered from a.TTtn hn__} and Ay = [“1;1- ag 4s vees

8p,4s 8p41,i)7 then lap 4, ..., 83 4, @) 4) 18
binary representation of 4 and apyi |y =
By 1% =o- B0 4 88y -

Following lemmas describe some properties of
DPAA.

Lemma 1: dylAg, ajj 22; 0si,j=<=m 1=].
. ok
Lemma 2 : For the DPAA, the select set 55 of

P; is uniquely detersined and consists of a_single
pattern. MNotationally, |5-;! = 1 and 54 = ﬁ{,

Following definition is a minor variatiom of
the defimition in 9 and is stated here for the sake
of coepleteness of this paper.

Definition 12: Distance matrix D, of a FL& is
A mm marrix whose entries are defined as follows:
Di,§ = min{d“(}{.ﬂf:(zsi,‘.ftsj}; 1=1;

s 2 for 41i=3],.

Lemma 3: Every element of the distance matrix
for the DPAA iz prearer than or equal to 2.

Proof: It follows from Lemmas 1 and Definiciom
12.
Design 1t Augment a given (n, =, L) FLA by

concacinating 4 DPAA to it as shown in Figure 3(b}.
We shall eall chis PLA as D1-PLA. In this Figure
wve have not shown the extra logic which can be used
to disable DPAA part of the PLA during normal opera-
tion of the PLA. In nMOS PLAsl6 such circuir will
be of the form snown in Figure 3{c}. hore that
total number of exrra inputs to D1=PLA are (l+h)
where h = [log,ml.

We now derive a test set for D1-PLA.

Let 5, be the select set of P, for the original
PLA. Lat tui} be the selact set of P; for the
decoder-parity PLA. Then, the select set of Py for
the augmented PLA is

ug.S; = {({uy.X) | ‘K:E.'Si} .

Lemma &: For all XeSy and Y:Sj. dyl{ug,%),
{'11.1”1 z 1.

This lesma guarantees that any element of the
select set of Py for the augmented PLA can be a main
test pattern of Py.

Let t4 g be any one of the elements of ug.5.
For a ti.D!‘W can obtain the auxiliary test patterns

*

+T maans transpose of a wvector Y.
*
* |x| means cardinality of a set x.

+
[v] means smallest integer z such that z = ¥y.



Table 2 Comparison of BM-PIA at D1-PLA
PLA name Master |Mew ALU|Bas New | Recur Traffic ALU CERBERUS COND BAR | RIMP
Test
L] o — P -l
- el L e L [ 1 =
-~ 35 P o ~ & & =z % &
o o ™ E " g} " ™~ o =
X El 3| 8 | £ 3 = | %] 3
— - @ - W - - = L., o
Humber BM-PLA b 4 5 2 3 & & 2 & 4
of Extra
inputs for:| DL1=FLa [ & 7 5 4 7 7 B [ 7
Computation
complexity | BM-FLA {0(277) n(26™y] o¢33®) | o™ oia®y  [of3s?) 050y o(za"y lo(ze?y| 0{3sY)
of
generating D1=-FL& Hil Kil Hil Hil Nil Wil Wil Wil Hil Mil
of Py. Let these be ty 7, t5 34 ---» By ntlleg ml+l- inte k blocks, each block containing m/k product

Then, the test patterns for the D1-FPLA are:

Tpy = ] ge ty,10 ***v 1 nill0g @]+l ,

ty,0° %3,1° v &

-

2 0+ log ml+1l ,

3
ta,0" m,1* "o Cn,n+llog =1+1°

Theorem 4: The D1-PLA of Figure 3(b) can be
tested for all faules by the test set Tpy mentloned
above.

Proof: It follows from Theorem 1 and Lemma 4.
Thecrem 5: Length of the test set to Cest

D1-PLA is m(2+ntlog.m). All these test pacterns
can be generated from m main rest patterns.

Comparison of this method wicth BHM-FLA is given
in Table 2 for 1C PLAs taken from 2. The number of
extra inputs in D1-PLA is not much larger thanm
BEM-PLA, but the computational complexity for gemer-
ating D1-FLA is nil. Minimization of overhead
(number of inputs as well as silicon area) with the

use of DPAA is the subject of the next two Sectlons.

4. PARTITIONING

In this Section we propose a partitioning pro-

eedure which helps reduce the number of extra inputs

without sacrificing the testabiliry properties of
the PLA. The basic idea being a FLA is partitioned

lines. A DPAA is appended to each block as shown
in Figure 4. Furthermore, an SR of length k is
introduced to control these blocks. The formal
design description and the tastabiliey properties
of the resulting PLA are given belcw.

Design 2: Product lines of a PLA are divided
into k blocks with each block containing h product
lines, i.e. h = im/ki. HNoce thac all buc kil
block have h product lines, whereas number of prod-
uct lines im kD bleek are m-(k-1)h. A DPAA is
appended to each block. A1l DPAAs receive the same
inputs thus total number of extra imputs to the FLA
are 1+ log.hl. An 5R of lemgth k is appended. The
resulting £ i3 called D2-PLA (Figure 4).

While discussing testing of DI-PLA we must not
lose sight of the acrual realizarion and physical
failures. Keeping this in mind we make the follow-
ing ohservations.

Observation 1: Saluja et alll have shown thar
in a PLA all s-a-faults can be reduced to multiple
missing cross-peint eor outputs s-a-0 faults. How-
ever, s=a=1 faults at ril+ tiz' :1a. B4 s «+. BLE.

for Block 1 shown in Figure 5 must be tested explie-

itly. Although, s-a-1 faults at these locations

will not interfere im the normal operation of a FLa,

yet their presence may ilavalidate other tests. Thus

our fault set is

(1) multiple cross-points {extra and/or missing)
gnd output(s) s-a-0 faults.

{2} s-a-1 faults at location marked in Figure 3.
Wotice thar this fault set includes the fault
set given in Sectionm 2.1.
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Observation 2: In Figure 4, number of extra
inputs are

{1} 1 for SR

{2) 147log,h] for DPaAs.

However, if we take h = 1 then the design 2 should
be degenerated to K-PLA requiring no DPAA. Similar-
ly, for h = m design 2 should be degenerated to
Dl-PLA requiring ne SR.

Furcher, in the presence of SR we would need to
observe the ocutput rk1 to test SR.

Obgervation 3: We can introduce an extra out-
put, z*, in the OR-plane similar te 4-56. In this
case AND-plane can be completely tested by observing
only z¥%. However, to test OR=plane, as well as out-
puts s=a=0, all outputs need to be observed, there-
fore it L5 neot necessary te intreduce z* outpuc and
complete testing can be carried through by observing
the normal cutputs of D2-PLA.

We now deseribe the testing of D2Z-PLA. Testing
ig carried in a pumber of conceptual steps described
below. Though, in practice these steps can be
merged to obtain a reduced test sec.

Srep 1: Testing SR - SR iz tested by applving
a sequence of Os, followed by a 1, followed by Os
and observing the rk output. This will also detect
s-a1 faults at T 's * in any bleck.

Step 2:
ed in Figure 5 = Sat £y o=y, = 0.
apply m main test patterns. All narma% uutpu:s nf
the PLA must scay zero during this test for a faule
free PLA.

Step 3: Testing PLA - Each block of the PLA is
now cested independently. To test block 1 set ry =
land ry = 0 for j = i. Apply h{l+n+F1ug_,_.hT) test

patterns required to test block 1.
This compleces the testing procedure.

Following theorem states this result formally.
The proof has not been included as it is straight-
forwvard.

Theorez 6: The D2-PLA of Figure 4 can be test-
ed for all faules by tests scated in above three
sTeps.

Thearem 7: Length of the test sec to test
D2-PLA is :{3+n+{1ngzh]}.

Procf: This 1s total number of tests In Steps
2 and ) above. Test for SR is included in thesc
sceps.

5. OFTIMAL FARTITIOHING

In the previous Section we discussed as to how
by using partitioning one can reduce the number of
extra inputs without sacrificing the fault coverage.
Of course, 1if reduction of number of extra inputs
is the onlv objective than SKF-FLA, F-PL4 or K-PLA
are oprimal (in general) by choosing h = 1. Here
we set out objective as follows:
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Testing s-a-l faults at *ccat;ons mark-

Objective: Find oprimal partitioning such that
the area of LP in D2-PLA is minimized. Motice that
in D2-PLA only added loglec is ia the form of LP
(other than disabling transistors for extra imputs -
these are not shown in the figure to keep the figure
simple). Therefore, minimizing area of LP will
result in a minimal owverhead PLA.

We now define the cost function. Let w; be the
area of a PLA cell and w, be the area of an SR cell.

It is difficule, if not impossible, to have
pitch of SR cells same as PLA pitch. However, in
D2-PLA we need picch of SR cells to be h # PLA pitch,
to avoild any Incerconnection overheads. TIn the
following dizcussion we assume such to be the case,
i.e. h will be large encugh to make interconnection
overhead as zero. Hetice interconnecticn overhead
can alsc be reduced to zero by having 58 wrap around
pLaid or by use of SR with mul:ipluxtrs?,

In a D2-PLA increase in area of PLA by adding
an extra bit line is mw,. Therefore an extra input
increases the area of PLA by lmw Thus in DZ=PLA
the cverhead

z = Enul{l+rlag h1) + b {1])
where k = fm/h].

Our objective is to find h = fim, w,, w.) such
that g is minimized. T

Mate: (1) There are two special ecasez which
are not included in equacion (1) to keep che presen-
tacion simple. These are : fa} for h=1g = ma.
(b) for h = m g = 2w, {1+ log ml).

{11} The solution for h must be Found

in the set of integers.

Following ctheorem simplifies the solution space
for h considerably.

Theorem 8: If g is minimized for some h such
that 20-L ¢ k < 2% chen g is alss =inimized for
h = 2%,

Proof: If g is minimized for 2%=1 < h < 22
then gp.. = 2ow, (1+2) + l@/h] w;

- T
Bhe2® mel{liu} + rmflu:.wzq

But Tm/2%] £ lMuw/h] for h < 2%,

Therefore Bhe?® £ Epin-
fore =22 = Bpip-

Implication of Theorem B is that while finding
minimum value of g we need only consider those h
which are some powers of 2., Therefore a solutiom
can eagily be found either by hand computations orf
by using computer. Problem can also be solved
analytically by solving cthe equaction

But gmin 15 minimum there-

d
E& =0 (z)

To gain some insight inte the solution method
we first conslder the case where 2%(=h) divides m.



Mote a sufficient condition for this case is m to
be & power of two.

Theorem 9: If h divides m then g is minimized
for h = Erlugztsfz 1n2)1 or 211032{5;2 1a2}] where

whera 5 = uszi.

Procf: By Theorem § we need only consider
h = 22, FEquation (1) in this case reduces to
g - 2m (l+a) + E;.wz {3
2 1

secting dgfd= = 0 we have d/do (g) =

Imu. - mw.f2® 1a? = 0, i.e, 2% = how,/w,.Ind;
a= lng?(EIE 1n?); where 8 = w_/w . WEVEer, =
must be“an integer. Therefore

o= [1032{5 Hszl In2)1 o= Llugztﬁ uszl 1aZ)}

The general solotiom is net as straightforward
and leads te & recursive but approximace relatien
given by the follewing theorem.

Theorem 10: g is minimized when
b = pblog,(s/2.m /o 1aDd] .. ;M leg (/2 m /= 1n2)]

where s = w_fw,; and using division algorithm we
veltem=qh +y=m +7; 0 sy < h

Proof is similar to the proof for
We sec [o/h] «Tm.+v/h] = m /bl + 1 =
mw /b + 1 and h = 2% (by Theorem B) in the expression
for g and set dg/de = 0.

Proof:

Theore= 9,

Mote that although Theorem 10 gives a recursive
solucion it is very easy to sclve by successive
approxization by first approximating the value of h
using the rasult of Theorem 9 and then making 2
correctisn in the selution. In our experience, the
enlutinn never took more than two steps of approxi-
marions. It is interescing to note that the solu-
tion is almest independent of m and depends only on
s, i.e. the ratic farea of SR call/area of a PLA
cell).

Table 3 gives values of a for different values
of m and . It is evident from this table chat
BM-PLA are only likely to be optimal for small PLAs
and for large s. In ether conditions parcitioning
is likely to provide lower everhead. We don't know
the ratio s for the layout of PLA used in 7, but we
conjecture that s was approximately 10 and there-
fore, instead of one bit multiplexer, use of two
bit multiplexer would have resulted into 2 PLA with
still lower overhead.

Table 3 Optimsl Value of o for Different m and s

. | |
I E] b -] W | b4 1] n L %3 ] L] L] 1] (i3
I
13 1 3 i | 3 2 H 1 H 2 5 1 H 7 H
E 0 B 70 T N R B ] 1
| | i
|
| L | | ) 3, H
] 1 1 1
! ” i 1 s | L] 1 '] ] .| 3 i

6. ASYMPTOTIC OVERHEAD

In this section we derive simplified expressicn
of overhead for large PLAs. The total area of an
nMOS PLA is given by area of AND/OR planes and area
of input inverters, pull-ups, etc. For derivation
of simple expression we shall consider only the area
of AND/OR planes, 4i.e. PLA area = m(In+2).w,. In
D2-PLA, the area of extra logic ggpyp =
Im{lta)w, + [m/2%.w_ . If we simplify [m/2%] as
m/2% then extra area’ g = m[2(l+a) + sfi“]wl+ There-
fore

100m[2(14+a) + sfzn]uL
m{In+i :h:.:rt

_ 10D[2(1+a) + s/2%]
Zn+i (%)

% overhead =

From Table 3 we cbserve that a is 2, 3 and 3
for value of s of 10, 20 and 30 respectively for

large @. On substitution of these values of a and
s in equation (5} we abtain

s = 10 % overhead = %%%E

s = b % overhead = %Ei%

s =30 % overhead = 1irr

These values are pletted in Figure 6. HNote
that the above expressions are on conservative side
as the actual area of original PLA will be more tham
the area of AND/OR planes only. Thus percentage
overnead in practice is likely to be less than the
above bounds.

7. FURTHER REDUCTIONM IN OVERHEAD

In the previous Seccions we have described &
way of reducing the overhead through the use of DPAA.
However, the basic reason a DPAA was appended to
each block of Figure & was that each element of the
discance matrix for each block should be no less
than 2. We now propose an alternate design and
discuss some of its properties.

Design 3: Product lines of a PLA are divided
inco k blocks. For a Block i number of extra inputs,
#;, and cross points are determined by using the
elgorichm given by Bazorgui-Nesbat and HECluskEFga
Mow each block of the PLA has desired distance
property, the extra inputs are connected together
along with an SR of length k, as shown in Figure 7.
We call this desige a D3-PLA. The total sumber of
extra inputs to D3-PLA are & = M{El’ 8,y vees el

03-PLA can be tested in the same manner 28

2-PLA. We therafore can stace the fcllowing
theorem based on Theorems & and 7.

Theorem 11: The D3I-PLA of Figure 7 can be
tested for all faults by a test set of length
mf2+mie) .

To show as to how D3-PLA can result into an

overhead lower than D2-PLA as well as BM-FLA let us
consider CERBERUS PLAY. Ie 1= a 1B = 50 x 37 PLA.
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It is evident that D3-PLA can be no worse than
D2-PLA because if we find that the mumber of extra
inputs for any block are larger than 14[log hl, we
can realize such a block by appending DPAA.

To show that we can actuwally improve on BM-PLA
we note the following fact.

Fact 1: e £ number of extra inputs for BM-PLA.

How let us say we divide the 50 lines of
CERBERUS PLA inte 4 blocks for realization of D3-PLA.
It can be expected that the mumber of extra inputs
will reduce by at least 1, i.e. from & for BM-FLA

te 3 in D3-PLA. Whereas, an SR of lengeh & will be
added.

Thus total change in the area from BM-PLA is
K--Exmnul-f-f.uz

= -lI:M:I'w1 + ﬁu?_

This change is negative as long as s < 25. 1Im
general for large PLAs we can expect a larger reduc-
tion in the nuember of extra inputs while changing a
BM-PLA inmto D3-PLA.

Similar arguments hold for other larger
examples in 2. An additional benefit in adopcing
D3-PLA over BM-PLA is reduced computacional complex-
ity which is staced in che form of the [ollowing
le=ma.

Lemma 5: Egmputatinnll camplt:}:y to generate
D3=PTA is D{mi.l"k ) as opposed to O0{m”) for BM-FLA.

8, CONCLUSTON

In this paper we have proposed three testable
designs of PLis. These designs csn be saez as
methodologies to improve over the existing designs.
We have set different goals at different stages of
the design. While moving from DL-PLA to D2-PLA we
retained all the properties of DL-PLAs yer reduced
the overhead. W%While introducing D3-PLA, again we
were able to reduce the overhead, complexity of
generation of FLA, still maincaining the faulc
coverage. It i1s sizple to incorporate many other
variations of these designs. For example, it is
pessible to design PLAs which are testable by a
universal test set and use the partitioning and
distance concept to reduce overhead. Such a PLA
is discussed im 15.

The methods propesed in this paper are straighe-
forward to incorporate in Design Avtomacion systems.
In this paper we have also described how a mumber
of designs can be merged to give rise to a design
superior than the all knowm designs in the case of
PLAs. These concepts can be included in experc
systems and may possibly resulc inco still improved
designs and design methodologies.
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