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Abstract - With the increasing demand for SoCs to include rich 
functionality, SoCs are being designed with hundreds of small 
memories with different sizes and frequencies. If memory BIST 
logics were individually added to these various memories, the 
area overhead would be very high. To reduce the overhead, 
memory BIST logic must therefore be shared. This paper 
proposes a memory-grouping method for memory BIST logic 
sharing. A memory-grouping problem is formulated and an 
algorithm to solve the problem is proposed. Experimental 
results showed that the proposed method reduced the area of 
the memory BIST wrapper by up to 40.55%. The results also 
showed that the ability to select from two types of connection 
methods produced a greater reduction in area than using a 
single connection method. 

I. Introduction 

With the increasing number of functions being included in 
SoCs, many memories with different sizes and frequencies 
are being used. The latest SoCs contain hundreds of 
memories. Testing all the memories in these SoCs 
sequentially would take a long time. Therefore, a memory 
BIST design that allows two or more memories to be tested 
simultaneously is needed. However, due to 
power-consumption constraints, not all memories can be 
activated at the same time. To solve this problem, a 
scheduling technique for minimizing the test application 
time under power-consumption constraints is needed. 
Adding individual circuits for memory BISTs to lots of 
small memories would result in huge area overheads. To 
reduce these overheads, memory BIST logic must be able to 
be shared. 

A BIST architecture, based on a single 
micro-programmable BIST processor and a set of memory 
wrappers, was proposed to simplify the testing of systems 
containing many distributed SRAMs of different sizes [1]. 
To reduce the BIST area overhead, it was proposed to share 
a single wrapper between a cluster of SRAMs (same type, 
width, and addressing space). However, in some cases, 
memories that have different widths or addressing spaces 
can be connected and share BIST logic. There can also be 
two or more connection methods. To achieve a satisfactory 
solution, the memory-connection type should be considered 

along with decisions on memory groups. 

In this paper, we propose two types of 
memory-connection methods for BIST wrapper sharing. A 
memory-grouping problem for test circuit minimization 
under constraints of power consumption and test application 
time is also formulated together with an algorithm that 
solves the problem. In addition, the effectiveness of this 
technique is demonstrated experimentally. This paper is 
organized as follows. In section II, our method for memory 
BIST logic sharing is described. In section III, the 
memory-grouping problem and an algorithm to solve the 
problem are presented. The experimental results are shown 
in section IV. 

II. Memory BIST Logic sharing

In this section, we describe our method of BIST logic 
sharing for single port and word access memory. Figure 1 
shows an example of a memory BIST wrapper. The data 
generator generates input test sequences. The address 
generator generates read and write addresses and the 
response analyzer captures test output responses and detects 
faults. The by-pass FFs are not used to test memory, but are 
used to care the memory interface signal during a scan test. 
The area of the address generator, data generator, and 
response analyzer are almost proportional to the bit width of 
the address, input data, and output data, respectively. 
However, some of these logics can be shared by different 
memories wherever the number of words or the data bit 
width are the same; hence, the area of test circuits can be 
reduced. In this paper, we treat the following two memory 
connection methods for memory BIST logic sharing: parallel 
connection and serial connection. Parallel connection can be 
used to connect memories that have the same number of 
words. Figure 2 shows an example of parallel connection.  

In this example, three data and address generators are 
reduced to one by distributing the same test data and address 
signals from a couple of data and address generators to (1) - 
(4), enabling four memories to be tested simultaneously.  
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Fig.1 Memory BIST Wrapper 

Fig.2 Parallel connection of memories 

Serial connection allows memories with the same bit 
width to be connected. Figure 3 shows an example of four 
serially connected 8x32 word memories. In this example, the 
four memories are tested as an 8x128 word memory. The 
address generator generates an additional 2bit signal, and the 
signal is used to select the memories from (1) - (4), enabling 
the four memories to be tested serially. If all the memories 
have individual BIST logic, a 32-bit data generator and 
response analyzer are required, but in this example, all the 
memories can be tested using a shared 8bit generator and 
8bit response analyzer. 

 Serial connection reduces the area more than parallel 
connection and also uses less power than parallel connection. 
However, the time required for serial connection testing is 
longer than that for parallel connection testing. To achieve 
the minimum area and a reasonable test application time 
under power consumption constraints, the type of memory 
connection should be considered during decisions on 
memory grouping. The layout design must also take into 
account distance constraints in relation to these connections. 

Fig.3 Serial connection of memories 

III. Memory-Grouping Problem and Algorithm

A. Formulation of Memory-Grouping Problem 

In this subsection, we present a memory-grouping 
problem. We assume that the following information for each 
memory mi is given:  

- bi: data bit width of mi
-wi: word depth of mi
- pi: maximum power consumption of testing mi
- fi: operating frequency of mi
-xi: X coordinate of mi, yi: Y coordinate of mi
We define two types of compatibility, namely 

p-compatibility and s-compatibility, as follows: 
Given a set of memories V={m1, m2, …mn}, a pair of 
memories mi, mj V is p-compatible if they satisfy the 
following conditions:  

wi =wj  (1) 

fi =fj  (2) 
22 )()( jiji yyxx <D (3) 

D is a constraint value that the designer decides according 
to the design condition.  

P-compatibility is represented by a graph Gp = (V, Ep), 
where V is a set of a memory and the edge between a pair of 
vertices (mi, mj) Ep exists if mi and mj are p-compatible. If 
a set of memories can be connected in parallel, the graph 
induced on Gp by the memories has to be a clique. 

In the same way, a pair of memories mi, mj V is 
s-compatible if they satisfy the following conditions: 

bi =bj   (4) 

fi =fj    (5) 



22 )()( jiji yyxx <D  (6) 

S-compatibility is represented by a graph Gs = (V, Es), 
where V is a set of memories and the edge between a pair of 
vertices (mi, mj). Es exists if mi and mj are s-compatible. If 
a set of memories can be connected serially, the graph 
induced on Gs by the memories has to be a clique. 

To design memory BIST wrappers using these techniques 
for memory BIST logic sharing, we have to find a partition 
of V such that the memories that share the wrapper are 
included in the same block. Moreover, the partition 

= kBBB ,..., 21  has to satisfy the following conditions: 
Gip is the graph induced on Gp by block Bi.
   
Gis is the graph induced on Gs by block Bi.
   
Gip or Gis is a clique.    

When only the graph Gip (Gis) is a clique, the memories 
included in Bi are connected in parallel (serially). If Gip and 
Gis are both clique, we have to select the type of connection. 

For a partition , we can calculate the area of the BIST 
wrapper, test application time, and power consumption of 
each block. The area and test application time depend on the 
test-pattern algorithm. In this work, these were calculated 
according to a published design [4] using an 8N algorithm as 
follows. 

If the connection type of block Bi={m1, m2, …mk} is a 
parallel connection,  

Area SBi =

66max3log25 2 ilBi bw        (7)

Power consumption PBi=                 (8) 

Test application time TBi=                (9)

(fBi=f1=f2=...=fk )

If the connection type of block Bj={m1, m2, …mk} is a serial 
connection,  

Area SBj = 

           (10)

(bBi=b1=b2=...=bk)                                                                 

Power consumption PBj=     (11)

Test application time TBj= Bj
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The expressions for area calculation (7) and (10) do not 
consider the influence of timing conditions, but feedback is 
available from previous designs. 

Parallel-connected memories are tested concurrently, and 
the power consumption is the sum of the power consumption 
of each memory. In contrast, serial-connected memories are 
activated one by one. Therefore, the power consumption is 
the maximum power consumption of the connected 
memories. 

When a partition  is found, the area, power 
consumption and test application time of each block are 
calculated using the above expression.  

The total area of the memory BIST wrappers Stotal is 
calculated as the sum of SBi.

k

i
Bitotal SS

1
     (13) 

To control each memory BIST wrapper, at least one BIST 
controller must be used. In this study, the number of memory 
BIST wrappers was reduced by using the proposed 
connections. There was therefore no increase in the number 
of controllers. In addition, our target design includes a lot of 
memories so that the area of the memory BIST wrappers is 
predominant. Therefore the area of the BIST controllers is 
disregarded. 

To calculate the total test application time of a memory 
BIST under a power-consumption constraint, we used a 
rectangle packing algorithm that has been described 
elsewhere [5]. The algorithm optimizes the test schedule of 
each core so that the total test application time of an SoC is 
minimized under maximum power constraints. The inputs of 
the scheduling algorithm are the maximum allowed power 
consumption, the test application time, and the power 
consumption of each core. In this study, we considered a 
block to be a core. Therefore, we input {PBj} {TBj} as the 
information for each core. In addition, we assumed the bit 
width of the inter-connect between each wrapper and control 
logic remained unchanged. We therefore disregarded the 
maximum TAM width. 

To reduce the total area of memory BIST wrappers by 
memory BIST logic sharing, we formulated the following 
memory-grouping problem. 
Inputs: 

a) A set of memories S and 
Information for each memory:
M=Mi (bi, wi, pi, fi, xi yi)
where, bi, wi, pi, fi, xi and yi are as follows: 
bi: data bit width of mi
wi: word depth of mi
pi: maximum power consumption of testing mi
fi: frequency of mi
xi: X coordinate of mi
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yi: Y coordinate of mi
Outputs:

a) A partition  of a given set of memories S for which 
all the blocks satisfy the following conditions: 

Gip is the graph induced on Gp by block Bi.
Gis is the graph induced on Gs by block Bi.
Gip or Gis is a clique. 

b) Type of connection of each block 
c) Test schedule of each memory 

Constraints:
a) Maximum distance of memory connection: D
b) Maximum available peak power of the SoC: P
c) Maximum test application time of memory: T

Objective:
To minimize totalS .
To solve this problem, an algorithm is proposed below.  

B. Memory Grouping Algorithm 

Fig.4 shows the pseudo code of the Memory Grouping 
Algorithm. Our proposed algorithm repeats division from 
0-partition that only one block includes all memory to 
obtaining a target partition. As the algorithm divides the 
block, Stotal increases. The min-cut method [2][3] is used to 
leave the possibility of the area reduction as much as 
possible. Moreover, it uses the following strategies to decide 
the compatibility of each block of the partition. Serial 
connection can reduce the area than parallel connection, and 
the power consumption is smaller than that of parallel 
connection. Therefore, it is possible that giving priority to 
serial connection reduces Stotal. Based on this prospect, 
proposed algorithm searches for the partition that minimizes 
Stotal only using s-compatibility in the first search. 

First, the algorithm initializes variables. The minimum 
value of Stotal is stored into Smin, and, in the first step, Smin is 
set to the total area of memory BIST wrapper without 
sharing. The partition of a set of memory S is stored into ,
and the initial partition is set to 0-partition of S. (line 1-2).  

Next, the algorithm creates two compatibility graphs (line 
3), and select s-compatibility graph as the graph G that is 
used to find partition (line 4). 

In order to check the compatibility of each block, the 
algorithm construct a set of graph Call (line 6). Each graph Gi
that is the member of Call is induced on G by block Bi that is 
the member of .

Then, for all Bi that include two or more memories, 
execute the following operations (line 7-21). 

The minimum cut edge is calculated and delete them from 
Gi. By this operation, the vertex set Bi is divided into two 
blocks, leaving much possibility of the area reduction. If all 
the graph of new graph set Call  are clique, calculate Stotal
and test schedule of the new partition 

tmp
. If Smin>Stotal and

the test scheduling succeeded, 
tmp

 is stored into best as the 
best partition, and Stotal is stored into Smin (line 8-17). If there 
is a graph Gi that is not a clique, or the test scheduling failed,

tmp
is stored into next (line 18-20). 

If there is no partition that should be tried, the first search 
is end (line22-24). Then the algorithm stores p-compatibility 
graph into G, and collects the blocks that have only one 
memory into one block (line25-29). Then, the algorithm 
searches for the partition that Stotal is minimized using 
p-compatibility (line5-24). In the second search, it doesn’t 
touch the blocks in which two or more memories are 
included after first search. Their connection type is fixed to 
serial connection. The connection type of the rest is 
determined to be parallel connection.  

This algorithm performs n(n-1) times division and 
scheduling in the worst case. The complexity of the 
scheduling algorithm and min-cut algorithm are O(VlogV)
and O(V2logV), respectively. Therefore the complexity of 
this algorithm is O(V3logV).

In this paper, we described our method for a single port 
and the word access memory. However, this method is 
applicable to other memories if the compatibility is defined 
about the memory type and the connecting method, and the 
area, power consumption, test application time can be shown 
by expression. 

IV. Experimental Results 

We carried out experiments to evaluate the proposed 
method. The proposed algorithm was implemented in C and 
the experiments were conducted on a 600-MHz Windows 
PC. Table 1 shows the information in each memory used in 
the experiment. The 2-4th columns denote the data bit width, 
word depth, and operating frequencies, respectively. The 5th 
column shows the power consumption. In this experiment, 
the power consumption of each memory was a relative value 
in which memory No. 1 was assumed to be 100 under the 
following assumption:  

a) The area is proportional to (number of words 
number of bits). 

b) The power consumption is proportional to the area. 
c) The power consumption is proportional to the 

frequency. 

Table1. Information on Memories

*1 Relative values in which memory No.1 is assumed to be 100 



                                                                                 
 Procedure Memory_Grouping (M, P, T, D){                                             
1    Smin= the total area of memory BIST wrapper without sharing; maxedgenum=0; edgenum=0; 
2    ={B}, B={m1, m2, …mn};

tmp
; next ; best ;

compatibles
;

3    Gs = s-compatibility_graph of B; Gp = p-compatibility_graph of B; 
4    G = Gs;
5    loop:
6    Construct a set of graph Call={ Gi| Gi is induced graph on G by Bi }
7    for( {Bi ( compatibles )|which includes two or more memories}){ 
8      delete min-cut edge from Gi, make a set of graph Cmin={Gi1,Gi2 }; 
9      Call= (Call- Gi) Cmin;
10     Set edgenum=

j

(the number of edges of Gj Call); 

11     Set a partition 
tmp

={Bj| vertex set of Gj Call };if all Gj are clique,calculate Stotal of 
tmp

12     if((
allj CG , Gj is clique )  (Smin>Stotal of 

tmp
)){

13       calculate Ttotal=Schedule(P, {PBj}, {TBj}); 
14       if((Schedule succeeded)  (Ttotal T)){ 
15         Smin = Stotal; best =

tmp
;

16       } 
17     } 
18     if(edgenum > maxedgenum  ((Schedule failed, or Ttotal T)
         (

allj CG , Gj is not a clique))){ 
19      next = tmp

; maxedgenum=edgenum; 
20     } 
21   } 
22   if( next ){ 
23      = next ; next ; go to loop;
24   } 
25   else if(G=Gs){ 
26     G = Gp;
27     

compatibles
={

bestjB | which includes two or more memories }; 
28     Bs=

k
 Bk   (Bk (

compatiblesbest
));

29     ={Bs} compatibles
; go to loop;

30   }else{end;}                                                                    

Fig.4 Memory Grouping Algorithm 

The 6th and 7th columns show location. In this 
experiment, the number of memories was varied between 3 
and 50, and the program was executed respectively. When 
the number of memories was N<11, we used No. 1 to N, and 
for the rest, we extended the same set of No. 1-10, with the 
Y coordinate changing between 20 to 50. 

In an actual test, several background patterns (e.g. 
marching, checker, checker-bar) are used, but in this 
experiment, the test application time was calculated by 
assuming the number of background patterns=1. In addition, 
the following constraint values were used: 

Maximum distance of memory connection: D=40 
Maximum available peak power of the SoC:  

P=5000 

Maximum test application time of memory:  
T=300 s

Experiments were carried out for the following five cases: 
(1) Not shared (all the memories had individual BIST 
wrappers); (2) parallel connection (memory BIST logic was 
shared using only parallel connection as described in the 
proposed technique); (3) serial connection (memory BIST 
logic was shared using only serial connection as described in 
the proposed technique); (4) parallel and serial connection 
(memory BIST logic was shared using both parallel and 
serial connection as described in the proposed technique); 
and (5) exhaustive search (memory BIST logic was shared 
using only parallel connection after an exhaustive search). 
Table 2 shows the experimental results. The first column 



shows the number of memories and the second column 
shows the total area of memory BIST wrappers without 
sharing. Columns 3-5 shows the total area of memory BIST 
wrappers using the proposed techniques. The third column 
shows the results of using only parallel connection, while the 
fourth column shows the results of using only serial 
connection. The fifth column shows the results of using both 
parallel and serial connection and the sixth column shows 
the minimum solution obtained using an exhaustive search. 

We were only able to complete an exhaustive search when 
the number of memories was less than 7. In these cases, the 
results of the exhaustive search showed that the memory 
BIST logic sharing technique reduced the area of the BIST 
wrappers by between 21.59 and 47.83% as minimum 
solutions. However, the technique achieved only 64.45% of 
the minimum solution in these cases, so there is room for 
improving the quality of the solution. 

The average reduction ratio for parallel connection, serial 
connection, and parallel and serial connection were 21.08%, 
37.25%, and 40.55%, respectively. In all cases, parallel and 
serial connection achieved the best solution. This result 
demonstrates that selection from two types of connection 
methods reduces the area more than using a single 
connection method. 

Finally, Figure 5 shows the execution time of the 
implemented memory-grouping program. In all cases, the 
program was executed within 10 seconds using the proposed 
algorithm. The technique thus obtained good results within a 
very short CPU time so it is suitable for practical 
application. 

Table2. Area of Memory-BIST Logic 

Fig.5 CPU Time of Memory Grouping program

V. Summary and Conclusions 

A memory grouping problem was formulated and an 
algorithm to solve the problem was proposed. Experimental 
results showed that the proposed method reduced the area of 
memory BIST wrappers by up to 40.55%. It was also shown 
that the ability to select from two types of connection 
methods reduced the area more than using a single 
connection method. 

In future work we will investigate improving the quality 
of the solution and minimizing the test application time.
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