
Design for Testability of Software-Based Self-Test for Processors

Masato Nakazato†, Satoshi Ohtake†, Michiko Inoue† and Hideo Fujiwara†

† Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City, 630–0192, Japan

† E–mail:{masato-n, ohtake, kounoe, fujiwara}@is.naist.jp

Abstract

In this paper, we propose a design for testability
method for test programs of software-based self-test
using test program templates. Software-based self-
test using templates has a problem of error mask-
ing where some faults detected in a test genera-
tion for a module are not detected by the test pro-
gram synthesized from the test. The proposed method
achieves 100% template level fault efficiency in a
sense that the proposed method completely resolves
the problem of error masking. Moreover, the pro-
posed method adds only observation points to the
original design, and it enables at-speed testing and
does not induce delay overhead.
Key words:
software-based self-test, processor, test program
template, design for testability, error masking

1. Introduction

In recent years, it has been essential that pro-
cessors with high performance and rich functional-
ity have accurate and at-speed testing. Though the
full-scan approach is commonly used due to its sim-
plicity, it induces performance penalty, area over-
head and excessive power consumption. The built-
in self-test (BIST), which is one of the other widely
used techniques, uses embedded hardware, pseudo-
random pattern generators and response analyzer,
and applies test patterns to modules on the circuit
at the normal operational speed. However, design
modifications are required to make a circuit to be
BIST-ready, and involve large amount of manual ef-
fort. The BIST also induces area overhead. Further-
more, an application of random patterns results in
excessive power consumption.

A number of approaches [1-7] have been pro-
posed for software-based self-test (SBST). In SBST,
we test a processor by executing a sequence of in-
structions called a test program. A processor can be
tested by communicating with the memory, thus en-
abling at-speed testing. Of course, we used commu-
nication between the memory and the outside ATE
as pre- and post-processor of the execution of the test
program.

Some methods among the SBST methods gener-
ate a test program based on test program templates

targeting structural faults to achieve the high fault
coverage [3-7]. In this approach, gate-level test gen-
eration is applied for each module under test (MUT)
of a processor (MUT test generation), and a test
program is synthesized from a test pattern gener-
ated in MUT test generation (test program synthe-
sis), where a test program justifies the test pattern
from the memory to the MUT and propagates the
test response from the MUT to the memory. To
guarantee the test program synthesis, test program
templates are used. A test program template is an
instruction sequence with unspecified operands that
delivers test patterns to an MUT and observes the test
responses. The approach extracts constraints from
each template since the template represents ways to
propagate tests from the memory and test responses
to the memory, and applies test generation for the
MUT under such constrains. In this approach, we
can easily synthesize a test program from a test pat-
tern for the MUT. However, the justification and ob-
servation parts consider only behavior of a fault-free
processor and do not consider behavior of a faulty
processor, and such parts do not work as expected.
In this case, some faults detected by a test pattern for
a MUT may not be detected by the synthesized test
program. We call such a phenomenon “error mask-
ing.”

In this paper, we propose a design for testabil-
ity method that completely resolves the problem of
error masking for any test programs generated by
the template-based SBST approach. The proposed
method adds only observation points to the original
design, and it enables at-speed testing and does not
induce delay overhead.

This paper is organized as follows. In Sections 2
and 3, we show a processor model and a test program
generation using templates. In Section 4, we ana-
lyze error masking and define template level fault ef-
ficiency. In Section 5, we propose a design for testa-
bility of SBST for processors and the experimental
results are shown in Section 6. Finally, Section 7
concludes this paper.

2. Processor Model

A processor is specified by register transfer level
(RTL) description. Figure 1 shows an example of a
processor. In RTL description, the processor consists
of combinational modules such as arithmetic logic

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

15th IEEE Asian Test Symposium (ATS'06), pp. 375-380, November 2006.

CM

CM CM CM

CM

Memory

CM : Combinational Module
SM !Sequential Module

SM

: Register

Figure 1. An example of a processor.

Interface Justification
Instruction Sequence

Test Instruction
Sequence

Interface Observation
Instruction Sequence

op# : Unspecified operand

LHI op1 op2
ADD.I op4 op1 op3
LHI op6 op5
ADD.I op8 op6 op7

LHI op10 op9
ADD.I op12 op10 op11
LHI op14 op13
ADD.I op16 op15 op14

LW op17 op8(op4)

ADD op18 op16 op12
SUB op19 op20 op21

LHI op23 op22
ADD.I op25 op23 op24
LHI op27 op26
ADD.I op29 op27 op28
SW op19 op25(op29)

Figure 2. An example of a template.

unit (ALU) or multiplexer (MUX), sequential mod-
ules such as a controller specified as a finite state
machine, a signal (an RTL signal) that connect the
modules, and buses. A bus constructed by a tri-state
buffer is a tri-state bus[11], and we assume that each
output of the tri-state bus has a masking circuit that
makes a logic value (‘0’ or ‘1’) to prevent a high
impedance. For a fault-free processor, we also as-
sume the following about inputs and outputs of a tri-
state bus.
(1) Two or more inputs of a tri-state bus are not ac-

tivated simultaneously.
(2) An output of a tri-state bus is masked into a spec-

ified logic value if any input of the tri-state bus
is not activated.

A processor is assumed to be synthesized while
preserving the hierarchy of the modules, and there-
fore each module can be identified in a gate-level de-
scription.

3. Test Program Generation based on
Templates

We first explain a test program generation using
test program templates. In the rest of this paper, we
call a test program template a template. Figure 2
shows an example of a template, which consists of
three sequences: an interface justification instruction
sequence, a test instruction sequence and an interface
observation instruction sequence. An interface justi-
fication instruction sequence justifies test patterns to
registers which are adjacent to inputs of MUT. A test

instruction sequence applies test patterns to the MUT
and propagates a test response to registers that are
adjacent to outputs of MUT or the memory. An in-
terface observation instruction sequence propagates
the test response stored in registers to the memory. A
test program synthesized by using templates can jus-
tify test patterns to inputs of the MUT and observe
the test responses if a processor operates correctly;
that is, if the processor is fault-free. For each tem-
plate, we extract constraints about the input space
and the output space of the MUT and perform MUT
test generation under constraints. Kambe et. al.[5]
proposed an efficient method to extract such a con-
straint as a constraint circuit from each template,
where the inputs of a constraint circuit correspond
to the operands of a template. In an MUT test gener-
ation, we perform a test generation for a circuit that
is connected the MUT with the constraint circuit. We
can directly transform test patterns obtained by MUT
test generation into operands of the template and eas-
ily synthesize a test program.

4. Error Masking

In this section, we define template level fault effi-
ciency which is utilized for evaluation of error mask-
ing analyze error masking.

4.1. Template Level Fault Efficiency

In the test program generation method using tem-
plates, interface justification instruction sequences,
and interface observation instruction sequences are
generated only in consideration of the behavior of
the fault-free processor. When applying a test pro-
gram to the processor, errors may appear during ex-
ecution of these sequences. Therefore, we cannot
guarantee that the test program will justify test pat-
terns to the MUT, or observe the test response. This
means that some faults detected in the MUT test gen-
eration may not be detected by the test program syn-
thesized from the test. We call this situation “error
masking.” In this paper, we define template level
fault efficiency (FET) as measure to evaluate for er-
ror masking as follows.

FET =
#T P
#MT

,

where #MT is the number of faults detected in the
MUT test generation and #T P is the number of faults
detected by the test program among the #MT faults.
A template level fault efficiency 100% means that
there is no error masking.

4.2. Analysis of Error Masking

Figure 3 shows examples of error masking us-
ing a time frame expansion model during execution
of a test program. Each time frame corresponds to
1 clock. In the time frame expansion model, time
frames that apply test patterns to the MUT are called
a test frame, while time frames corresponding to the
time before the test frame are called a justification

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

PI PI!!!

M

Modules

XX/XX 11/11

10/1X

Modules

Modules

!!!

10/10 01/0X

M

10/1X

Modules

Modules

!!!

01/0X 11/11

M

11/1X

Modules

Modules

!!!

PO PO!!!

10/1X 01/0X

（a）

PI PI!!!

M

Modules

Modules

Modules

!!!

M

Modules

Modules

!!!

M

Modules

Modules

!!!

PO PO!!!

10/10 01/01

11/01

00/0100/00

11/11

00/00 11/11

10/10

11/11 00/00

（b）

PI PI!!!

M

Modules

Modules

Modules

!!!

M

Modules

Justification

Frame

Test Frame

Modules

!!!

M

Modules

Observation

Frame

Modules

!!!

PO PO!!!

M’

10/10 01/01

11/11

11/11 00/00

10/11

01/00 00/01

01/0100/00

00/00 11/11

（c）

Figure 3. Examples of error masking：(a) un-
known values are propagated to any RTL sig-
nal; (b) errors reach the MUT; (c) errors which
are propagated to two RTL signals and meet at
some module in some frame.

frame and time frames corresponding to the time af-
ter the test frame are called an observation frame.
The following situations can be considered as causes
of error masking.

Figure 3 (a) shows an example of error masking
induced by an unknown value. In the example, un-
known values ‘Xs’ are propagated to some RTL sig-
nals. In this figure, we describe the value of RTL sig-
nal as “the value in fault-free circuit/value in faulty
circuit.” In this case, the test pattern is delivered
from the memory to MUT in the test frame through
MUT in the justification frame. In a fault-free cir-
cuit, specified values are propagated to the output of
MUT in the justification frame even though these ap-
pear ‘Xs’ at some inputs of MUT. On the other hand,
‘Xs’ appear at the output of MUT in the justification
frame in the faulty circuit. The unknown values ‘Xs’
are propagated to the input of MUT at the test frame
and fail to activate the fault at the frame.

Figure 3 (b) shows an example of error masking
induced by a cycle. In the example, errors reach the
MUT M. In this case, there is a cycle that includes
M. The fault in M is activated at the justification
frame, and then an error appears at some bit of the
output of M. The error reaches some bit of the input
of M in the test frame. Thus, the fault in M is not
activated.

Figure 3 (c) shows an example of error mask-
ing induced by the reconvergence of errors. In the
example, errors are propagated to two RTL signals
and meet at some module in some frame. A fault
in the MUT is activated in both the test frame and
some observation frame. These errors are propa-
gated through RTL signals and meet at some module
M′ in some frame. The multiple errors mask each
other in M′ and no error is propagated to the output
of M′. The situation in Figure 3 (c) may occur if

there are reconvergent paths between the MUT and
some module.

Let M and M′ be modules. We call a set of n-
reconvergent paths from M to M′ an n-reconvergent
structure. Among the modules in an n-reconvergent
structure S from M to M′ and have only one path to
M′, the furthest module from M′ is called a reconver-
gent point of S.

5. Design for Testability of Software-
Based Self-Test

In this section, we propose a design for testability
in order to avoid error masking.

5.1. Formulation

The proposed method avoids error masking dur-
ing execution of a test program by adding the follow-
ing functions to the original design.
• A function to initialize the value of all the reg-

isters to ‘0’ or ‘1’
• A function to observe some RTL signals
Since an advantage of SBST is the possibility of

at-speed testing, it is important that the processor af-
ter the DFT also enables at-speed testing. There-
fore, we capture the values of the RTL signals to
be observed at normal operational speed. We use a
multiple input signature register (MISR) to capture
the values of the RTL signals at normal operational
speed. The proposed method adds only observation
points to the original design; it enables at-speed test-
ing and does not induce delay overhead.

We formulate the design for testability problem
in order to avoid error masking as an optimization
problem as follows.
Input: An RTL description of a processor
Output: An RTL description of an augmented pro-

cessor that can achieve 100% template level
fault efficiency

Objective: Minimizing the sum of the bitwidths of
the RTL signals made observable

5.2. Sufficient Conditions for Avoiding Error
Masking

We assume the following conditions for a test pro-
gram.
• The value stored in the memory cell for which

address is referred to during execution of the
test program is known. In the fault-free proces-
sor, unknown values are not propagated from
the memory to the processor.

• The memory cell referred to during execution
of the test program is initialized to a different
value from the expected value, which will be
stored in the memory cell during execution of
the test program.

In this paper, we consider that a fault in a pro-
cessor is detected if no value or an incorrect value
is stored in some memory cell where the test pro-
gram should write some expected value. If the test
program fails to read a value from the memory cell

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

designated in the test program because of a fault, we
consider such incorrect behavior results in the fail-
ure to write the expected value to some designated
memory cell in the test program; hence, faults can
be detected.

To guarantee that the proposed method can
achieve 100% template level fault efficiency, we
show the sufficient condition for a processor such
that error masking does not occur during execution
of the test program obtained by the test program syn-
thesis using test program templates.
Theorem 1 Error masking does not occur during
execution of a test program if a processor satisfies
the following three conditions.
(1) Each register in the processor has a function that

initializes the value of the register to ‘0’ or ‘1’,
and all the control signals of each tri-state bus
and all the control signals of its masking cir-
cuits are observable.

(2) For each cycle, at least one RTL signal on the
cycle is observable.

(3) For each n-reconvergent structure S, there exist
a set P of n− 1 reconvergent paths in S, such
that at least one RTL path is observable for
each path in P.

Proof:
Let f be a stuck-at fault detected by a test program
obtained by test program synthesis using test pro-
gram templates. We consider the execution of a test
program for f . Let M be a module with f .

First we show that a fault in a module of a proces-
sor is detected during execution of the test program
or the value of any RTL signal of the processor is not
unknown.

If the fault is not detected, the values are read
from the same memory addresses in both correct
and faulty processors. Therefore, unknown values
are not propagated from the outside of the processor.
Moreover, if the fault is not detected, an error is not
propagated to a control signal of a tri-state buffer in
a tri-state bus, and the value is read from the tri-state
bus in the correct operation when the value of the
tri-state bus is transferred to a RTL signal connected
to the tri-state bus. Then, if none of the inputs of
the tri-state bus are activated, a logic value is trans-
ferred from the masking circuit of the tri-state bus to
the outputs of the tri-state bus in the fault-free pro-
cessor, since the output value of the tri-state bus is
masked to the logic value. The data transfer in the
fault-free processor is also performed in the faulty
processor since the error is not also propagated to the
control signal of the masking circuit and of the tri-
state buffer in the tri-state bus. Therefore, the value
of each register next time is set to the value of the
RTL signal at present time which is connected to a
register, a primary input, and a tri-state bus that is not
activated. Since the values of all the registers in the
processor are initialized to the logic value at the start
of the test program from condition (1), unknown val-
ues are set to all the registers during execution of the
test program.

Suppose the test program justifies a test pattern to
the inputs of M at time t in the fault-free processor.
When the interface justification instruction sequence

and the test instruction sequence are executed, we
indicate that the test pattern for f reaches the inputs
of M at time t or f is detected until time t.

We think that the test pattern of f does not reach
the inputs of M at time t. We consider the bits of
the register with the specified value (‘0’ or ‘1’) in or-
der to justify this test pattern in the correct operation
of the processor. A different value from the correct
value is propagated to a bit b, which is one of these
bits, since the test pattern for f does not reach inputs
of M. The value of b is error since the register is set
known values during execution of the test program.
Since an error only occurs at M, a path P through b
from an output of M to an input of M exists and the
error is propagated on the path. For each cycle, since
an RTL signal on the cycle is observable from con-
dition (2), an RTL signal on P is observable and the
fault is detected. Therefore, f is detected until time
t or the test pattern for f reaches the inputs of M.

If the test pattern of f reaches inputs of M at time
t, then f is activated and an error appears an output
of M. The output of M at time t can be observed at
a primary output in the fault-free processor. There-
fore, a path such that an error is propagated from M
to an primary output (an error propagation path) ex-
ists. Suppose the fault is not detected. In this case,
an error is not propagated to a primary output. If the
error is not propagated to a primary output, a mod-
ule M′ such that the error is prevented to propagate
on the error propagation path exists. For a module
without faults on the error propagation path, if the
error is only propagated to the inputs of the module,
the error is propagated to the outputs of the module.
Therefore, M′ is M or the error is propagated to the
inputs of M′, which is not on the error propagation
path. If M′ is equal to M, the error is propagated on
a cycle. In condition (2), the error is observed and
the fault is detected. If the error is propagated to the
inputs of M′, which is not on the error propagation
path, the error is propagated on all the reconvergent
paths of two-reconvergent structure from M to M′.
Since an RTL signal on either of the two reconver-
gent paths is observable due to condition (3), the er-
ror is observed and f is detected.

Therefore, a fault f detected by MUT test gener-
ation can detect during execution of a test program
synthesized from the test pattern for f .

5.3. Algorithm

We propose an algorithm such that a processor
satisfies the sufficient condition proposed in subsec-
tion 5.2. This algorithm consists of the following five
steps.
Step 1: A function to initialize the value of each

register in the processor to ‘0’ or ‘1’ is added,
and all the control signals of each tri-state bus
and all the control signals of its masking circuits
are made observable.

Step 2: The circuit graph of the processor is gener-
ated.

Step 3: For each MUX in the processor, removing
the edge of the circuit graph corresponding to
the control signal of the MUX.

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Step 4: For each cycle in the circuit graph, at least
one RTL signal on the cycle is made observable.

Step 5: For each n-reconvergent structure S, at least
one RTL signal on each reconvergent paths in S
is made observable.

We describe the details of the algorithm as fol-
lows.
Step 1: A function that initializes the value of the
register to ‘0’ or ‘1’ is added to each register in
the processor. This initializing function is control-
lable from a primary input and sets the initial speci-
fied value in the register at the time of the start of a
test program. Since, in general, the processor needs
some controls from the exterior of the processor, a
primary input utilized for initializing the registers is
shared with the primary inputs utilized for starting a
test program. Therefore, it is not necessary to add a
new primary input.
Step 2: A circuit graph is generated from the RTL
description of the processor. The circuit graph is ex-
pressed in a directed graph G = (V,E), where v ∈V
is a vertex corresponding to a combinational module,
a sequential module, a register, a primary input and
a primary output and e ∈ E is an edge corresponding
to an RTL signal. The edge of the circuit graph has
the weight. The weight corresponds to the bitwidth
of the RTL signal.
Step 3: For each MUX in the processor, we remove
the edge of the circuit graph corresponding to the
control signal of the MUX from the circuit graph.
Here, removing the edge of the circuit graph means
observing the RTL signal corresponding to the edge.
In n-reconvergent structure such that an MUX corre-
sponds to a reconvergent point, error masking does
not occur even if errors propagate to inputs (data in-
puts) except for the control input (the signal for se-
lecting a data input) of the MUX. Therefore, by ob-
serving the control input of the MUX instead of con-
dition (3) in subsection 5.2, error masking does not
occur in such reconvergent structure. In general, the
bitwidth of RTL signals on paths which reach data
inputs of the MUX is larger than that on paths which
reach the control input of it. We can reduce the hard-
ware overhead to observe the RTL signal connected
with the control input of the MUX.
Step 4: In this step, we search a set, which includes
an RTL signal on each cycle in the processor, of RTL
signals such that the sum of the bitwidths of RTL
signals in the set is minimum. We perform the fol-
lowing four steps in order to search such a set.
Step 4.1: We search a cycle C such that the sum of
the weight of edges is minimum by using the algo-
rithm in [8]. Let EC be a set of edges that construct
the cycle C. For each edge ei ∈ EC, if the weight of
ei is minimum in EC, ei is removed from the circuit
graph and added to a set Er of edges. C is added to a
set Cmin of cycles. This process is repeated until the
circuit graph becomes acyclic.
Step 4.2: Let Ecut be a set of edges corresponding
to the observing RTL signals. For each edge ei ∈
EC of each cycle C ∈ Cmin, if the number of cycles
which include ei is maximum and the weight of ei is
minimum, ei is added to Ecut . If ei is in a member of
Er, a member of Er corresponding to ei is removed.

Table 1. Characteristics of processors
Processor #Gate #Register #Module #Instruction
SAYEH 6141 12 10 29
Dlx N 34032 50 95 25

If ei is not in a member of Er, ei is removed from the
circuit graph. C is removed from Cmin. This process
is repeated until Cmin becomes empty. If Er does not
become empty, all edge in Er are added to the circuit
graph.
Step 4.3: Step 4.1 and 4.2 are repeated until the cir-
cuit graph becomes acyclic.
Step4.4: If some of the edges in Ecut obtained by
processing from Step 4.1 to Step 4.3 is added to
the circuit graph, the circuit graph may not become
acyclic. For each ec ∈ Ecut , if the circuit graph be-
comes acyclic when ec is added to it, ec is removed
from Ecut and ec is added to the circuit graph.
Step5: Let PS be a set of n−1 reconvergent paths in
each n-reconvergent structure S such that the MUX
is not the reconvergent point. We search a set, which
includes an RTL signal corresponding to an edge of
the minimum weight on each p ∈ PS, of RTL signals
such that the sum of the bitwidths of RTL signals in
the set is minimum. We perform the following three
steps to search such a set.
Step5.1: For a pair of vertices vi and v j (vi ̸= v j) of
the circuit graph, if v j corresponds to the MUX, we
extract all the paths from vi to v j and let Pi, j be a set
of such paths.
Step5.2: For a pair of paths pℓ and pm in Pi, j, let ec
be an edge such that the weight of an edge on either
pℓ or pm is minimum. The path that includes ec is
removed from Pi, j. ec is added to Ecut and removed
from the circuit graph. This process is repeated until
the number of members in Pi, j becomes one.
Step5.3: Steps 5.1 and 5.2 are repeated for all pairs
of vertices in the circuit graph.

As the result of processing these steps, we ob-
serve RTL signals corresponding to edges in Ecut .
These RTL signals are connected to an MISR.

6. Experimental Results

We evaluate the proposed method using a non-
pipelined processor SAYEH[9] and a five-stage
pipelined processor Dlx N that is based on Dlx
processor[10]. Table 1 shows the characteristics of
SAYEH and Dlx N. The column titled “#Gate” de-
notes the number of primitive gates. The column
headed “#Register” and “#Module” denote the num-
ber of registers and the number of modules at RTL in
the processor, respectively. The column “#Instruc-
tion” denotes the number of instructions defined in
an instruction set architecture (ISA). The numbers of
gates in SAYEH and Dlx N processor are 6,141 and
34,032, respectively. The numbers of registers and
modules at RTL in both processors are 12 and 50,
and 10 and 95, respectively. Both processors have
the standard 29 and 25 instructions, respectively.

Table 2 shows hardware overhead of the proposed
method and the full-scan design for SAYEH and

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Table 2. The number of observable bits and
hardware overhead

Processor DFT Area HOH(%)
Original Additional #OB

SAYEH full-scan 12389 1485 165 11.99
Prop. 3306 114 26.68

Dlx N full-scan 58696 13635 1379 23.23
Prop. 7917 273 13.49

Dlx N. The column “DFT” denotes the design for
testability method applied to both processors. In the
column “DFT,” “full-scan” and “Prop.” denote the
full-scan design method and the proposed method,
respectively. The columns “Area” and “HOH” de-
note the area of the processor and the hardware over-
head, respectively. In the column “Area,” “Original”
and “Additional” denote the original area of the pro-
cessor without DFT and the additional area that in-
creases by applying DFT method to the processor,
respectively. The column “#OB” denotes the number
of observable bits. In the full-scan design method
and the proposed method, an observable bit means
the number of scan flip-flops and the number of in-
puts of MISR. The number of observable bits of the
proposed method becomes less than that of the full-
scan design method for both processors. For Dlx N
processor, the hardware overhead of the proposed
method is smaller than that of the full-scan design
method. The Dlx N processor has many registers in-
cluding the architecture registers appear in ISA and
the pipeline registers to enhance the performance.
Therefore, the full-scan design induces a large area
overhead. However, for the SAYEH processor, the
hardware overhead of the proposed method is larger
than that of the full-scan design method. This is
because that the SAYEH processor has a very area-
optimized design with a lot of loops and a few reg-
isters; therefore, the proposed method needs many
observation points whereas full-scan design requires
little area overhead. Moreover, the hardware over-
head per one observed bit of the proposed method
is larger than for the full-scan design, since we es-
timate the hardware overhead as the area of MISR
with the same number of bits as the observed bits.
However, this hardware overhead can be reduced if
we compress the observed space before applying it
to MISR.

7. Conclusions and Future Work

In this paper, we proposed a design for testabil-
ity method of software-based self-test for proces-
sors. We proved that the proposed method can achive
100% template level fault efficiency if a processor
satisfies three conditions: (1) each register in the pro-
cessor has a function that initializes the value of the
register to ‘0’ or ‘1’; and all the control signals of
each tri-state bus and all the control signals of its
masking circuits are observable, (2) for each cycle,
at least one RTL signal on the cycle is observabl;, (3)
for each n-reconvergent structure S, there exist a set
P of n− 1 reconvergent paths in S such that at least
one RTL path is observable for each path in P. The

experimental results reveal that the proposed method
achieves less hardware overhead than full-scan de-
sign if the processor features many registers and less
loops or reconvergent paths. In general, modern pro-
cessors oriented to high performance have many reg-
isters to accelerate their speed, while the structure
tends to be simpler than the design oriented to area
optimization. From this observation, we consider
that the proposed method is suitable for such modern
processors. Since the proposed method adds only
observation points to the original design, it enables
at-speed testing and does not induce delay overhead.
Further reduction of hardware overhead ,and evalu-
ations of the test application time and the fault ef-
ficiency are issues to be investigated in our future
work.
Acknowledgment The authors would like to thank
Dr. Tomokazu Yoneda, and other members of
Computer Design and Test Laboratory of Nara
Institute Science and Technology for their valu-
able discussions. This work was supported in
part by joint research with Semiconductor Tech-
nology Academic Research Center (STARC), in
part by 21st-Century COE Program and in part
by Japan Society for the Promotion of Science
(JSPS) under Grants-in-Aid for Scientific Research
B(2)(No. 15300018), under Grants-in-Aid for Scien-
tific Research C(No. 18500038) and for Young Sci-
entist(B)(No. 17700062).

References

[1] W. -C. Lai, A. Krtic and K. -T. Cheng, “Test program syn-
thesis for path delay faults in microprocessor cores,” Proc. of
International Test Conference 2000, pp. 1080-1089, 2000.

[2] W. -C. Lai, A. Krtic and K. -T. Cheng, “Instruction-Level
DFT for testing processor and IP cores in system-on-a chip,”
Proc. of Design Automation Conference 2001, pp. 59-64,
2001.

[3] L. Chen and S. Dey, “Software-based self-testing method-
ology for processor cores,” IEEE Trans. on CAD,, vol. 20,
no. 3, pp. 369-380, 2001.

[4] L. Chen, S. Rabi, A. Raghunath and S. Dey, “A scalable
software-based self-test methodology for programmable
processors,” Proc. of Design Automation Conference 2003,
pp. 548-553, 2003.

[5] K. Kambe, M. Inoue and H. Fujiwara, “Efficient template
generation for instruction-based self-test of processor cores,
” Proc. of IEEE 13th Asian Test Symposium (ATS’04), pp.
152-157, 2004.

[6] S. Yokoyama, K. Kambe，M. Inoue，H. Fujiwara，“Effi-
cient generation of instruction templates for pipeline proces-
sor self-test, ” Technical Report of IEICE (DC2004-58), Vol.
104, No. 478, pp.61-66, Dec. 2004. (In Japanese).

[7] M. Inoue, K. Kambe, N. Hoashi, and H. Fujiwara,
“Instruction-Based Self-Test for sequential modules in pro-
cessors,” Proc. of IEEE 5th Workshop on RTL and High
Level Testing (WRTLT’04), pp. 109-114, 2004.

[8] M. Näher, “LEDA,” Cambridge university press, 1999.
[9] Z. Navabi, “VHDL Analysis and Modeling of Digital Sys-

tems,” McGraw-Hill, 1997.
[10] J. H. Hennesy and D. A . Patterson, “Computer Architec-

ture: A Quantative Approach,” Morgan Kaufmann Publish-
ers, 1996.

[11] Semiconductor Technology Academic Research Center
(STARC), “RTL design style guide,” STARC, 2000. (In
Japanese).

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

