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Abstract

While drastically reducing the test volume and the test
application time, test response compactors lose the lo-
cation of errors in the scan chains, which is necessary
for diagnosis. This paper proposes a method to re-
trieve that information from the signatures produced
by block compactors. The error diagnosis efficiently
searches for the errors by making some assumptions
about the shape of error vectors and learning from pre-
vious results. Experiments show that over 95% diag-
nostic coverage can be reached in practice.

1 Introduction
Increase of logic density results in a growing amount
of data required to test the chips with scan design.
Such data is stored on testers and transfered between
the tester and the chip through test channels with lim-
ited bandwidth. Thus, large test volume may ex-
ceed the memory available on the tester and it impacts
test application time dramatically. To overcome these
problems, the test volume can be reduced by com-
pressing the stimuli and compacting the test response.
Reduction of two orders of magnitude are achieved
at the input side, in particular by exploiting the low
fill rate of test cubes. At the output side, space com-
pactors can funnel wide response vectors into a single
output and time compactors can compile the response
sequence into a signature of a few bits. Such com-
paction can be done without impacting the fault cov-
erage, although such performance may require to de-
rive a special test set or add extra inputs to modify the
output data prior to compaction. However, the com-
paction severely impacts the diagnostic capability be-
cause many erroneous patterns produce the same sig-
nature at the compacted outputs.
Diagnostic can be performed using time and space

information about the erroneous test response. Time
information, given by the set of failing test patterns,
can be used for fault model dependent diagnostic.
Space information, given by the set of scan cells where
errors occurred, can be used for diagnostic based on
cone of logic methods. Both types of information can
be used concurrently to achieve higher diagnostic res-
olution, but it requires obtaining the exact position of
the errors in the test response. In the presence of a
compactor, the space and time information are not di-
rectly available. Indeed, compactors transform blocks
of output bits that can span in the space dimension,
time dimension or both. Therefore, an error observed
at the compacted outputs can be produced by an er-
ror or errors occurring at several locations and several
clock cycles.

Fault diagnosis algorithms can be performed di-
rectly from the compacted test response by consider-
ing the compactor as part of the circuit [5]. How-
ever, fault diagnosis usually requires to know which
scan cells captured errors and at what time during test.
The problem considered in this paper, namely error
diagnosis, is to derive the location of errors in space
and time within the test response for designs with
compactors. Such error diagnosis enables using tra-
ditional fault diagnosis from the error response in the
scan cells. Moreover, the performance of error diag-
nosis for a compactor indicates the quality of the com-
pactor even when fault diagnosis is to be performed on
a lumped design.

In this paper, we first present an overview of the
schemes previously proposed for diagnostic in the
presence of compactors. Then, in Section 3, we de-
scribe the architecture of space compaction used. In
Section 4, we present the algorithm used for error di-
agnosis, which is then evaluated in Section 5. The pa-
per concludes with Section 6.
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2 Previous work

We first describe the works related to diagnostic with
time compactors. Compactors used during pass/fail
test mode usually have some but limited diagnostic ca-
pabilities. For time compaction with a linear feedback
shift register (LFSR) of size n, it was shown that a
single error can be localized in a stream of m bits if
m < 2n [12]. However, the occurrence of more er-
rors in the response stream results in diagnostic alias-
ing. Such aliasing can be avoided by reapplying the
test and directly observing the identified error loca-
tion. If the error is not observed, the signature can
be analyzed again with different assumptions on the
error pattern [4]. The size of the LFSR can also be
chosen to obtain a desired diagnostic resolution for a
given size of circuit, although high resolution usually
requires impractical size of LFSR [15]. Furthermore,
the diagnostic aliasing probability can be reduced by
using signature analysis registers that work with non-
primitive polynomials [20].
Many techniques have been developed to modify

the compaction scheme during diagnostic to allow lo-
calization of errors in time and space dimensions. The
techniques have the common property to decrease the
compaction ratio compared to the pass/fail mode, ei-
ther by increasing the size of the data observed or
by applying the test sequence multiple times. One of
the approaches used in time compaction schemes is to
check the signature multiple times during test applica-
tion, thus splitting the test sequence into windows [18].
Windows resulting in fault free signatures consist of
non erroneous response while other windows can be
applied again with full response observation to iden-
tify the errors. The efficiency of the scheme can be
improved by using windows of varying length [6]. An-
other approach is to compact only part of the scan cells
at a time and apply the test multiple times with differ-
ent cell partitions until all the erroneous scan cells are
identified [1, 2, 3, 10, 11, 16]. Such scheme can only
gather space information for diagnostic and requires
special control to select the scan cells observed at a
given test instance. Yet another approach is to compute
multiple signatures by applying the test sequence mul-
tiple times with different feedback polynomials in the
LFSR [23]. Beside increasing substantially the test ap-
plication time, such a scheme requires solving a large
set of complex equations to identify the errors in the
input sequence. Finally, a general approach is to sup-
press time compaction during the diagnostic phase, for
example by removing the feedback line on LFSR and
observing the full quotient [22].

Approaches that tradeoff hardware overhead for re-
duced test application time have also been proposed.
Some methods use cycling registers beside the signa-
ture analyzer to improve the diagnostic [9, 19]. Other
schemes use very long signatures or multiple signature
analyzers, requiring again to solve a large set of com-
plex equations in order to identify the errors within the
input sequence.
In the case of space compaction, the most common

approach is to bypass the compactor during diagnostic
and observe only a limited number of scan chains for a
given test instance [22]. However, some error patterns
can also be identified from the compacted response.
For a compactor implementing the check matrix of
an error correcting code of distance d, t errors in the
presence of x unknown values can be identified within
the compactor input vector if 2t + x < d [14, 17].
During diagnosis, the compaction ratio can be reduced
while increasing the error correction capability of the
compactor [7]. Errors can also be identified without
decreasing the compaction ratio by using advanced
search algorithms that do not guarantee strong diag-
nosis capability but may work well in practice. Con-
volutional compactors were shown to correctly diag-
nose over 90% of the error patterns produced by indus-
trial circuits while keeping the compaction ratio over
100 [13]. In this paper, we propose an error diagnosis
algorithm for block compactors [21, 8] to be used at
full compaction ratio.

3 Block compactor architecture

The general architecture of the circuit under test
(CUT) and the compactor is presented in Figure 1.
The circuit has n scan chains that are funneled into
m compacted outputs to be observed by a tester. The
linear transformation considers blocks of depth d and
size n.d, and outputs blocks of depth d and size m.d
so that one output block can be scanned out as the next
input block is shifted out in the scan chains.
The linear compactor multiplies the input block by

a check matrix H of size n.d × m.d so that the output
block is a linear combination of the n.d rows of H .
Any check matrix H can be used by routing the scan
cells in the last d stages of the scan chains to the linear
compactor. However, to avoid such intrusive design,
we assume that only the last stage of the scan chain
is connected to the linear compactor as shown in Fig-
ure 2. With such design, the H matrix has a special
form since the row associated with two scan cells be-
longing to the same scan chain are shifted versions of
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Figure 1: Test architecture.

each other. For the compactor of Figure 2, two scan
chains are compacted into one output by using a depth
of five. The rows associated to the cells in the input
block are:

cell row
5 01011
4 10101
3 11010
2 01101
1 10110
10 11100
9 01110
8 00111
7 10011
6 11001

Note that non intrusive designs require extra memory
elements but less XOR gates than intrusive designs.
Also, in order to continuously shift out the scan chains,
a shadow register is used to store the compacted re-
sponse computed every d cycles. The values contained
in the compaction register can be either reset every d
cycles or the expected compacted response can be sal-
vaged after errors occur [18].

Chain 1

Chain 2

OutputShadow
register

Compaction
register

Figure 2: Linear compactor.

For the compactors used in this paper, the XOR
tree is chosen so that the H matrix has non-zero rows
that are all different and with identical weight of three.

Thus, H is a check matrix of an error correcting code
of distance at least four and one error is guaranteed
to be correctly identified within each input block [14].
Such single error diagnosis can be performed using a
dictionary mapping the error pattern produced by sin-
gle errors to the error position in the input block. Nev-
ertheless, error patterns produced by faults may con-
tain more than one error per block in general. There-
fore, advanced search algorithms are needed to iden-
tify error patterns of varying multiplicity.

4 Diagnosis algorithm
The diagnosis procedure is based on a search function
that considers an erroneous output block called signa-
ture and returns an erroneous input block that produces
the given signature. Such input block is not unique
in general and therefore the method is prone to alias-
ing. The basic search function consists of a depth first
search algorithm in which error location candidates are
chosen recursively. After selecting a candidate, the
signature is updated to account for the contribution
of the newly selected candidate. The search goes on
selecting new candidates until the selected candidates
produce the given signature or until a stopping crite-
ria is reached, in which case the search backtracks.
Several heuristics are used to guide the basic search
towards the correct solution while limiting the search
space.
Guiding the search
A dictionary is used to efficiently select candidates

at each node of the search tree. We observed that errors
often happen in burst within the scan chains. There-
fore, the dictionary is built for burst of one, two... up
to b errors in the input block. Note that the size of
such dictionary is b.n.d and b = 4 was usually found
sufficient so that the dictionaries remain small. Each
entry in the dictionary consists of a list of one up to b
successive errors and the corresponding signature. At
each step of the search, every entry in the dictionary is
given a score that indicates if the corresponding errors
are good candidates. The score is a function of three
factors: the correlation between the current signature
searched for and the signature of the candidate, the
correlation between the candidate and the previously
selected candidates in the current search, and the cor-
relation between the candidates and the error patterns
returned in previous searches.
Clearly, the likeness of the signature corresponding

to some candidates with the current signature searched
for should guide the search algorithm. To account for
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such correlation, the score is a function of the ham-
ming distance between the two signatures. Further-
more, errors tend to be located in close proximity of
each others, when not in burst. To give priority to these
clustered errors, the score is a function of the average
minimum distance between the candidates and the al-
ready selected candidates. Finally, we guide the search
by learning from previous diagnosis results. Our ba-
sic search algorithm is embedded in a diagnosis proce-
dure that analyzes all the error signatures produced by
a faulty device. The error signatures are collected in-
dependently one of the others to simplify the diagnosis
albeit at the cost of extra test application time since the
last input block of each test response is only partially
used. Some vectors produce identical signatures (usu-
ally corresponding to identical error responses) and we
collect the different error signatures along with their
frequency of occurrence. Assume that p different sig-
natures are collected. They consist of several output
blocks that are analyzed separately. Some signatures
are easier to diagnose than others because they are
produced by less errors. The number of errors in the
signature indicates the number of errors in the input
block as long as errors do not cancel out during com-
paction. Nevertheless, such error cancellation is fre-
quent and we rely on another measure to judge the
easiness of diagnosing a signature. We observe that er-
ror signature happening frequently during test are usu-
ally produced by few errors. Therefore, the diagno-
sis procedure considers first the error signatures hap-
pening more frequently. To break ties, the signatures
with less errors are considered first. Starting diagnosis
with easy signatures, we expect the first signatures to
be correctly diagnosed and we use the first diagnosis
results to guide the subsequent searches. Indeed, we
observe that errors tend to occur in the same vicinity
for different test patterns. To account for that corre-
lation, we record a few locations returned by the first
diagnosis procedures. The score given to the candi-
dates is a function of the average minimum distance
between the candidates and these first returned candi-
dates.
The guided diagnosis algorithm is presented in Fig-

ure 3 where D is the size of the dictionary. The func-
tion select in the search algorithm consists in check-
ing that the candidates corresponding to entry i of the
dictionary are not already selected, in which case the
function return false. The function also updates the list
of candidates selected and the signature.
Limiting the search space
Searching the full space of solution would require

impractical time. Therefore, some stopping crite-

search(){
if(signature==0) return true;
done=false;
compute score(dictionary,selected,history);
order dictionary(score);
i=0;
while((not done) and (i<D)){

if(select(dictionary(i))){
done=search();
if(not done) unselect(dictionary(i));

}
i++;

}
return done;

}

diagnose(){
collect error signatures;
for(i=0;i<nb blocks;i++){

clear history;
order signature block[i](frequency);
for(j=0;j< p;j++){

signature=signature block[i][j];
search();
update history(errors found);

}
}

}

Figure 3: Guided diagnosis algorithm.

ria are used to prune the search tree. First, we
set a maximum number of errors to be selected,
MAX SELECTED, so that function select returns
false when the size of the set of selected errors exceeds
MAX SELECTED. We also limit the number of
candidates considered at each step by replacing the
check “i < D” by “(nb selected.a + b)i < D”, where
nb selected is the number of errors currently selected.
The parameter b specifies what fraction of the dictio-
nary is to be searched at the first node. The parameter
a allows to further restrict the search as candidates get
selected.

5 Experimental results

We evaluated our diagnosis algorithm for the erro-
neous test response produced by stuck at faults in IS-
CAS’89 benchmark circuits with full scan. The diag-
nosis performance is measured by the basic diagnostic
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circuit Depth of compactor
16 32 48 64 128

Name Gates Scan Faults Comp BDC CDC BDC CDC BDC CDC BDC CDC BDC CDC
s5378 3629 9 × 20 3487 CC 96.1 91.3 97.2 94.6 97.4 95.3 98.0 97.0 98.0 97.0

BC 96.4 90.4 98.4 94.7 99.4 97.3 99.7 98.3 99.7 98.6
s9234 6577 10 × 22 6366 CC 95.5 88.1 96.3 90.3 96.4 91.6 96.4 91.9 96.4 92.0

BC 97.8 93.1 98.7 96.4 99.2 97.5 99.5 98.2 99.4 97.5
s13207 10920 20 × 32 9151 CC 94.9 91.3 95.8 92.6 95.8 92.9 96.0 93.4 96.0 93.6

BC 88.4 82.8 98.0 96.4 98.3 97.0 98.6 95.9 98.4 94.7
s15850 10840 20 × 27 9528 CC 91.8 84.7 92.9 86.5 93.0 87.3 93.2 87.8 93.2 87.9

BC 92.5 82.9 96.0 88.2 98.1 93.7 98.4 93.5 98.9 93.5
s35932 16065 32 × 54 33905 CC 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.9 99.9 99.9

BC 95.2 93.4 99.7 99.5 99.6 99.3 99.6 99.3 99.7 99.6
s38417 29394 32 × 52 30831 CC 98.6 93.4 99.4 96.8 99.5 97.4 99.6 98.1 99.7 98.9

BC 96.3 86.7 97.6 92.7 98.58 94.27 99.2 95.6 99.8 98.2
s38584 25865 32 × 45 33623 CC 95.3 92.0 95.5 92.5 96.4 93.9 96.5 94.2 96.5 94.4

BC 94.1 89.3 97.9 96.1 94.9 92.7 96.8 95.0 99.8 98.5

Table 1: Diagnostic coverage for ISCAS’89 circuits

coverage (BDC) and compound diagnostic coverage
(CDC) defined in [13]. For a given fault, we mea-
sure the number of erroneous response patterns that
are correctly diagnosed, i.e. for which the set of er-
rors selected by the diagnosis algorithm is exactly the
set of errors in the response. If at least one pattern
is correctly diagnosed, BDC considers that the fault is
correctly diagnosed, while CDC records the ratio of
correctly diagnosed patterns. BDC and CDC are then
averaged over all the faults.
The results for block compactor (BC) diagnosis are

presented in Table 1 along with the results the convo-
lutional compactor (CC) presented in [13]. For each
benchmark circuit, the BDC and CDC are measured
for a depth of compactor varying from 16 up to 128
while the number of outputs remains one.
The experimental results can be directly compared

with those derived for diagnosis with convolutional
compactor since the same benchmark circuits with
same scan configuration and the same coverage met-
rics were used. Nevertheless, the experiments most
likely differ in the scan orders and the test sets used. In
general, error diagnosis is more successful when only
a few errors produce the signature. Block compactors
divide the errors among the blocks while convolutional
compactors analyzes a flow of responses without divi-
sions. Such difference may give advantage to block
compactors but the performances also rely on the dif-
ferent heuristics proposed for convolutional and block
compactors.
First, the results show that the diagnostic perfor-

mance usually improves as the depth of the compactor
increases. Indeed, the size of the signature space grows
exponentially with the depth, thus the probability that
different error patterns produce the same signature de-

creases as the depth increases. For depth of 16, the
performance is relatively poor because aliasing is very
frequent. Note also that the performance sometimes
decreases when the depth increases, for example for
circuit s38584 when the depth increases from 32 to
48. Since the scan depth is 45, two blocks are neces-
sary to compact the response for depth 32 while only
one block is used for depth 48. Dividing the errors be-
tween two blocks gives better performance despite the
lower resolution of signatures of size 32. Secondly, the
performance appears to be circuit specific but some-
what independent of the circuit size. Note that the cir-
cuits use different compaction ratios ranging from 9 up
to 32. In General, the diagnostic coverage decreases
as the compaction ratio increases but we obtain better
results for some circuits with high compaction ratio
compared to other circuits with low compaction ratio.
Comparing our results with the performance of di-

agnostic with convolutional compactor, we observe
that our approach is superior in a majority of cases.
Nevertheless, we are usually outperformed for depth
of 16 and for circuits s35932 and s38417. Some of the
heuristics used by the diagnosis algorithm developed
for convolutional compactor may be specially effec-
tive in those cases. In particular, we have not consid-
ered limiting the search to errors within a subset of the
scan chains. Furthermore, convolutional compactors
outperform block compactors in some cases where
the compactor depth is just above the scan depth,
e.g. for circuit s38584 with depth of d=48. In such
cases, block compactors collect one signature of size d
for each test response while convolutional compactors
collect a signature of size d + scan depth, which is
nearly twice as long. For the diagnostic approaches
considered, convolutional compactors always collect
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more information to perform diagnosis which impact
test application time and makes the performance com-
parison more or less biased in favor of convolutional
compactor. Overall, our results show that block com-
pactors can achieve high performance at small depth,
i.e. small hardware cost, by dividing errors among
blocks. Moreover, the search algorithm using dictio-
naries appears to be very effective.

6 Conclusion
This paper proposed an approach to localize errors
in the test response using the signatures produced by
block compactors. We use a design of block com-
pactors that is non intrusive, has low hardware and can
funnel any number of scan chains into a single output.
The error diagnostic relies on some heuristics inspired
from the expected characteristics of the error response.
The algorithm is based on a depth first search that is
guided by a dictionary, the history of diagnostic out-
puts and the proximity of errors.
The experimental results show the effectiveness of

the diagnostic approach proposed with diagnostic cov-
erage usually exceeding 95%. Our approach was
shown to be superior to the diagnostic with convolu-
tional compactor for most cases, although the compar-
ison was biased in favor of convolutional compactors.
Nevertheless, some of the heuristics proposed in [13]
may improve our performance and need to be consid-
ered. Other future work includes error diagnosis in
presence of X values in the response.
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