
Fault Dependent/Independent Two-Pattern Test Generation Methods for State
Observable FSMs

Toshinori Hosokawa† Ryoichi Inoue†† and Hideo Fujiwara‡

†College of Industrial Technology, Nihon University

 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan
††Graduate School of Industrial Technology, Nihon University

 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan
‡Graduate School of Information Science, Nara Institute of Science and Technology (NAIST)

8916-5, Takayama, Ikoma, Nara 630-0192, Japan
E-mail: † t7hosoka@cit.nihon-u.ac.jp, ††c67010@cit.nihon-u.ac.jp,‡fujiwara@is.naist.jp

Abstract

Scan testing is one of the most popular test
methods for VLSIs. However, since scan testing is not
based on the function of the circuit, but rather its
structure, this method is considered to be a form of
over testing or under testing. Hence, a yield loss of
VLSIs, as well as outflow of defective VLSIs into the
market, may occur. It is important to test VLSIs using
the given function. Since the functional specifications
are described explicitly in the FSMs, high test quality
is expected by performing logical testing and timing
testing. This paper proposes two test generation
methods, a fault-independent two-pattern test
generation method and a fault-dependent two-pattern
test generation method, for timing testing in state-
observable FSMs in order to reduce the yield loss
while improving the test quality over scan testing.
The experimental results for MCNC'91 benchmark
circuits show that the use of the proposed method is
effective for the improvement of one-state transition
coverage and two-state transition coverage.
keywords: State-observable FSMs, Over testing,
Fault-dependent/independent two-pattern test
generation, Two-state transition coverage

1. Introduction
In recent years, Very Large Scale Integrated

circuit (VLSI) testing has become increasingly
important because the number of gates on VLSIs is
rapidly increasing and their complexity is growing
with advances in semiconductor technology.
Currently, scan testing for the stuck-at fault model [1,
2] is one of the most popular test methods for VLSIs.
However, it has been reported that scan testing for
the stuck-at fault model may not detect defective
VLSIs [4], and delay testing [3] and at-speed
functional testing can effectively improve test quality.

As mentioned above, scan testing is currently the
most popular test method. Scan testing is based on
the structure of the circuit rather than its function. In
scan testing, the states of the circuits are transferred
to invalid states by shift operation during the testing
in order to detect faults. This method is considered to
be a form of over testing and a yield loss of VLSIs
may occur. Scan testing also detects faults by the
operation of a combinational circuit part, shifting-in,
and shifting-out. Hence, faults are not detected by
performing sequential operations of circuits. This
testing is considered to be a form of under testing.
Therefore, the test quality deteriorates, and outflow
of defective VLSIs into the market may occur.

VLSI design methodologies employing hardware
description languages have recently been adopted to
reduce VLSI design time. VLSIs are designed at the
Register Transfer Level (RTL), and RTL circuits
consist of a data path part and a controller part. The
data path contains a hardware element (e.g., registers,
multiplexers, and operational modules) and signal
lines. The controller is represented by a finite state
machine (FSM). A non-scan-based Design For
Testability (DFT) method of data path parts is
proposed in [5], whereas a non-scan-based DFT
method for controller parts is proposed in [6]. At-
speed testing is easily applicable, and test patterns for
a stuck-at fault model are completely generated by
non-scan-based DFT methods. As mentioned above,
if at-speed functional testing and/or delay testing are
applied to VLSIs with a non-scan-based DFT, the test
quality can be further improved. As for the FSM,
which is the controller part of a RTL circuit, the
circuit specification is described explicitly. Thus, it is
expected that the test quality becomes high by
performing a logical test and a timing test under the
constraints of the circuit specifications. It was
reported in [7] that state-observable and completely

IEEE 7th Workshop on RTL and High Level Testing (WRTLT'06), pp. 13-18, November, 2006.

specified FSMs are thoroughly logically tested by
performing all of the state transitions. Thus, complete
at-speed logical testing can be applied to FSMs
having states that are made observable by performing
all state transitions at-speed. Complete timing testing
can be also applied by performing all pairs of state
transitions at-speed.

In [11], two test generation methods, a fault-
independent one-pattern test generation method and a
fault-dependent one-pattern test generation method
were proposed for logical testing in state-observable
FSMs. One-state transition coverage [11] was also
proposed as the measure of test quality for logical
testing. The experimental results for MCNC’91
benchmark circuits [9] show that the use of the
method reduced the area while the one-state
transition coverage was increased compared with the
conventional non-scan test method [6] for state-
observable FSMs.

This paper proposes two test generation methods, a
fault-independent two-pattern test generation method
and a fault-dependent two-pattern test generation
method for state-observable FSMs in order to reduce
the yield loss caused by over testing, while improving
the test quality over that of scan testing. This paper
also proposes two-state transition coverage as
measure of test quality for timing testing. Two-state
transition coverage is defined as the ratio of the
number of state transition pairs executed by a test
sequence to the total number of continuous state
transition pairs.

This paper is organized as follows. In Section 2,
the definition of state-observable FSMs and a test
method for state-observable are described. In Section
3, the optimization problems for both fault-
independent two-pattern test and fault-dependent
two-pattern test are formulated for state-observable
FSMs, and their test generation methods are proposed.
The proposed methods are applied to MCNC’91
FSM benchmarks [9] in Section 4, and the
experimental results are presented. Furthermore, the
ratios of over testing for single stuck-at fault scan
testing and path delay fault scan testing based on the
broadside approach are evaluated. Finally, Section 5
concludes the paper and discusses future research
possibilities.

2. State-observable FSMs
(Definition 1: State-observable FSMs)

When an initial state can be identified by
observing an output sequence without being
dependent on an input sequence, the FSM is said to
be state-observable. More specifically, when an
initial state can be identified by observing an output
sequence of k length, the FSM is said to be k state-
observable.

The DFT transformed an FSM to a one-state
observable FSM by making the outputs of the status
registers in the FSM observable. In this paper, a one-
state observable FSM is hereinafter referred to simply
as a state-observable FSM. A synchronous sequential
circuit is synthesized from the FSM by logic
synthesis. Figure 1 shows the logic circuit model that
corresponds to the FSM after logic synthesis.
Because the pseudo primary inputs (PPI), which are
the outputs of the status registers, are observable in
this figure, the PPI connect with the primary output.
Here, PI, PO, SR, PPI, PPO, and R denote the
primary inputs, primary outputs, status registers,
pseudo primary inputs (outputs of the status registers),
pseudo primary outputs (inputs of the status registers),
and a reset input, respectively.

In the test for state-observable FSMs, the PI value
is applied to a state-observable FSM, the state is then
transferred from the current state to the next state,
and the resulting PPI and PO values are observed. A
series of these procedures is referred to as a test for
state-observable FSMs.

The FSM has a completely specified FSM [8], in
which the next state and the output are specified for
all of the inputs of each state, and an incompletely
specified FSM [8], in which the next state and the
output are not specified for all of the inputs of each
state. In this paper, in the incompletely specified
FSMs, state transitions that are not specified are
assumed to be the same as either of the state
transitions that are specified.

Fig. 1 Logic model for a state-observable FSM

Combinational
Circuit

State-Observable

POPI

SR

PPI PPO

R

3. Two-Pattern Test Generation Method
for State-observable FSMs

Timing testing is performed to test any detectable
fault models by a two-pattern test. An FSM timing
test generation graph is defined as the model by
which to generate a two-pattern test for timing testing
in state-observable FSMs, and two-state transition
coverage is proposed as the measure of test quality
for timing testing.

(Definition 2: FSM timing test generation graph)
An FSM timing test generation graph is a

directed graph G(V, E, s, d, t), where a vertex v ∈ V
denotes a state transition. Each vertex has a label s: V
→ A (A = {PPI1PPI2 … PPIm}, PPI1, PPI2, …, PPIm
∈ {0, 1}, where m denotes the number of status
registers), a label d: V → A (A = {PPI1PPI2…PPIm},
PPI1, PPI2, …, PPIm ∈ {0, 1}, and a label t: V → B
(B = {PI1PI2 …PIn}, PI1, PI2, …, PIn∈ {0, 1}, where
n denotes the number of primary inputs). The label s
indicates the source state of the state transition, the
label d indicates the destination state of the state
transition, and the label t indicates input values for
the state transition. For any vertices u, v ∈ V, an
edge (u, v) ∈ E denotes that the destination state in u
is the same as the source state in v. The edge (u, v)
represents a continuous state transition pair.
(Definition 3: Two-state transition coverage)

Two-state transition coverage is defined as the
ratio of the number of continuous state transition
pairs executed by a test sequence to the total number
of continuous state transition pairs. When continuous
state transition pairs are executed by a test sequence,
the continuous state transition pairs are said to be
covered by the test sequence. In this paper, only
continuous state transition pairs specified in an FSM
are used to calculate the two-state transition coverage.
Two-state transition coverage is used as the measure
of the test quality for timing testing.

3.1 Fault-independent Test Generation
Method for Timing Testing

The following problem is formulated for a fault-
independent test generation method of timing testing
for state-observable FSMs.

(Formulation 2a)
Input: a state-observable FSM.

Output: a test sequence such that the two-state
transition coverage is 100%. (All continuous state
transition pairs in the FSM are performed.)
Optimization: minimization of the test length.

The test generation for Formulation 2a does not
use ATPG for a specific fault model. An FSM timing
test generation graph is generated from the state-
observable FSM and searches the path such that all of
the edges are traversed at least once. If the path
length is minimized, then the test length is also
minimized. This test sequence can perform a timing
test on a state-observable FSM completely.

3.2 Fault-dependent Test Generation Method
for Timing Testing

In this paper, a non-robust testable path delay fault
model is considered as a representative of detectable
fault models by timing testing. A non-robust testable
path delay fault model is hereinafter referred to
simply as a path delay fault. The following problem
is formulated for a test generation method of path
delay faults for state-observable FSMs.

(Definition 4: Detectable path delay faults on the
transition between valid states)

The transition between valid states refers to
performing state transitions between valid states in
state-observable FSMs. After a transition between
valid states, path delay faults detected by performing
a continuous state transition are defined as detectable
delay faults on the transition between valid states.

(Formulation 2b)
Input:
- a state-observable FSM.
- a two-pattern test set that can detect all

detectable path delay faults on the transition
between valid states.

Output: a test sequence for a state-observable
FSM such that all detectable path delay faults on
the transition between valid states are detected.

Optimization: minimization of the test length.

Fig. 2 Example of an FSM (three states)

S0 S1

S2
0

0

1

0

1
1

RESET

Fig. 3 FSM timing test generation graph for path
delay fault testing

After logic synthesis, a time expansion model [10]
for two time frames is generated from a synthesized
sequential circuit. The valid states are assigned to the
PPI values as constraints. A constrained ATPG for
path delay faults is performed for the time expansion
model, and a two-pattern test set is generated. An
FSM timing test generation graph is then generated
and two-pattern tests are assigned to the
corresponding edges of an FSM timing test
generation graph. Finally, paths are searched on the
FSM timing test generation graph such that all of the
edges where two-pattern tests are assigned are
traversed at least once. If the path length is
minimized, then the test length is also minimized.

Example: Figure 3 shows an FSM timing test
generation graph that is generated from the state-
observable FSM shown in Fig. 2 and a two-pattern
test set, which can detect all detectable path delay
faults on the transition between valid states for a time
expansion model with two time frames. The state 00
is assigned to S0, the state 01 is assigned to S1, and
the state 10 is assigned to S2. Each two-pattern test is
assigned to the corresponding edge in this graph. For
example, t5t6 is assigned to the edge that represents
the continuous state transition pair, which is the state
transition from the valid state 01 through the input
value 0 to the valid state 00, and the state transition
from the valid state 00 through the input value 1 to
the valid state 10. When the test sequence (0, 0, 1, 0,
1, 1) is applied to the FSM shown in Fig. 2 on the
current state S0 (reset state), the five state transition
pairs are covered in the FSM timing test generation
graph shown in Fig.3. Thus, the two-state transition
coverage is 41.7% (5/12).

4. Experimental Results
The test generation methods for Formulations 2a

and 2b were implemented and were applied to
MCNC’91 benchmark circuits [9].

The platform used for the experiments is as
follows:

CPU: Pentium 4
Frequency: 3 GHz
Memory: 2 Gbytes

The characteristics of MCNC’91 benchmark
circuits are shown in Table 1. In this figure, Circuit,
#Node, #PI, #PO, #Reg, #Edge, and Area denote the
circuit name of the FSM, the number of states, the
number of primary inputs, the number of primary
outputs, the number of status registers, the number of
state transitions, and the area of synthesized
sequential circuit that was calculated based on the
standard library for logic synthesis, respectively. In
these experiments, the FSMs were made state-
observable by DFT, and two test generations were
performed for state-observable FSMs. The logic
syntheses for the FSMs were performed using a
Synopsys Design Compiler® and the test generations
for the combinational circuit part were performed
using Synopsys TetraMax®.

Table 2 shows the experimental results of the test
generation methods for timing testing proposed in
this paper. In Table 2, 2a denotes the fault-
independent test generation method for timing testing,
and 2b denotes the fault-dependent test generation
method for timing testing. In Tables 2, Circuit, TL,
SFC, 1STC, PSC, 2STC, and CPU time denote the
circuit name of the FSM, the test length, the fault
coverage of detectable stuck-at faults on valid states,
the one-state transition coverage, the fault coverage
of detectable path delay faults on transition between
valid states, two-state transition coverage, and the
time for the test generation, respectively.

For 2a, since both the one-state transition coverage
and the two-state transition coverage are 100%, the
logical fault model including stuck-at faults and the
timing fault model including path delay faults can be
completely tested. 2a is applicable to FSMs that have
less than 1,000 state transitions with reasonable CPU
time and test length (maximum: 6,512). However, the
test lengths for FSMs that have many state transitions
drastically increase. For 2b, the one-state transition
coverage was higher than that for stuck-at fault
dependent test generation shown in [11]. In this paper,

00→01
0

00→10
1

01→00
0

01→10
1

10→10
0

10→00
1

RESET RESET

t1t2

t3t4

t5t6

this stuck-at fault test generation is said to 1b.
However, the fault coverage for detectable stuck-at
faults on valid states was an average of 93.7% of that
for 1b. 2b could not completely test stuck-at faults,
and the two-state transition coverage was an average
of 63.6% higher than for 1b.

Table 3 shows the experimental results for
evaluation of the ratios of over testing for stuck-at
fault scan testing and path delay fault scan testing
based on the broadside approach. In Table 3, Circuit
denotes the circuit name of the FSM, SFCS denotes
the fault coverage of stuck-at fault scan testing, SFC
denotes the stuck-at fault coverage by 1b, SOTR
denotes the ratios of over testing for stuck-at fault
scan testing, PFCS denotes the fault coverage of path
delay fault scan testing based on the broadside
approach, PFC denotes the path delay fault coverage
by 2b, and BSOTR denotes the ratios of over testing
for path delay fault scan testing based on the
broadside approach. SOTR and BSOTR are
expressed by the following equations:

)1.....((%)
SFC

SFCSFCSSOTR −
=

)2.....((%)
PFC

PFCPFCSBSOTR −
=

 Table 3 shows that the average faults of 2.6% are
over tested on stuck-at fault scan testing. In particular,
stuck-at faults of 5% to 8% are over tested for ex3,
ex5, s208, and s420. The number of one-pattern tests
for the combinational circuit part is increased by 16%
to 26%. In addition, Table 3 shows that the average
faults of 1.3% are over tested on path delay fault
testing based on the broadside approach. In particular,
path delay faults of 6% to 8% are over-tested for
keyb, opus, and s386. The number of two-pattern
tests for a combinational circuit part increased by
14% to 37%.

5. Conclusion
This paper proposed both a fault-independent two-

pattern test generation method and a fault-dependent
two-pattern test generation method for state
observable FSMs. This paper also proposed two-state
transition coverage as the measure of test quality for
timing testing. The quality and cost of timing testing
for proposed test generation methods was evaluated
for MCNC’91 benchmark circuits. Moreover, the
ratios of over testing for stuck-at and path delay scan
testing were evaluated.

Future studies will include an analysis of the
relationship among one(two)-state transition
coverage, fault coverage for various fault models,
and a one(two)-pattern test set, and the proposal of a
test generation method to maximize one(two)-state
transition coverage under constraints such as test
length and fault models, which must perform a
complete test.

References
[1] H. Fujiwara, “Logic Testing and Design for

Testability,” The MIT Press, 1985.
[2] M. Abramovici, M. A. Breuer, and A. D.

Friedman, “Digital systems testing and testable
design,” IEEE Press, 1995.

[3] A. Krstic, and K.-T. Cheng, “Delay Fault
Testing for VLSI Circuits,” Kluwer Academic
Publishers, 1998.

[4] P.C. Maxwell, R.C. Aitken, R. Kollitz, and A. C.
Brown, “IDDQ and AC Scan: The War Against
Unmodelled Defects,” Proc. of IEEE Int. Test
Conf., pp.250-258, Oct., 1996.

[5] H. Wada, T. Masuzawa, K.K. Saluja, and H.
Fujiwara, “Design for strong testability of RTL
data paths to provide complete fault efficiency,”
Proc. of 13th Int. Conf. on VLSI Design,
pp.300-305, 2000.

[6] S. Ohtake, T. Masuzawa, and H. Fujiwara, "A
non-scan approach to DFT for Controllers
Achieving 100% Fault Efficiency," Journal of
Electronic Testing: Theory and Applications
(JETTA), Vol. 16, No. 5, pp.553-566, Oct. 2000.

[7] H. Fujiwara, and K. Kinoshita, “Design of
Diagnosable Sequential Machines Utilizing
Extra Outputs,” IEEE Trans. on Computers, Vol.
C-23, pp.138-145, Feb., 1974.

[8] T. Sasao, “Switching Theory for Logic
Synthesis,” Kluwer Academic Pub., 1999.

[9] S. Yang, "Logic synthesis and optimization
benchmarks user guide," Technical Report
1991-IWLS-UG-Saeyang, Microelectronics
Center of North Carolina, 1999.

[10] T. Inoue, T. Hosokawa, T. Mihara,, and H.
Fujiwara, “An optimal time expansion model
based on combinational ATPG for RT level
circuits”, IEEE Proc. Asian Test Symp., pp.190-
197 , Dec. 1998.

[11] T. Hosokawa, and H. Fujiwara, “A functional
test method for state observable FSMs”, IEEE
Workshop on RTL and High Level Testing,
pp.123-130, July 2005.

Table 1 FSM benchmark characteristics

Table 3 Experimental results of the over testing

Table 2 Experimental results of the test generation methods for timing testing

bbara 10 4 2 4 160 163
beecount 7 3 4 3 56 226
cse 16 7 7 4 2048 394
dk14 7 3 5 3 56 191
dk16 27 3 3 5 108 455
dk17 8 2 3 3 32 134
ex1 20 9 19 5 10240 728
ex3 10 2 2 4 40 142
ex4 14 6 9 4 896 297
ex5 9 2 2 4 36 132
ex6 8 5 8 3 256 314
keyb 19 7 2 5 2432 332
lion9 9 2 1 4 36 216
opus 10 5 6 4 320 200
planet 48 7 19 6 6144 602
pma 24 8 8 5 6144 689
s1 20 8 6 5 5120 606
s208 18 8 2 5 4608 246
s298 218 3 6 8 1744 4305
s386 13 7 7 4 1664 290
s420 18 8 2 5 4608 249
s1488 48 8 19 6 12288 1062
s1494 48 8 19 6 1288 1019
styr 30 9 10 5 15360 685
tma 20 7 6 5 2560 526
train11 11 2 1 4 44 251

Circuit #Node #PI #PO #Reg #Edge Area

bbara 100.00% 98.28% 1.75% 80.81% 80.81% 0.00%
beecount 100.00% 98.31% 1.72% 71.70% 70.28% 2.02%
cse 100.00% 100.00% 0.00% 39.84% 39.84% 0.00%
dk14 100.00% 98.95% 1.06% 80.38% 78.48% 2.42%
dk16 100.00% 98.12% 1.92% 65.00% 64.75% 0.39%
dk17 100.00% 100.00% 0.00% 79.21% 79.21% 0.00%
ex1 100.00% 99.18% 0.83% 55.84% 55.84% 0.00%
ex3 100.00% 94.96% 5.31% 53.16% 53.16% 0.00%
ex4 100.00% 98.07% 1.97% 52.25% 52.25% 0.00%
ex5 100.00% 94.95% 5.32% 69.86% 69.86% 0.00%
ex6 100.00% 100.00% 0.00% 68.64% 68.64% 0.00%
keyb 100.00% 96.78% 3.33% 55.61% 51.36% 8.27%
lion9 100.00% 95.30% 4.93% 59.71% 58.27% 2.47%
opus 100.00% 96.14% 4.01% 73.33% 69.05% 6.20%
planet 100.00% 97.70% 2.35% 54.54% 53.59% 1.77%
pma 100.00% 98.81% 1.20% 29.69% 29.69% 0.00%
s1 100.00% 97.67% 2.39% 71.23% 71.23% 0.00%
s208 100.00% 91.95% 8.75% 39.33% 39.33% 0.00%
s298 100.00% 99.18% 0.83% 57.58% 56.80% 1.37%
s386 100.00% 97.31% 2.76% 67.54% 62.31% 8.39%
s420 100.00% 91.95% 8.75% 33.71% 33.71% 0.00%
s1488 100.00% 97.96% 2.08% 53.03% 52.45% 1.11%
s1494 100.00% 98.07% 1.97% 50.89% 50.80% 0.18%
styr 100.00% 98.95% 1.06% 60.19% 60.14% 0.08%
tma 100.00% 98.52% 1.50% 43.83% 43.83% 0.00%
train11 100.00% 98.17% 1.86% 33.55% 33.55% 0.00%

1.33%

Circuit SFCS SFC SOTR PFCS PFC BSOTR

average 2.60%

bbara 100.00 100.00 1768 100.00 100.00 17.69 97.25 100.00 111 48.13 10.42 0.61
beecount 100.00 100.00 6512 100.00 100.00 2.91 90.37 100.00 78 69.64 22.73 0.16
cse 100.00 100.00 40882 100.00 100.00 3554.81 85.50 100.00 222 8.45 1.70 3.13
dk14 100.00 100.00 817 100.00 100.00 98.47 98.14 100.00 90 83.93 17.19 1.69
dk16 100.00 100.00 742 100.00 100.00 4.80 98.77 100.00 240 93.52 46.76 0.61
dk17 100.00 100.00 292 100.00 100.00 0.88 97.54 100.00 57 78.13 35.16 0.09
ex1 100.00 100.00 235108 100.00 100.00 10271.51 97.54 100.00 393 3.82 0.49 9.70
ex3 100.00 100.00 178 100.00 100.00 1.05 96.46 100.00 69 65.00 52.50 0.11
ex4 100.00 100.00 3751 100.00 100.00 1.36 95.35 100.00 72 8.04 3.13 0.06
ex5 100.00 100.00 157 100.00 100.00 0.92 91.05 100.00 48 61.11 44.12 0.08
ex6 100.00 100.00 2173 100.00 100.00 4.98 97.73 100.00 111 41.02 9.64 0.02
keyb 100.00 100.00 73129 100.00 100.00 82254.95 73.54 100.00 162 4.93 0.68 20.44
lion9 100.00 100.00 151 100.00 100.00 0.13 96.80 100.00 54 75.00 36.76 0.08
opus 100.00 100.00 2734 100.00 100.00 1.14 91.33 100.00 84 20.94 7.50 0.08
planet 100.00 100.00 38188 100.00 100.00 21.55 99.84 100.00 408 6.64 2.76 0.33
pma 100.00 100.00 71116 100.00 100.00 146.51 95.85 100.00 405 6.20 1.58 0.53
s1 100.00 100.00 55873 100.00 100.00 575.17 98.13 100.00 468 9.14 1.71 2.77
s208 100.00 100.00 273289 100.00 100.00 62772.23 88.41 100.00 39 0.85 0.10 3.09
s298 100.00 100.00 46561 100.00 100.00 22542.83 98.55 100.00 3027 49.66 19.57 200.72
s386 100.00 100.00 29887 100.00 100.00 1044.27 94.09 100.00 141 8.05 1.72 1.01
s420 100.00 100.00 230272 100.00 100.00 37814.25 81.89 100.00 42 0.91 0.12 1.28
s1488 100.00 100.00 464593 100.00 100.00 37582.09 83.90 100.00 633 4.87 0.98 12.61
s1494 100.00 100.00 459265 100.00 100.00 62614.64 90.45 100.00 558 4.40 0.87 22.97
styr 100.00 100.00 281527 100.00 100.00 0.11 90.63 100.00 669 3.86 0.76 17.72
tma 100.00 100.00 23563 100.00 100.00 19.56 98.83 100.00 294 9.77 3.14 0.28
train11 100.00 100.00 190 100.00 100.00 0.16 99.31 100.00 60 77.27 36.81 0.08
average 100.00 100.00 90104.54 100.00 100.00 12359.58 93.36 100.00 328.27 32.43 13.80 11.55

CPUtime
(sec)

2STC(%)PSC(%) TL 1STC(%) 2STC(%)

2b2a
Circuit

CPUtime
(sec)

PSC(%) TL 1STC(%)SFC(%)SFC(%)

