IEEE COMPUTER

@ SOCIETY REPRINT

IEEE COMPUTER SOCIETY
1730 Massachusetts Avenue, NW

Washington, D.C. 20036

I'{:Ef:f_i V1984 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

A PARALLEL SCHEME FOR TEST-PATTERN GENERATION

Akira Motohara*, Kenji Nishimura*,
Hideo Fujiwara** and Isao Shirakawa***

* Matsushita Electric Industrial Co., Ltd. Osaka 570 Japan
** Meiji Universily, Kawasaki 214 Japan
*** Osaka University, Osaka 545 Japan

ABSTRACT

An approach to the parallel processing for generating
test-patterns for eombinational eireuits is deseribed. In
general, difficulty in the test-pattern generation lies in the
two points; how to deal with a large number of faults, and
what to do with the fault that is hard to generate test
pattern and that leads to cause a great number of
backtracks.

Our new test-pattern generation system, consisting of a
tesl-pattern generation algorithm and a fault simulation, is
capable of parallel processing and has resulted in the
improvement of those difficulties,

In order to confirm its performance, we implemented
the proposed method on a multi-microcomputer system and
applied it to the combinational circuits with 1,000 gates or
less. It is our conclusion thai the proposed approash to the
parallel processing is effective to obtain a pood fault
coverage within a short period of time as compared with the
conventional method run en the general purpose von-
Neumann computers.

1. INTRODUCTION

The growing logic complexity of VLSI cireuits has made
test-pattern generation more and more difficult. Te improve
this problem, many effortz have been made lo accelerate
lest-pattern generation andfor fault simulation. Indeed, for
the fault simulation, special purpose high-speed hardware
have been developed and have hepun to be marketed.
However, they are not sufficient because test-pattern
generation, which is known as NP-complete even with
monetone circuits!, still remains unimproved. To obtain a
good fault eoverage within a practical computational time, it
is required to accelerate not merely fault simulation but also
test-pattern generation. An attempt to accelerate test-
pattern generation through parallel processing techniques
has been reported,? but the fechnique is not suitable for
large scale circuits.

In general, it is relatively easier for the greater pari of
faults contained in a circuit o generate tests, while some of
them are extremely difficult to generale lests that cause a
great number of backtracks, and are often failed to generate
tests in the practical application. The problems to be solved
are summarized as follows:

1) How to deal efficiently with a large number of faults.
2) How to generate test-patterns for the faults which cause
a great number of backiracks.

In the light of those, we propose an approach to parallel
processing for generaling lest-patierns for combinational

CH2353- 1/86/0000/01 56501 00 © 1986 IEEE

circuits and we have implemented the proposed method on a
multi-microcomputer system ealled LINKS- 193 to evaluate its
performance. From the experiments with real eombinational
circuits of up to 1,000 gates, it is confirmed that the
proposed parallel processing method ean offer a high
parallelism, achieving an increased acceleration for
generating the test-patterns.

2 PARALLEL PROCESSING TECHNIQUES

To find solution to the previously mentioned problems,
there have reported many approaches, including the
following two methods which are effective and have been
adopted in our test-pattern generation system.

1) To use test-pallern generation algorithm and fault
simulation alternately in order to handle many faults
effliciently.

2) To use efficient iest-pattern generation algerithm such
ag the PODEM*? or the FANG that eould avoid a number
of backtiracks.

Our system uses a lesl-pattern generation algorithm
based on the PODEM and a fault simulation based on the
eoncurrent fault simulation technigqueS. The test-pattern
generation systems that adopt above two methods is
illustrated in Figure 1. At the higher level of hierarchy,
both tesi-pattern generation algorithm and fault simulation
are alternately performed for each fault, and at the lower
level, essignment for the primary inputs (Pl Assignment)
and implication are iterated until a lest-pattern is generated
or the given fault iz found to be undetectable. In section 2.1
and 2.2, we will discuss the parallelism in the algorithm in
Figure 1 and concrete methods for parallel processing.

Our new test-pattern generation syetem consists of twa
phases; all the faults are subjected to test-paltern generation
under a limited backtracking condition, aborted [faults
exceeding backlrack limitation are considered to be difficult
to generate tests, and are subjected again to the next
method. The parallel processing techniques are used in both
phases.

f

| Pl Assignment t

|—

| Test Ceneration]

| Fault Simulation | Implication

!

Figure 1: The flow of test-pattern generation

2.1 Concurrent Process of Faults

Large scale circuits usually have many faults that can
be handled independently. The speed-up of test-pattern
generation and faull simulation can be achieved by
distributing faults and tasks to separate processors and by
obtaining test-patterns of distributed faults simullaneously,

Figure 2 shows the configuration of the multi-processor
system that can perform above parallel processing. The
multi-processor system of Figure 2 consists of a Fault Table
Divider (FTD) to divide the fault table prior to the test
pattern generation, Fault Table Managers (FTMs) to
manage fault subtables given by FTD, Test Generators
(TGs) to generale test-patterns for the faults given by the
FTM, and Faeult Simulators (FS8sl to perform fault

simulation with test-patterns given by FT'M,

FTD}: Fault Table Divider
FTM: Fault Table Manager
TG: Test Generator

F&: Fault Simulator

Figure 2: System Configuration for
Concurrent Process of Faults

FTD performs the following tasks:

1) Communication with hest computer
FTD receives the information necessary to tesi-pattern
generalion (such as eircuit configuration data, limitation
of backtracks, etc) from host computer, and sends the
resull of test-pattern generation to the host computer,
2) Fault table division
FID creates a fault table before the test-pattern
generation process is starled. This fault table is usually
obtained by fault modeling and collapsing, or it is given
by the host computer. FTD then divides the fault table
into a number of small subtabels,
3) Fault table distribution
FTD sends the divided subtables to the FTMs,
4) Watch of FTMs
After distributing fault subtables, FTD keeps watching
all the FTMs until all the FTMs have completed iest-
pattern generation.

On receiving the fault subtable, FTM begins to generate
test-patterns. Main tasks of the FTMs are az follows:

1) Fault table management
FTM selects faults out of the fault table and sends
them to the idle T3s. FTM receives sets of detected
faults from F3s and eliminates those faults from the fault
table,
2) Test-pattern management
FTM receives test-patterns from TOs and sends them to
the idle FSs. FTM manages the test-patierns in FIFO
manner, in other word, FTM works as a buller between

157

TGs and F3s,
3) Wateh of TGs and FSs
When FTM is free from above tagks, FTM always
watches TOs and FSs, and i an idle processor is found,
FTM immediately gives the appropriate tasks.

In the above mentioned parallel processing system, FTD
petforms statie fault distribution, where the faults are
statically distributed to the test-pattern generation
subsyslems. Statie fault distribution has the following
merits and demerits:

(Merits)

1) Throughput is improved by concurrent process of many
faults,

2) Communication overhead is negligible because each
processor communicates with other processors few times.

3} The number of run for fault simulation eould be
reduced because of the small amount of faults in the fault
tahle

(Demerits)

1) Duplicated process might occur for the faults that esuld
be detecled by one test-pattern,

2] Test-pattern length is longer than sequential Process.

On the other hand FTM performs dynamic fault
distribution, where the faulls are dynamieally distributed to
the idle slave processor.

The Following characleristics are seen in the dynamic
lault distribution:

(Merits)

I} The performance of test-pattern generation is improved
because each slave processor concurrently performs =
pertion of the test-pattern generation,

2) Possibility of duplicated process is less than static fault
distribution due to the way faults are handled.

(Demerits)

1} Total performance saturates with incrensed slave
processors because of the communication boltle neck at
the FTM.

2.2 Concurrent Process of Nodes in Decision Tree

The algorithm in our system is based on the PODEM,
in which the multiple backirace technique of the FAN is
adopted. The test-pattern generation algorithms such as the
PODEM or the FAN use the branch-and-bound method, in
which each node in the decision tree is checked in the
depth-first-search manner. Each node corresponds to the
input pattern; for example, the nodes A, B and F of Figure 3
represent the patterns (xxxx), (01xx) and (011x) respectively.

5-a-)
x1 JrJ
x2 ¥
%3
x4

Cireuit Under Test

Decision Tree

Figure 3: Branch-and-bound

We propose another parallel processing technique to
concurrently handle many nodes in the decision trees. This
parallel processing is applied to the faults that have been
found te be aborled in the first phase precessing. Figure 4
illustrates the difference between conventional (sequential)
branch-and-bound and our new method. Each node in the
decision tree can be handled independently. Our new
method is capable of parallel processing to concurrently
handle many nodes in the decision Lree.

Concurrent Process of
Medes in Decision Tree

Sequential Process

Figure 4. Concurrenl Process of Nodes in Decision Tree

Figure § shows the configuration of the multi-processor
systemn for the second phase parallel processing. The multi-
processar systerm of Figure 5§ consists of Fault Table
Manager (FTM) to perform the same tasks as FTMs in
Figure 2, Decision Tree Managers (DTMs) to manage a
decision tree, and Tree Node Processors (TNPs) to handle
each node of the decision tres. DTM performs tree-node-
distribution, where the nodes of the decision tree is
distributed to the slave processors and handled concurrently.
On receiving the faults from FTM, DTM begins following
tasks:

1) Decision Tree Management
DTM makes the decision tree empty before generating
test-patterns, and updates it if there are some nodes to be
attached.
2) Watch of TNPs
DTM always watches its own successors (THNPs), and
when one of them is idle, the DTM starts communication
with it — the DTM receives sets of primary inputs and
sends next set of tree-nodes (input-patterns),

|T~e | [TNP | . [TNP| [TNP | - -

FTD: Faull Table Divider
FTM: Faull Table Manager
IXTM : Decision Tree Manager
TNEP: Tree Node Processor

Figure & System Configuration for Concurrent
Process of Nodes in Deeizion Tree

158

Tasks of TNPs are as follows:

1) Tree-node management
THNF has two FIFOs: input-FIFO to keep tree-nodes
given by the DTM and output-FIFO to store sets of
primary inputs that are required Lo assign & logieal values
in the next step.
2) Tree-node checking
TNP performs implication, search of initial ohjeclives
and multiple backtrace with each tree-node in the input-
FIFQ. If some inconsistency is found inm implication or
search of initial objectives, the node is found to have no
test-patterns in its successors and iz then abandomed.
After multiple backtrace, the set of primary inputs that
are to be assigned values are stored in outpul-FIFO. As
soon as input-FIFO has been exhausted, the TNP starts to
communicate with the DTM. If the test-pattern is found,
TNP gives up handling the rest of nodes in input-FIFO
and tries o communicate with DTM to announce the
completion of test-pattern generation,

Essentially each tree-node can bhe handled
independently. Therefor, it is expected that eomputational
time for the hard-to-test faults and fault coverage will be
improved by tree-node-distribution.

4. IMPLEMENTATION AND EXAMPLES

We have implemented the proposed parallel processing
sysltem for the tesl-pattern generation en a multi-
microcomputer system called LINKS-1 and applied it to the
actual combinational circuits of up to 1,000 gates in order to
evaluate its performance. The LINKS-1 consists of a number
of unit computers (UCs) which iz composed of a CPU
ZB000 and a IMB memory. Each UC ecan communicate with
other UCs through an inter-computer memory swapping
unit (IMBU) and bus switch (BS), As illustrated in Figure
6, the architecture - a tree-structure out of the LINKS-1 has
equipped with our parallel processing =system. The
characteristics of Lhe circuits under tesl are described in
Table 1. Fault coverages ure obtained by sequential
processing using a single wnit computer. The faults
remained undetected after more than 100 backtracks are
aborted.

Parallel

line
e e B

HOST: Zylog System 8000

Figure 8: LINKS-1

Table 1: Characteristice of Test Circuits

Circuit |Circuit Number of Fault

Name | Type | Gates | Faults | Inputs |Outputs |Coverage
circuit 1| ECC 464 1338 B B 09 R4
|eirenit 2] ECC 876 1871 33 33 99.3%

3.1 Phase 1

We programmed two kinds of processes for Phase 1; one
iz for the FTMs and the another is for TGs and FS3s. There
is no difference in performance between TGs and FSs. Each
slave processor has both lunctions of lest-pattern generation
and fault simulation, and generates test-patterns §f it
receives faults. If it receives test-patterns, it begins fault
simulation.

FTD's tasks are not implemented because of two
reasons; there are only fifty UCs available for experiment,
and the time for its tasks is obvisusly negligible. We have
run the parallel processing system with each divided fault
table and measured the maximum CPU time as the time for
the whole system.

Figure T shows the experimental results obtained in
phaze 1. Degree of Acceleration is defined as follows:

Degree of Acceleration = (CPU time with 1 UC)/ (CPU time).

3.2 Phase 2

We programmed two more processes; DTM's tasks and
TNP's taska. Experiment has done lo measure the time to
generate @ test-pattern for each fault that is aborted in
phase 1.

Figure 8 shows the results for the phase 2 process.

40 -
Degree
af
Acceleration
an -
.a
.n_.-ﬂ
B
20 -
‘D
q /¥ 8—— Non Partition (FTM +TGs+FSs)
e Halving (FTD+ 2ZFTMs+ TGs + FSal
&—— Quartering (FTD +4FTMs+TGs+ F3a)

I T T
50 100 150

Figure Tla): Degree of Acceleration vs Number of UCs
for Concurrent Process of Faults (Circuit 1)

Number of UCs

40 -
Degree
alf
Acceleration
a0 - 2
N
o
.'H-
20 - a
(2]
10 9 9 —— Non Partition (FTM+T(s +Fs)
Dfanennen Halving (FTD+ 2FTMs + Tils + F8s)
I Cuartering |FTD+4FTMe+TGs + Fis)

T T |
50 100 150

Figure Ti(b): Degree of Acceleration vs Number of UCs
for Concurrent Process of Faults (Cireuit 2)

Number of Ui's

T0 —

Degree
of
Accalaration

I | I | I
10 20 a0 40 G0

Figure 8: Degree of Acceleration v Number of UCs
for Concurrent Process of Nodes in
Decizion Tree (Circuit 2)

4. CONCLUSIONS

From the experiments, we can conclude that the
proposed approach to parallel processing has proved to be
effective to obtain a high parallelism and that it has
achieved & high degree of acceleration of test-pattern
generation. Also, it has a capability of generating test-
patterns for the faults that are extremely difficult with the
conventional sequential method.

ACKNOWLEDGEMENT
We would like to thank Prof. K. Ohmura of Osaka
University for giving us an opportunity of using LINKS-1.

REFERENCES

[1] H. Fujiwara and S. Teida, "The complexity of fault
detection problems for combinational logic circuits,”
IEEE Trans. on Comp., Vol. C-31, Ne. 6, pp.555-560,
June 1982,

2] G. A Kramer, "Employing massive parallelism in
digital ATPG algorithm,” Proc. Int. Test Conf., pp. 108
114, Oct. 1983

(3] H. Nishimura, H. Ohno, T. Kawata, 1. Shirakawa and
K. Ohmura, "LINKS1: A parallel pipelined

multimicrocomputer system for image ecreation,” 10th
Int. Symp. on Computer Architecture, pp. 387-394, June
1983,

(4] P. Goel "An implicit enumeration algorithm to generate
tests for combinational logie cireuits,” IEEE Trans. on
Comp., Vol. C-30, No. 3, pp. 215-222, March 1981.

[5] H. Fujiwara and T.Shimone, "On the acceleration for
test generation algorithms,” IEEE Trans. on Comp., Vol
C-32, No. 12, pp. 1137-1144, Deec. 1983

[6] E. G. Ulrich and T. Backer, "The concurrent simulation
of nearly identical digital networks,” Proc. 10th Design
Automation Weorkshop, pp. 25-27, June 1973,

	スキャン
	スキャン 1
	スキャン 2
	スキャン 3
	スキャン 4

