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Abstract 

Scan testing is one of the most popular test 
methods for VLSIs. However, since scan testing is not 
based on the function of the circuit, but rather its 
structure, this method is considered to be a form of 
over testing or under testing. Hence, a yield loss of 
VLSIs, as well as outflow of defective VLSIs into the 
market, may occur. It is important to test VLSIs using 
the given function. Since the functional specifications 
are described explicitly in the FSMs, high test quality 
is expected by performing logical testing and timing 
testing. This paper proposes two test generation 
methods, a fault-independent two-pattern test 
generation method and a fault-dependent two-pattern 
test generation method, for timing testing in state-
observable FSMs in order to reduce the yield loss 
while improving the test quality over scan testing. 
The experimental results for MCNC'91 benchmark 
circuits show that the use of the proposed method is 
effective for the improvement of one-state transition 
coverage and two-state transition coverage. 
keywords: State-observable FSMs, Over testing, 
Fault-dependent/independent two-pattern test 
generation, Two-state transition coverage  

1. Introduction 
In recent years, Very Large Scale Integrated 

circuit (VLSI) testing has become increasingly 
important because the number of gates on VLSIs is 
rapidly increasing and their complexity is growing 
with advances in semiconductor technology. 
Currently, scan testing for the stuck-at fault model [1, 
2] is one of the most popular test methods for VLSIs. 
However, it has been reported that scan testing for 
the stuck-at fault model may not detect defective 
VLSIs [4], and delay testing [3] and at-speed 
functional testing can effectively improve test quality. 

As mentioned above, scan testing is currently the 
most popular test method. Scan testing is based on 
the structure of the circuit rather than its function. In 
scan testing, the states of the circuits are transferred 
to invalid states by shift operation during the testing 
in order to detect faults. This method is considered to 
be a form of over testing and a yield loss of VLSIs 
may occur. Scan testing also detects faults by the 
operation of a combinational circuit part, shifting-in, 
and shifting-out. Hence, faults are not detected by 
performing sequential operations of circuits. This 
testing is considered to be a form of under testing. 
Therefore, the test quality deteriorates, and outflow 
of defective VLSIs into the market may occur.  

VLSI design methodologies employing hardware 
description languages have recently been adopted to 
reduce VLSI design time. VLSIs are designed at the 
Register Transfer Level (RTL), and RTL circuits 
consist of a data path part and a controller part. The 
data path contains a hardware element (e.g., registers, 
multiplexers, and operational modules) and signal 
lines. The controller is represented by a finite state 
machine (FSM). A non-scan-based Design For 
Testability (DFT) method of data path parts is 
proposed in [5], whereas a non-scan-based DFT 
method for controller parts is proposed in [6]. At-
speed testing is easily applicable, and test patterns for 
a stuck-at fault model are completely generated by 
non-scan-based DFT methods. As mentioned above, 
if at-speed functional testing and/or delay testing are 
applied to VLSIs with a non-scan-based DFT, the test 
quality can be further improved. As for the FSM, 
which is the controller part of a RTL circuit, the 
circuit specification is described explicitly. Thus, it is 
expected that the test quality becomes high by 
performing a logical test and a timing test under the 
constraints of the circuit specifications. It was 
reported in [7] that state-observable and completely 
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specified FSMs are thoroughly logically tested by 
performing all of the state transitions. Thus, complete 
at-speed logical testing can be applied to FSMs 
having states that are made observable by performing 
all state transitions at-speed. Complete timing testing 
can be also applied by performing all pairs of state 
transitions at-speed. 

In [11], two test generation methods, a fault-
independent one-pattern test generation method and a 
fault-dependent one-pattern test generation method 
were proposed for logical testing in state-observable 
FSMs. One-state transition coverage [11] was also 
proposed as the measure of test quality for logical 
testing. The experimental results for MCNC’91 
benchmark circuits [9] show that the use of the 
method reduced the area while the one-state 
transition coverage was increased compared with the 
conventional non-scan test method [6] for state-
observable FSMs.  

This paper proposes two test generation methods, a 
fault-independent two-pattern test generation method 
and a fault-dependent two-pattern test generation 
method for state-observable FSMs in order to reduce 
the yield loss caused by over testing, while improving 
the test quality over that of scan testing. This paper 
also proposes two-state transition coverage as 
measure of test quality for timing testing. Two-state 
transition coverage is defined as the ratio of the 
number of state transition pairs executed by a test 
sequence to the total number of continuous state 
transition pairs.  

This paper is organized as follows. In Section 2, 
the definition of state-observable FSMs and a test 
method for state-observable are described. In Section 
3, the optimization problems for both fault-
independent two-pattern test and fault-dependent 
two-pattern test are formulated for state-observable 
FSMs, and their test generation methods are proposed. 
The proposed methods are applied to MCNC’91 
FSM benchmarks [9] in Section 4, and the 
experimental results are presented. Furthermore, the 
ratios of over testing for single stuck-at fault scan 
testing and path delay fault scan testing based on the 
broadside approach are evaluated. Finally, Section 5 
concludes the paper and discusses future research 
possibilities. 

 
 
 
 

2. State-observable FSMs 
(Definition 1: State-observable FSMs) 

When an initial state can be identified by 
observing an output sequence without being 
dependent on an input sequence, the FSM is said to 
be state-observable. More specifically, when an 
initial state can be identified by observing an output 
sequence of k length, the FSM is said to be k state-
observable. 

The DFT transformed an FSM to a one-state 
observable FSM by making the outputs of the status 
registers in the FSM observable. In this paper, a one-
state observable FSM is hereinafter referred to simply 
as a state-observable FSM. A synchronous sequential 
circuit is synthesized from the FSM by logic 
synthesis. Figure 1 shows the logic circuit model that 
corresponds to the FSM after logic synthesis. 
Because the pseudo primary inputs (PPI), which are 
the outputs of the status registers, are observable in 
this figure, the PPI connect with the primary output. 
Here, PI, PO, SR, PPI, PPO, and R denote the 
primary inputs, primary outputs, status registers, 
pseudo primary inputs (outputs of the status registers), 
pseudo primary outputs (inputs of the status registers), 
and a reset input, respectively.  

In the test for state-observable FSMs, the PI value 
is applied to a state-observable FSM, the state is then 
transferred from the current state to the next state, 
and the resulting PPI and PO values are observed. A 
series of these procedures is referred to as a test for 
state-observable FSMs.  

The FSM has a completely specified FSM [8], in 
which the next state and the output are specified for 
all of the inputs of each state, and an incompletely 
specified FSM [8], in which the next state and the 
output are not specified for all of the inputs of each 
state. In this paper, in the incompletely specified 
FSMs, state transitions that are not specified are 
assumed to be the same as either of the state 
transitions that are specified. 

 

 

 

 

 

Fig. 1 Logic model for a state-observable FSM 
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3. Two-Pattern Test Generation Method 
for State-observable FSMs 

Timing testing is performed to test any detectable 
fault models by a two-pattern test. An FSM timing 
test generation graph is defined as the model by 
which to generate a two-pattern test for timing testing 
in state-observable FSMs, and two-state transition 
coverage is proposed as the measure of test quality 
for timing testing. 

(Definition 2: FSM timing test generation graph) 
An FSM timing test generation graph is a 

directed graph G(V, E, s, d, t), where a vertex v ∈ V 
denotes a state transition. Each vertex has a label s: V 
→ A (A = {PPI1PPI2 … PPIm}, PPI1, PPI2, …, PPIm 
∈  {0, 1}, where m denotes the number of status 
registers), a label d: V → A (A = {PPI1PPI2…PPIm}, 
PPI1, PPI2, …, PPIm ∈ {0, 1}, and a label t: V → B 
(B = {PI1PI2 …PIn}, PI1, PI2, …, PIn∈ {0, 1}, where 
n denotes the number of primary inputs). The label s 
indicates the source state of the state transition, the 
label d indicates the destination state of the state 
transition, and the label t indicates input values for 
the state transition. For any vertices u, v ∈ V, an 
edge (u, v) ∈ E denotes that the destination state in u 
is the same as the source state in v. The edge (u, v) 
represents a continuous state transition pair. 
(Definition 3: Two-state transition coverage) 

Two-state transition coverage is defined as the 
ratio of the number of continuous state transition 
pairs executed by a test sequence to the total number 
of continuous state transition pairs. When continuous 
state transition pairs are executed by a test sequence, 
the continuous state transition pairs are said to be 
covered by the test sequence. In this paper, only 
continuous state transition pairs specified in an FSM 
are used to calculate the two-state transition coverage. 
Two-state transition coverage is used as the measure 
of the test quality for timing testing. 

3.1 Fault-independent Test Generation 
Method for Timing Testing 

The following problem is formulated for a fault-
independent test generation method of timing testing 
for state-observable FSMs.  

(Formulation 2a) 
Input: a state-observable FSM. 

Output: a test sequence such that the two-state 
transition coverage is 100%. (All continuous state 
transition pairs in the FSM are performed.) 
Optimization: minimization of the test length. 

The test generation for Formulation 2a does not 
use ATPG for a specific fault model. An FSM timing 
test generation graph is generated from the state-
observable FSM and searches the path such that all of 
the edges are traversed at least once. If the path 
length is minimized, then the test length is also 
minimized. This test sequence can perform a timing 
test on a state-observable FSM completely. 

3.2 Fault-dependent Test Generation Method 
for Timing Testing 

In this paper, a non-robust testable path delay fault 
model is considered as a representative of detectable 
fault models by timing testing. A non-robust testable 
path delay fault model is hereinafter referred to 
simply as a path delay fault. The following problem 
is formulated for a test generation method of path 
delay faults for state-observable FSMs.  

(Definition 4: Detectable path delay faults on the 
transition between valid states) 

The transition between valid states refers to 
performing state transitions between valid states in 
state-observable FSMs. After a transition between 
valid states, path delay faults detected by performing 
a continuous state transition are defined as detectable 
delay faults on the transition between valid states. 

(Formulation 2b) 
Input:  
- a state-observable FSM. 
- a two-pattern test set that can detect all 

detectable path delay faults on the transition 
between valid states. 

Output: a test sequence for a state-observable 
FSM such that all detectable path delay faults on 
the transition between valid states are detected. 

Optimization: minimization of the test length. 
 

 

 

 

 

Fig. 2 Example of an FSM (three states) 
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Fig. 3 FSM timing test generation graph for path 
delay fault testing 

After logic synthesis, a time expansion model [10] 
for two time frames is generated from a synthesized 
sequential circuit. The valid states are assigned to the 
PPI values as constraints. A constrained ATPG for 
path delay faults is performed for the time expansion 
model, and a two-pattern test set is generated. An 
FSM timing test generation graph is then generated 
and two-pattern tests are assigned to the 
corresponding edges of an FSM timing test 
generation graph. Finally, paths are searched on the 
FSM timing test generation graph such that all of the 
edges where two-pattern tests are assigned are 
traversed at least once. If the path length is 
minimized, then the test length is also minimized.  

Example: Figure 3 shows an FSM timing test 
generation graph that is generated from the state-
observable FSM shown in Fig. 2 and a two-pattern 
test set, which can detect all detectable path delay 
faults on the transition between valid states for a time 
expansion model with two time frames. The state 00 
is assigned to S0, the state 01 is assigned to S1, and 
the state 10 is assigned to S2. Each two-pattern test is 
assigned to the corresponding edge in this graph. For 
example, t5t6 is assigned to the edge that represents 
the continuous state transition pair, which is the state 
transition from the valid state 01 through the input 
value 0 to the valid state 00, and the state transition 
from the valid state 00 through the input value 1 to 
the valid state 10. When the test sequence (0, 0, 1, 0, 
1, 1) is applied to the FSM shown in Fig. 2 on the 
current state S0 (reset state), the five state transition 
pairs are covered in the FSM timing test generation 
graph shown in Fig.3. Thus, the two-state transition 
coverage is 41.7% (5/12). 

4. Experimental Results 
The test generation methods for Formulations 2a 

and 2b were implemented and were applied to 
MCNC’91 benchmark circuits [9].  

The platform used for the experiments is as 
follows: 

CPU: Pentium 4 
Frequency: 3 GHz 
Memory: 2 Gbytes 

The characteristics of MCNC’91 benchmark 
circuits are shown in Table 1. In this figure, Circuit, 
#Node, #PI, #PO, #Reg, #Edge, and Area denote the 
circuit name of the FSM, the number of states, the 
number of primary inputs, the number of primary 
outputs, the number of status registers, the number of 
state transitions, and the area of synthesized 
sequential circuit that was calculated based on the 
standard library for logic synthesis, respectively. In 
these experiments, the FSMs were made state-
observable by DFT, and two test generations were 
performed for state-observable FSMs. The logic 
syntheses for the FSMs were performed using a 
Synopsys Design Compiler® and the test generations 
for the combinational circuit part were performed 
using Synopsys TetraMax®. 

Table 2 shows the experimental results of the test 
generation methods for timing testing proposed in 
this paper. In Table 2, 2a denotes the fault-
independent test generation method for timing testing, 
and 2b denotes the fault-dependent test generation 
method for timing testing. In Tables 2, Circuit, TL, 
SFC, 1STC, PSC, 2STC, and CPU time denote the 
circuit name of the FSM, the test length, the fault 
coverage of detectable stuck-at faults on valid states, 
the one-state transition coverage, the fault coverage 
of detectable path delay faults on transition between 
valid states, two-state transition coverage, and the 
time for the test generation, respectively. 

For 2a, since both the one-state transition coverage 
and the two-state transition coverage are 100%, the 
logical fault model including stuck-at faults and the 
timing fault model including path delay faults can be 
completely tested. 2a is applicable to FSMs that have 
less than 1,000 state transitions with reasonable CPU 
time and test length (maximum: 6,512). However, the 
test lengths for FSMs that have many state transitions 
drastically increase. For 2b, the one-state transition 
coverage was higher than that for stuck-at fault 
dependent test generation shown in [11]. In this paper, 
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this stuck-at fault test generation is said to 1b. 
However, the fault coverage for detectable stuck-at 
faults on valid states was an average of 93.7% of that 
for 1b. 2b could not completely test stuck-at faults, 
and the two-state transition coverage was an average 
of 63.6% higher than for 1b.  

Table 3 shows the experimental results for 
evaluation of the ratios of over testing for stuck-at 
fault scan testing and path delay fault scan testing 
based on the broadside approach. In Table 3, Circuit 
denotes the circuit name of the FSM, SFCS denotes 
the fault coverage of stuck-at fault scan testing, SFC 
denotes the stuck-at fault coverage by 1b, SOTR 
denotes the ratios of over testing for stuck-at fault 
scan testing, PFCS denotes the fault coverage of path 
delay fault scan testing based on the broadside 
approach, PFC denotes the path delay fault coverage 
by 2b, and BSOTR denotes the ratios of over testing 
for path delay fault scan testing based on the 
broadside approach. SOTR and BSOTR are 
expressed by the following equations:  

)1.....((%)
SFC

SFCSFCSSOTR −
=  

)2.....((%)
PFC

PFCPFCSBSOTR −
=  

 Table 3 shows that the average faults of 2.6% are 
over tested on stuck-at fault scan testing. In particular, 
stuck-at faults of 5% to 8% are over tested for ex3, 
ex5, s208, and s420. The number of one-pattern tests 
for the combinational circuit part is increased by 16% 
to 26%. In addition, Table 3 shows that the average 
faults of 1.3% are over tested on path delay fault 
testing based on the broadside approach. In particular, 
path delay faults of 6% to 8% are over-tested for 
keyb, opus, and s386. The number of two-pattern 
tests for a combinational circuit part increased by 
14% to 37%. 

5. Conclusion 
This paper proposed both a fault-independent two-

pattern test generation method and a fault-dependent 
two-pattern test generation method for state 
observable FSMs. This paper also proposed two-state 
transition coverage as the measure of test quality for 
timing testing. The quality and cost of timing testing 
for proposed test generation methods was evaluated 
for MCNC’91 benchmark circuits. Moreover, the 
ratios of over testing for stuck-at and path delay scan 
testing were evaluated.  

Future studies will include an analysis of the 
relationship among one(two)-state transition 
coverage, fault coverage for various fault models, 
and a one(two)-pattern test set, and the proposal of a 
test generation method to maximize one(two)-state 
transition coverage under constraints such as test 
length and fault models, which must perform a 
complete test. 
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Table 1 FSM benchmark characteristics 
 
 

Table 3 Experimental results of the over testing 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 2 Experimental results of the test generation methods for timing testing 
 

bbara 10 4 2 4 160 163
beecount 7 3 4 3 56 226
cse 16 7 7 4 2048 394
dk14 7 3 5 3 56 191
dk16 27 3 3 5 108 455
dk17 8 2 3 3 32 134
ex1 20 9 19 5 10240 728
ex3 10 2 2 4 40 142
ex4 14 6 9 4 896 297
ex5 9 2 2 4 36 132
ex6 8 5 8 3 256 314
keyb 19 7 2 5 2432 332
lion9 9 2 1 4 36 216
opus 10 5 6 4 320 200
planet 48 7 19 6 6144 602
pma 24 8 8 5 6144 689
s1 20 8 6 5 5120 606
s208 18 8 2 5 4608 246
s298 218 3 6 8 1744 4305
s386 13 7 7 4 1664 290
s420 18 8 2 5 4608 249
s1488 48 8 19 6 12288 1062
s1494 48 8 19 6 1288 1019
styr 30 9 10 5 15360 685
tma 20 7 6 5 2560 526
train11 11 2 1 4 44 251

Circuit #Node #PI #PO #Reg #Edge Area

bbara 100.00% 98.28% 1.75% 80.81% 80.81% 0.00%
beecount 100.00% 98.31% 1.72% 71.70% 70.28% 2.02%
cse 100.00% 100.00% 0.00% 39.84% 39.84% 0.00%
dk14 100.00% 98.95% 1.06% 80.38% 78.48% 2.42%
dk16 100.00% 98.12% 1.92% 65.00% 64.75% 0.39%
dk17 100.00% 100.00% 0.00% 79.21% 79.21% 0.00%
ex1 100.00% 99.18% 0.83% 55.84% 55.84% 0.00%
ex3 100.00% 94.96% 5.31% 53.16% 53.16% 0.00%
ex4 100.00% 98.07% 1.97% 52.25% 52.25% 0.00%
ex5 100.00% 94.95% 5.32% 69.86% 69.86% 0.00%
ex6 100.00% 100.00% 0.00% 68.64% 68.64% 0.00%
keyb 100.00% 96.78% 3.33% 55.61% 51.36% 8.27%
lion9 100.00% 95.30% 4.93% 59.71% 58.27% 2.47%
opus 100.00% 96.14% 4.01% 73.33% 69.05% 6.20%
planet 100.00% 97.70% 2.35% 54.54% 53.59% 1.77%
pma 100.00% 98.81% 1.20% 29.69% 29.69% 0.00%
s1 100.00% 97.67% 2.39% 71.23% 71.23% 0.00%
s208 100.00% 91.95% 8.75% 39.33% 39.33% 0.00%
s298 100.00% 99.18% 0.83% 57.58% 56.80% 1.37%
s386 100.00% 97.31% 2.76% 67.54% 62.31% 8.39%
s420 100.00% 91.95% 8.75% 33.71% 33.71% 0.00%
s1488 100.00% 97.96% 2.08% 53.03% 52.45% 1.11%
s1494 100.00% 98.07% 1.97% 50.89% 50.80% 0.18%
styr 100.00% 98.95% 1.06% 60.19% 60.14% 0.08%
tma 100.00% 98.52% 1.50% 43.83% 43.83% 0.00%
train11 100.00% 98.17% 1.86% 33.55% 33.55% 0.00%

1.33%

Circuit SFCS SFC SOTR PFCS PFC BSOTR

average 2.60%

bbara 100.00 100.00 1768 100.00 100.00 17.69 97.25 100.00 111 48.13 10.42 0.61
beecount 100.00 100.00 6512 100.00 100.00 2.91 90.37 100.00 78 69.64 22.73 0.16
cse 100.00 100.00 40882 100.00 100.00 3554.81 85.50 100.00 222 8.45 1.70 3.13
dk14 100.00 100.00 817 100.00 100.00 98.47 98.14 100.00 90 83.93 17.19 1.69
dk16 100.00 100.00 742 100.00 100.00 4.80 98.77 100.00 240 93.52 46.76 0.61
dk17 100.00 100.00 292 100.00 100.00 0.88 97.54 100.00 57 78.13 35.16 0.09
ex1 100.00 100.00 235108 100.00 100.00 10271.51 97.54 100.00 393 3.82 0.49 9.70
ex3 100.00 100.00 178 100.00 100.00 1.05 96.46 100.00 69 65.00 52.50 0.11
ex4 100.00 100.00 3751 100.00 100.00 1.36 95.35 100.00 72 8.04 3.13 0.06
ex5 100.00 100.00 157 100.00 100.00 0.92 91.05 100.00 48 61.11 44.12 0.08
ex6 100.00 100.00 2173 100.00 100.00 4.98 97.73 100.00 111 41.02 9.64 0.02
keyb 100.00 100.00 73129 100.00 100.00 82254.95 73.54 100.00 162 4.93 0.68 20.44
lion9 100.00 100.00 151 100.00 100.00 0.13 96.80 100.00 54 75.00 36.76 0.08
opus 100.00 100.00 2734 100.00 100.00 1.14 91.33 100.00 84 20.94 7.50 0.08
planet 100.00 100.00 38188 100.00 100.00 21.55 99.84 100.00 408 6.64 2.76 0.33
pma 100.00 100.00 71116 100.00 100.00 146.51 95.85 100.00 405 6.20 1.58 0.53
s1 100.00 100.00 55873 100.00 100.00 575.17 98.13 100.00 468 9.14 1.71 2.77
s208 100.00 100.00 273289 100.00 100.00 62772.23 88.41 100.00 39 0.85 0.10 3.09
s298 100.00 100.00 46561 100.00 100.00 22542.83 98.55 100.00 3027 49.66 19.57 200.72
s386 100.00 100.00 29887 100.00 100.00 1044.27 94.09 100.00 141 8.05 1.72 1.01
s420 100.00 100.00 230272 100.00 100.00 37814.25 81.89 100.00 42 0.91 0.12 1.28
s1488 100.00 100.00 464593 100.00 100.00 37582.09 83.90 100.00 633 4.87 0.98 12.61
s1494 100.00 100.00 459265 100.00 100.00 62614.64 90.45 100.00 558 4.40 0.87 22.97
styr 100.00 100.00 281527 100.00 100.00 0.11 90.63 100.00 669 3.86 0.76 17.72
tma 100.00 100.00 23563 100.00 100.00 19.56 98.83 100.00 294 9.77 3.14 0.28
train11 100.00 100.00 190 100.00 100.00 0.16 99.31 100.00 60 77.27 36.81 0.08
average 100.00 100.00 90104.54 100.00 100.00 12359.58 93.36 100.00 328.27 32.43 13.80 11.55

CPUtime
(sec)

2STC(%)PSC(%) TL 1STC(%) 2STC(%)

2b2a
Circuit

CPUtime
(sec)

PSC(%) TL 1STC(%)SFC(%)SFC(%)


