
A Memory Grouping Method for Sharing Memory BIST Logic

Masahide Miyazaki, Tomokazu Yoneda, and Hideo Fujiwara

Graduate School of Information Science, Nara Institute of Science and Technology (NAIST),

8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Email:{masah-mi, Yoneda, fujiwara}@is.naist.jp

Abstract - With the increasing demand for SoCs to include rich
functionality, SoCs are being designed with hundreds of small
memories with different sizes and frequencies. If memory BIST
logics were individually added to these various memories, the
area overhead would be very high. To reduce the overhead,
memory BIST logic must therefore be shared. This paper
proposes a memory-grouping method for memory BIST logic
sharing. A memory-grouping problem is formulated and an
algorithm to solve the problem is proposed. Experimental
results showed that the proposed method reduced the area of
the memory BIST wrapper by up to 40.55%. The results also
showed that the ability to select from two types of connection
methods produced a greater reduction in area than using a
single connection method.

I. Introduction

With the increasing number of functions being included in
SoCs, many memories with different sizes and frequencies
are being used. The latest SoCs contain hundreds of
memories. Testing all the memories in these SoCs
sequentially would take a long time. Therefore, a memory
BIST design that allows two or more memories to be tested
simultaneously is needed. However, due to
power-consumption constraints, not all memories can be
activated at the same time. To solve this problem, a
scheduling technique for minimizing the test application
time under power-consumption constraints is needed.
Adding individual circuits for memory BISTs to lots of
small memories would result in huge area overheads. To
reduce these overheads, memory BIST logic must be able to
be shared.

A BIST architecture, based on a single
micro-programmable BIST processor and a set of memory
wrappers, was proposed to simplify the testing of systems
containing many distributed SRAMs of different sizes [1].
To reduce the BIST area overhead, it was proposed to share
a single wrapper between a cluster of SRAMs (same type,
width, and addressing space). However, in some cases,
memories that have different widths or addressing spaces
can be connected and share BIST logic. There can also be
two or more connection methods. To achieve a satisfactory
solution, the memory-connection type should be considered

along with decisions on memory groups.

In this paper, we propose two types of
memory-connection methods for BIST wrapper sharing. A
memory-grouping problem for test circuit minimization
under constraints of power consumption and test application
time is also formulated together with an algorithm that
solves the problem. In addition, the effectiveness of this
technique is demonstrated experimentally. This paper is
organized as follows. In section II, our method for memory
BIST logic sharing is described. In section III, the
memory-grouping problem and an algorithm to solve the
problem are presented. The experimental results are shown
in section IV.

II. Memory BIST Logic sharing

In this section, we describe our method of BIST logic
sharing for single port and word access memory. Figure 1
shows an example of a memory BIST wrapper. The data
generator generates input test sequences. The address
generator generates read and write addresses and the
response analyzer captures test output responses and detects
faults. The by-pass FFs are not used to test memory, but are
used to care the memory interface signal during a scan test.
The area of the address generator, data generator, and
response analyzer are almost proportional to the bit width of
the address, input data, and output data, respectively.
However, some of these logics can be shared by different
memories wherever the number of words or the data bit
width are the same; hence, the area of test circuits can be
reduced. In this paper, we treat the following two memory
connection methods for memory BIST logic sharing: parallel
connection and serial connection. Parallel connection can be
used to connect memories that have the same number of
words. Figure 2 shows an example of parallel connection.

In this example, three data and address generators are
reduced to one by distributing the same test data and address
signals from a couple of data and address generators to (1) -
(4), enabling four memories to be tested simultaneously.

11th Asia and South Pacific Design Automation Conference (ASP-DAC 2006), pp. 671-676, Jan. 2006.

Fig.1 Memory BIST Wrapper

Fig.2 Parallel connection of memories

Serial connection allows memories with the same bit
width to be connected. Figure 3 shows an example of four
serially connected 8x32 word memories. In this example, the
four memories are tested as an 8x128 word memory. The
address generator generates an additional 2bit signal, and the
signal is used to select the memories from (1) - (4), enabling
the four memories to be tested serially. If all the memories
have individual BIST logic, a 32-bit data generator and
response analyzer are required, but in this example, all the
memories can be tested using a shared 8bit generator and
8bit response analyzer.

 Serial connection reduces the area more than parallel
connection and also uses less power than parallel connection.
However, the time required for serial connection testing is
longer than that for parallel connection testing. To achieve
the minimum area and a reasonable test application time
under power consumption constraints, the type of memory
connection should be considered during decisions on
memory grouping. The layout design must also take into
account distance constraints in relation to these connections.

Fig.3 Serial connection of memories

III. Memory-Grouping Problem and Algorithm

A. Formulation of Memory-Grouping Problem

In this subsection, we present a memory-grouping
problem. We assume that the following information for each
memory mi is given:

- bi: data bit width of mi
-wi: word depth of mi
- pi: maximum power consumption of testing mi
- fi: operating frequency of mi
-xi: X coordinate of mi, yi: Y coordinate of mi
We define two types of compatibility, namely

p-compatibility and s-compatibility, as follows:
Given a set of memories V={m1, m2, …mn}, a pair of
memories mi, mj V is p-compatible if they satisfy the
following conditions:

wi =wj (1)

fi =fj (2)
22)()(jiji yyxx <D (3)

D is a constraint value that the designer decides according
to the design condition.

P-compatibility is represented by a graph Gp = (V, Ep),
where V is a set of a memory and the edge between a pair of
vertices (mi, mj) Ep exists if mi and mj are p-compatible. If
a set of memories can be connected in parallel, the graph
induced on Gp by the memories has to be a clique.

In the same way, a pair of memories mi, mj V is
s-compatible if they satisfy the following conditions:

bi =bj (4)

fi =fj (5)

22)()(jiji yyxx <D (6)

S-compatibility is represented by a graph Gs = (V, Es),
where V is a set of memories and the edge between a pair of
vertices (mi, mj). Es exists if mi and mj are s-compatible. If
a set of memories can be connected serially, the graph
induced on Gs by the memories has to be a clique.

To design memory BIST wrappers using these techniques
for memory BIST logic sharing, we have to find a partition
of V such that the memories that share the wrapper are
included in the same block. Moreover, the partition

= kBBB ,..., 21 has to satisfy the following conditions:
Gip is the graph induced on Gp by block Bi.

Gis is the graph induced on Gs by block Bi.

Gip or Gis is a clique.

When only the graph Gip (Gis) is a clique, the memories
included in Bi are connected in parallel (serially). If Gip and
Gis are both clique, we have to select the type of connection.

For a partition , we can calculate the area of the BIST
wrapper, test application time, and power consumption of
each block. The area and test application time depend on the
test-pattern algorithm. In this work, these were calculated
according to a published design [4] using an 8N algorithm as
follows.

If the connection type of block Bi={m1, m2, …mk} is a
parallel connection,

Area SBi =

66max3log25 2 ilBi bw (7)

Power consumption PBi= (8)

Test application time TBi= (9)

(fBi=f1=f2=...=fk)

If the connection type of block Bj={m1, m2, …mk} is a serial
connection,

Area SBj =

 (10)

(bBi=b1=b2=...=bk)

Power consumption PBj= (11)

Test application time TBj= Bj

k

l
l fw /8

1

(number of background patterns) (12)

The expressions for area calculation (7) and (10) do not
consider the influence of timing conditions, but feedback is
available from previous designs.

Parallel-connected memories are tested concurrently, and
the power consumption is the sum of the power consumption
of each memory. In contrast, serial-connected memories are
activated one by one. Therefore, the power consumption is
the maximum power consumption of the connected
memories.

When a partition is found, the area, power
consumption and test application time of each block are
calculated using the above expression.

The total area of the memory BIST wrappers Stotal is
calculated as the sum of SBi.

k

i
Bitotal SS

1
 (13)

To control each memory BIST wrapper, at least one BIST
controller must be used. In this study, the number of memory
BIST wrappers was reduced by using the proposed
connections. There was therefore no increase in the number
of controllers. In addition, our target design includes a lot of
memories so that the area of the memory BIST wrappers is
predominant. Therefore the area of the BIST controllers is
disregarded.

To calculate the total test application time of a memory
BIST under a power-consumption constraint, we used a
rectangle packing algorithm that has been described
elsewhere [5]. The algorithm optimizes the test schedule of
each core so that the total test application time of an SoC is
minimized under maximum power constraints. The inputs of
the scheduling algorithm are the maximum allowed power
consumption, the test application time, and the power
consumption of each core. In this study, we considered a
block to be a core. Therefore, we input {PBj} {TBj} as the
information for each core. In addition, we assumed the bit
width of the inter-connect between each wrapper and control
logic remained unchanged. We therefore disregarded the
maximum TAM width.

To reduce the total area of memory BIST wrappers by
memory BIST logic sharing, we formulated the following
memory-grouping problem.
Inputs:

a) A set of memories S and
Information for each memory:
M=Mi (bi, wi, pi, fi, xi yi)
where, bi, wi, pi, fi, xi and yi are as follows:
bi: data bit width of mi
wi: word depth of mi
pi: maximum power consumption of testing mi
fi: frequency of mi
xi: X coordinate of mi

k

l
lp

1

BiBi fw /8

k

l
i

k

l
l wkw

1
2

2

1
2 log2log75.0

618149loglog25 2
1

2 kbkbkkw BiBi

k

l
i

ll
pmax

k

l
lBiBi bwkw

1
2

2
2 18log2log75.0

yi: Y coordinate of mi
Outputs:

a) A partition of a given set of memories S for which
all the blocks satisfy the following conditions:

Gip is the graph induced on Gp by block Bi.
Gis is the graph induced on Gs by block Bi.
Gip or Gis is a clique.

b) Type of connection of each block
c) Test schedule of each memory

Constraints:
a) Maximum distance of memory connection: D
b) Maximum available peak power of the SoC: P
c) Maximum test application time of memory: T

Objective:
To minimize totalS .
To solve this problem, an algorithm is proposed below.

B. Memory Grouping Algorithm

Fig.4 shows the pseudo code of the Memory Grouping
Algorithm. Our proposed algorithm repeats division from
0-partition that only one block includes all memory to
obtaining a target partition. As the algorithm divides the
block, Stotal increases. The min-cut method [2][3] is used to
leave the possibility of the area reduction as much as
possible. Moreover, it uses the following strategies to decide
the compatibility of each block of the partition. Serial
connection can reduce the area than parallel connection, and
the power consumption is smaller than that of parallel
connection. Therefore, it is possible that giving priority to
serial connection reduces Stotal. Based on this prospect,
proposed algorithm searches for the partition that minimizes
Stotal only using s-compatibility in the first search.

First, the algorithm initializes variables. The minimum
value of Stotal is stored into Smin, and, in the first step, Smin is
set to the total area of memory BIST wrapper without
sharing. The partition of a set of memory S is stored into ,
and the initial partition is set to 0-partition of S. (line 1-2).

Next, the algorithm creates two compatibility graphs (line
3), and select s-compatibility graph as the graph G that is
used to find partition (line 4).

In order to check the compatibility of each block, the
algorithm construct a set of graph Call (line 6). Each graph Gi
that is the member of Call is induced on G by block Bi that is
the member of .

Then, for all Bi that include two or more memories,
execute the following operations (line 7-21).

The minimum cut edge is calculated and delete them from
Gi. By this operation, the vertex set Bi is divided into two
blocks, leaving much possibility of the area reduction. If all
the graph of new graph set Call are clique, calculate Stotal
and test schedule of the new partition

tmp
. If Smin>Stotal and

the test scheduling succeeded,
tmp

 is stored into best as the
best partition, and Stotal is stored into Smin (line 8-17). If there
is a graph Gi that is not a clique, or the test scheduling failed,

tmp
is stored into next (line 18-20).

If there is no partition that should be tried, the first search
is end (line22-24). Then the algorithm stores p-compatibility
graph into G, and collects the blocks that have only one
memory into one block (line25-29). Then, the algorithm
searches for the partition that Stotal is minimized using
p-compatibility (line5-24). In the second search, it doesn’t
touch the blocks in which two or more memories are
included after first search. Their connection type is fixed to
serial connection. The connection type of the rest is
determined to be parallel connection.

This algorithm performs n(n-1) times division and
scheduling in the worst case. The complexity of the
scheduling algorithm and min-cut algorithm are O(VlogV)
and O(V2logV), respectively. Therefore the complexity of
this algorithm is O(V3logV).

In this paper, we described our method for a single port
and the word access memory. However, this method is
applicable to other memories if the compatibility is defined
about the memory type and the connecting method, and the
area, power consumption, test application time can be shown
by expression.

IV. Experimental Results

We carried out experiments to evaluate the proposed
method. The proposed algorithm was implemented in C and
the experiments were conducted on a 600-MHz Windows
PC. Table 1 shows the information in each memory used in
the experiment. The 2-4th columns denote the data bit width,
word depth, and operating frequencies, respectively. The 5th
column shows the power consumption. In this experiment,
the power consumption of each memory was a relative value
in which memory No. 1 was assumed to be 100 under the
following assumption:

a) The area is proportional to (number of words
number of bits).

b) The power consumption is proportional to the area.
c) The power consumption is proportional to the

frequency.

Table1. Information on Memories

*1 Relative values in which memory No.1 is assumed to be 100

 Procedure Memory_Grouping (M, P, T, D){
1 Smin= the total area of memory BIST wrapper without sharing; maxedgenum=0; edgenum=0;
2 ={B}, B={m1, m2, …mn};

tmp
; next ; best ;

compatibles
;

3 Gs = s-compatibility_graph of B; Gp = p-compatibility_graph of B;
4 G = Gs;
5 loop:
6 Construct a set of graph Call={ Gi| Gi is induced graph on G by Bi }
7 for({Bi (compatibles)|which includes two or more memories}){
8 delete min-cut edge from Gi, make a set of graph Cmin={Gi1,Gi2 };
9 Call= (Call- Gi) Cmin;
10 Set edgenum=

j

(the number of edges of Gj Call);

11 Set a partition
tmp

={Bj| vertex set of Gj Call };if all Gj are clique,calculate Stotal of
tmp

12 if((
allj CG , Gj is clique) (Smin>Stotal of

tmp
)){

13 calculate Ttotal=Schedule(P, {PBj}, {TBj});
14 if((Schedule succeeded) (Ttotal T)){
15 Smin = Stotal; best =

tmp
;

16 }
17 }
18 if(edgenum > maxedgenum ((Schedule failed, or Ttotal T)
 (

allj CG , Gj is not a clique))){
19 next = tmp

; maxedgenum=edgenum;
20 }
21 }
22 if(next){
23 = next ; next ; go to loop;
24 }
25 else if(G=Gs){
26 G = Gp;
27

compatibles
={

bestjB | which includes two or more memories };
28 Bs=

k
 Bk (Bk (

compatiblesbest
));

29 ={Bs} compatibles
; go to loop;

30 }else{end;}

Fig.4 Memory Grouping Algorithm

The 6th and 7th columns show location. In this
experiment, the number of memories was varied between 3
and 50, and the program was executed respectively. When
the number of memories was N<11, we used No. 1 to N, and
for the rest, we extended the same set of No. 1-10, with the
Y coordinate changing between 20 to 50.

In an actual test, several background patterns (e.g.
marching, checker, checker-bar) are used, but in this
experiment, the test application time was calculated by
assuming the number of background patterns=1. In addition,
the following constraint values were used:

Maximum distance of memory connection: D=40
Maximum available peak power of the SoC:

P=5000

Maximum test application time of memory:
T=300 s

Experiments were carried out for the following five cases:
(1) Not shared (all the memories had individual BIST
wrappers); (2) parallel connection (memory BIST logic was
shared using only parallel connection as described in the
proposed technique); (3) serial connection (memory BIST
logic was shared using only serial connection as described in
the proposed technique); (4) parallel and serial connection
(memory BIST logic was shared using both parallel and
serial connection as described in the proposed technique);
and (5) exhaustive search (memory BIST logic was shared
using only parallel connection after an exhaustive search).
Table 2 shows the experimental results. The first column

shows the number of memories and the second column
shows the total area of memory BIST wrappers without
sharing. Columns 3-5 shows the total area of memory BIST
wrappers using the proposed techniques. The third column
shows the results of using only parallel connection, while the
fourth column shows the results of using only serial
connection. The fifth column shows the results of using both
parallel and serial connection and the sixth column shows
the minimum solution obtained using an exhaustive search.

We were only able to complete an exhaustive search when
the number of memories was less than 7. In these cases, the
results of the exhaustive search showed that the memory
BIST logic sharing technique reduced the area of the BIST
wrappers by between 21.59 and 47.83% as minimum
solutions. However, the technique achieved only 64.45% of
the minimum solution in these cases, so there is room for
improving the quality of the solution.

The average reduction ratio for parallel connection, serial
connection, and parallel and serial connection were 21.08%,
37.25%, and 40.55%, respectively. In all cases, parallel and
serial connection achieved the best solution. This result
demonstrates that selection from two types of connection
methods reduces the area more than using a single
connection method.

Finally, Figure 5 shows the execution time of the
implemented memory-grouping program. In all cases, the
program was executed within 10 seconds using the proposed
algorithm. The technique thus obtained good results within a
very short CPU time so it is suitable for practical
application.

Table2. Area of Memory-BIST Logic

Fig.5 CPU Time of Memory Grouping program

V. Summary and Conclusions

A memory grouping problem was formulated and an
algorithm to solve the problem was proposed. Experimental
results showed that the proposed method reduced the area of
memory BIST wrappers by up to 40.55%. It was also shown
that the ability to select from two types of connection
methods reduced the area more than using a single
connection method.

In future work we will investigate improving the quality
of the solution and minimizing the test application time.

Acknowledgements

Authors would like to thank Prof. Michiko Inoue and Prof.
Satoshi Ohtake and members of Computer Design and Test
Lab. (Nara Institute of Science and Technology) for their
valuable discussions.

References

[1] A.Benso, S.Di Carlo, G. Di Natale and P. Prinetto, “A
Programmable BIST Architecture for Clusters of Multiple-Port
SRAMs,” in Proc. International Test Conf., pp557-566,
October 2000.

[2] H. Nagamochi and T. Ibaraki, “A linear-time algorithm for
finding a sparse k-connected spanning subgraph of a
k-connected graph,” Algorithmica, vol. 7, 1992, pp. 583--596.

[3] H. Nagamochi and T. Ibaraki, “Computing the
edge-connectivity of multigraphs and capacitated graphs,
“ SIAM J. Discrete Mathematics, vol. 5, 1992, pp. 54--66.

[4]Charles E. Stroud, A Designer’s Guide to Built-In Self-Test,
Kluwer Academic Publishers, The Netherlands, 2002.

[5]V. Iyengar, K. Chakrabarty and E. J. Marinissen, “On using
rectangle packaging for SOC wrapper/TAM co-optimization,” in
Proc. VLSI Test Symposium, pp. 253-258, May 2002.

[6]Y. Huang, N. Mukherjee, S. Reddy, C. Tsai, W. Cheng, O.
Samman, P. Reuter, and Y. Zaidan, “Optimal Core Wrapper
Width Selection and SOC Test Scheduling Based On
3-Dimensional Bin Packing Algorithm,” in Proc. International
Test Conf., pp. 74-82, October 2002.

