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Abstract

In this paper, the computational complexity of fault
detection problems and various controllability and
observability problems for combinational logic circuits are
analyzed. It is shown that the fault detection problem is still
NP-complete even for monotone circuits limited in fanout,
i.e., the number of signal lines which fanouts from a signal
line is limited to three. It is also shown that the observability
problem for unate circuits is NP-complete, but that the
controllability problem for unate circuits can be solved m time
complexity O(m), where m is the number of lings in a circuit,
Furthermore, two classes of circuits, called k-binate-bounded
circuits and k-bounded circuits, are introduced. For k-binate-
bounded circuits the controllability problem is solvable in
polynomial time, and for k-bounded circuits the fault detection
problem is solvable in polynomial time, when k < log p(m) for
some polynomial pim). The class of k-bounded circuits
includes many practical circuits such as decoders, adders, one-
dimensional cellular arrays, rwo-dimensional cellular arrays,
ekc.

L. Introduction

Testing has two main stages: the generation of tests
for a given eircuit and the application of these tests to the
circuit. Hence, the complexity of westing can be classified into
the complexity of test generztion and the complexity of test
application. The computational complexity of the algorithms
used 10 generaté a testis used to estimate the complexity of west
peneration. The size of a test set ar the length of a test
sequence is adopred as a measure of the complexity of test
application [1][2]. In this paper, we are concerned with the
complexity of test generation.

It is well known that major fault-detection problems are
NP-complete in general [3], and that they are still NP-complete
even for monotone circuits without negated gates such as
NOT, NOR, and NAND [4]. It is apparent that the fauli-
detection problem for reconvergeni-free circuits can be solved
in O{m), where m is the number of signal lines. On the other
hand, for the circuits with reconvergent fanouts, backiracking
may occur during test generation. This backtracking due o
reconvergency becomes a cause of NP-completeness. To
clarify the relation between reconvergency and NP-
completeness, we consider in this paper the fault-detection
problem for circuits with a stringent condition on fanout of
reconvergent paths. The fault detection problem is proved o
be still NP-complete even for monotone circuits limited in
fanout, i.e., the number of signal lines which fanouts from a
signal line is limited to three. This means that even if we limit
the number of reconvergent paths from a fanout point to three,
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the fault-detection problem is NP-complete. However, if we
limit the total number of fanout points to a constant, then the
fault-detection problem can be solved in linear time [4].
Therefore, we see that the main cause of NP-completeness is
not the number of reconvergent paths from a fanout point but
the number of fanout points which reconverge.

Fault detection problem for combinational circuits can
be divided into two subproblems, controllability and
observability problems. The centrollability problem is to
decide whether there exists an input pattern which produces a
specified logical value on a given signal ling in the circuit, The
observability problem is to decide whether there exists an input
pattern which propagates the logical value on a specified signal
line to a primary output of the circuit. In this paper, we show
that the observability problem for unate circuits is NP-
complete, but that the controllability problem for unate circuits
can be solved in time complexity O{m), where m is the number
of lines in a circuit.  Furthermore, we introduce a class of
circuits called k-binawe-bounded circuits, for which the
controllability problem is solvable in polynomial time when k
< log p(m), where p(m) is a polynomial in m. After analyzing
the complexity of various problems, we present a class of
logic circuits for which these fault detection problems are
solvable in polynomial time. One-dimensional arrays like
ripple-carry adders, two- dimensional arrays, decoder circuits,
etc., belong to this class,

IL. Various Satisfiability Problems

In this section, we clarify the computational complexity
of several satisfiability problems for various classes of
Boolean expressions, The analysis of satisfiability problems
15 amportant 0 know the complexity of fault-detecticn,
controllability and observability problems since they are
closely related with cach other. We give some notations and
definitions necessary for our discussion of satisfiability
problems. For definitions of NF-completeness see [5],

A literal is either x or x' for some variable x, where
x denotes a complement of x, and a clause is a sum of literals,
A Boolean expression is said to be in conjunctive normal form
(CNF) if it is a product of clauses. A Boolean expression is
satisfiable if and only if there exists some assignment of (s
and 1's to the variables that gives the expression the value 1,
Then the satisfiability problem is specified as follows:

Satisfiability (SAT, for short): Is a Boolean
expression satisfiable?

Theorem 1 (Cook's Theorem [6]): SAT is NP-
complete.

. An expression is said to be cleuse-monotone if each of
its clauses contains either only negated varizbles or only
unnegated variables, For example, (xpExal(x'a+x'q) is




clause-monotone, but (x)+x9)(x3+x’3) is not. The

satisfiability for clause-monotone expressions (CM-SAT, for
short) is to be NP-complete,
heorem 2 [4]: CM-SAT is NP-complate.

An expression is said to be monotone if it contains
only un-negated variables. An expression is said to be unate if
each variable is either only negated or ony un-negated. A
negated (un-negated) variable in a unate expression is called 1o
be negative (positive) unate.

Theorem 3 [4]: SAT for unate expressions is solvable
in time complexity O(e), where e is the length of an
expression,

An expression is said to be in k-confunctive normal
farm (k-CNF) if it is 2 product of sums of at most k lirerals,
The k-satisfiability problem (k-SAT) is to determine whether
an expression in k-CNF is satisfiable. For k=1 or 2 there exist
polynomial algorithms to test k-5AT. However, 3-SAT is
known to be NP-complete.

Theoremd [6): 2-SAT is solvable in polynomial time,
but 3-SAT is NP-complete. ;

This k-S5AT problem is related to the fauli-detection
problem for circuits limited in fanin, i.e., the number of inputs
which fanin to a gate is limited to value k. Similarly, we can
define another k-SAT problem that is related to the faul-
detection problem for circuits limited in fanout, i.c., the
number mP signal lines which fanout from a signal line is
limited to value k. An expression is said to be k-fanout-
conjunctive normal form (kF-CNF) if it is a product of sums
such that each variable appears at most k times. For example,
(xq+xg)(x'y+x3)(x}+x'9) is 2-CNF but iF-CNF, since
variable xy (x] and x'|) appears three times. The k-fanout-
satisfiability problem (kF-SAT, for short) is to determine

whether an expression in kF-CNF is satisfiable. Before
showing that this SAT problem for kF-CNF is NP-complete,
we present two lemmas.

Lemma I: x|=x3=..=Xqn,=y'|=¥'9=..=Fq if and
only if (x]+¥1)(Xa+¥2).. (X +y ) (X1 +¥'2) (X 24¥3)...
(X q+y' =L

Lemma 2: Given a CNF of a Boolean expression F
where literals x and x° appear p and g times, respectively.
Suppose we inroduce new 2m variables, X, X9, ..., X ¥
¥9uees ¥pyye Where m=max(p, q}, and replace p variables of x
by xqs %70 o %p and q variables of x' by ¥{, ¥7...., Yq- Let
the replaced expression be F*. Then, F is satisfiable if and
only if F¥ is satisfiable, where F¥ = F’{(E]+y1][12+}'2}
(R H Y IO HY X Y g ) (X YD)

Lemma 2 can be proved by using Lemma 1. From the
above lemmas, we can prove that SAT for Boolean
expressions that are kF-CNF (k > 3) and clause-monotone
(CM-kF-SAT, for short) is NP—mFu%l;tc as follows.

Theorem 5: CM-3F-SAT is NP-complete.

Proof: It is easy to see that CM-3F-SAT and 3F-SAT
are both in class NP. We transform SAT 1o CM-3F-SAT.
Given a CNF of a Boolean expression F. Let F¥ be the
Boolean expression derived from F by applying the operation
of Lemma 2. Tt is obvious that F¥ is clause-monotone and
each variable appears at most three times. From Lemma 2, F
is satisfiable if and only if F¥ is satsfiable, The transform
operation of Lemma 2 can be performed in polynomial time of
the size of F. Thercfore, SAT is polynomially transformable
to CM-3F-5AT. Q.ED,

From this theorem, we have the following corollary.

Corollary 1: 3FE-SAT is NP-complete.
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Theorem 6: 2F-SAT is solvable in time complexity
D(nzj where n is the number of input variables.

Proof. Let F be a 2F-CNF. For each variable x of F,
there are two cases; (1) only literal x appears, and (2) both
literal x and x' appear. For each case we delete x and x' from
F by applying the following operation.

(1} When only literal x appears, F can be expressed as

F=(x+plix+qir  or F = (x+p)r
where p and g are sums without x and r is a product of sums
without x. Then, by deleting (x+p) and (x4q), we have F =
r. Considering the assignment of x=1, we can see that F is
satisfiable if and only if F* is satisfiable.

(2) When both literals x and x° appear, F can be
expressed as

F = (x4pix'+qr .
where p and q are sums without x and r is a product of sums
without x. Then, by deleting x and x', we have F = {p+qhr.
Obviously, F is satisfiable if and only if F* is satisfiable.

By appl:,-ing the above operation for each variable, we
can determine whether F is satisfiable or not. The time
complexity of this procedure is O({mn) where m is the size of
the Boolean expression and n is the number of input variables.
Since m is less than 2n, we have Olnzj. Q.ED.

Corollary 2: CM-2F-SAT is solvable in time
complexity O(n?) where n is the number of input variables.

An expression is said to be hinate with respect to a
variable x if both x and x' are contained in it, and the variable
x is said to be binagte. An expression is said to be k-binate if it
contains k binate variables.

Theorem 7: SAT for k-binate expressions is solvable
in time complexity O(2Km) where m is the size of the
expression. Therefore, if k < logyp(m), where p(m) is a
polynomial in m, the SAT is solvable in polynomial time such
as O(p(m).m).

Proof: Let F{xj, X9, o X Xpa s oo Xp) be a k-
binate expression. Without loss of generality, we assume that
x|+ %3, ..., X arc binate and x|, .., x;; are unate. For
unate variables, let (ay ., .., a,) be an assignment such that
;=0 if x; is negative unate and a;=1 if x; is positive unate.
Then F(xy, X3, o X X410 o Xp) is satisfiable if and only
if B(Xj. X2 v Xk, Bga]s - a8y is satisfiable. To check if
Fxy, X9 o K Blg]s v ap) is satisfiable or not, consider
all the combinations of values 0 and 1 on all k binate variables,
This computation can be performed in O(2¥m) time.

QED.

IIl. Fault Detection Problem

Fault detection problem can be defined as follows:
ik ;;-:;It Dela‘::;mn {EED, for st_u;:r:}: Is there any input-
m which can detect a single stuck-
o [ at fault f in a

Theorem & [3]: FD is NP-complete.

A combinational circuit is said to be monrorone if it
consists of only unnegated gates such as AND or OR. A
combinational circuit is said to be unare if the number of
negated gates (NOT, NAND, or NOR) in any path connecting
two points in the circuit has the same parity (odd or even), FD
is known to be NP-complete even for monotone or unate
circuits [4].



Theorem 9 [4]: FD for monotone or unate circuits is
NP-complete.

It is apparent that the fault-detection problem for
TeCOnvergent- circuits can be solved in O{m), where m is
the number of signal lines. On the other hand, for the circuits
with reconvergent fanouts, backiracking may occur during test
generation. This backtracking due 1o reconvergency becomes
a cause of NP-completeness. To clarify the relation between
reconvergency and NP-completeness, we consider here the
fault-detection problem for monotone circuits limited in fanout,
A combinational eircuit is called 1o be k-fanour-limited if the
number of signal lines which fanouts from a signal line is at
most k. Consider the fault-detection problem for monotone
and k-fanout-limited circuits (M-kF-FD, for shor).

Theorem I0): M-3F-FD is NP-complete.

Proaf: Obvicusly, M-3F-FD is in class NP. Hence, it
is sufficient to show that some NP-complete problem is
polynomially transformable 1o M-3F-FD. We transform here
CM-3F-5AT o0 M-3F-FD since CM-3F-SAT is shown to be
NP- lete by Theorem 3.

iven any ¢lause-monotone CNF F in which each
variable appears at most three times. Without loss of
generality, we assume that Cy, C3, ..., CP are the clauses

with unnegated variables and Cg, 4, CJ”E’ wy Cg are the
clauses with negated variables. For this expression F, we
construct a 3-level monotone circuit as shown in Figure 1,

(1) Construct OR gates O}, Oy, ..., OP cormesponding
to the clauses Cy, Cy, ..., C;; 5o that each OR gate O, has the
input variables of C;. For example, suppose a clause
Ci=x+y+z, then the input of O is x+y+z.

(2} Construct AND gates Aj, Ag, ... A
corresponding to the clauses Cp iy, G2, ., Cg 50 that eac
AND gate Aj has the input variables of C;. For example,
suppose a clause Ci=x'+y', then the input of Aj i% Ky,

Since each input variable appears at most three times in
F, in this circuit of Figure 1, the number of signal lines which
fanouts from a primary input is limited to three. Hence the
circuit of Figure 1 is monotone and 3-fanout-limited. A stuck-
at-0 fault at input line xg is detectable if and only if there exists
a test such that all the outputs of OR gates Oy, O, ..., GF‘ are

| and all the outputs of AND gates Aj, As, .., Aq_ are 0.
Hence the fault xq stuck-at-0 is detectable if and 4:::11];r if the

given expression F is satisfiable.

The above construction of the circuit can be carried out
in an amount of time linear in the number of inputs,
Therefore, CM-3F-SAT is polynomially ransformahle 1o M-
3F-FD. 0.ED.

From Theorem 10, we can see that the fault detection
problem is still NP-complete even for monotone circuits with a
restriction such that each signal line fanouts to at most three
signal lines. This means that even if we limit the maximum
number of reconvergent paths from a fanout point to three, the
fault-detection problem is NP-complete. However, it is
proved in [4] that if we limit the total number of fanout points
to 4 constant, then the fault-detection problem can be solved in
linear ime. Therefore, we can see that the main cause of NP-
completeness is not the number of reconvergent paths from a
fanout point but the total number of fanowt points which
TeConverge.

Figure 1. 3-level unate circuit

IV. Controllability/Observability Problems

The process of test generation consists of the tasks of
controlling and observing internal logic walues.
Representatives of controlling and observing tasks in test
generation are the consistency and D-drive operations of the D-
algorithm, respectively [1]. Hence, fault detection problem for
combinational circuits can be divided into two subproblems;
controllability and observability problems. The controllability
problem is to decide whether there exists an input pattern
which produces a specified logical value on a given signal line
in the circuit. The observability problem is to decide whether
there exists an input pattern which propagates the logical value
on a specified signal line to a primary output of the circuit. In
this section, we analyze the complexity of those controllability
and observability problems.

Controllability Problem (CT, for short): Let C, 5, and

o be a circuit, a signal line in C, and a Iogical walue,
respectively. Is there any input pattern which produces value
oon line 5 in C7

Observability Problem (OB, for short): s there any

input pattern which propagates the logical value o on line s o a
primary output of C?
Lemyma 3:
(1) SAT is polynomially transformable to CT,
(2) CT is polynomially transformable 1o OB, and
(3) OB is polynomially transformable to FD.
Theorem 11: Both CT and OB for k-level (k > 2)
combinational circuits are NP-complete.
Proaf:  Obvious from Lemma 3 and Thmrmé 1.
E.D.



From this theorem, FD, CT, and OB are all NP-
complete for general circuits, and hence all those problems
seem 1o be equally hard. However, if we consider a class of
unate circuits, we can s¢e that FD and OB are hander than CT.

Theorem 12; CT for k-level (k > 2) unate circuits
(kU-CT, for short) is solvable in time complexity O{m), where
m is the number of lines.

Proof: Consider CT of producing logical value o on
signal ling 5. Since the circuir is unate, the parity of paths
from s to a primary input x is determined uniquely. When the
parity is even (odd), assign x=0 (x=0"), By assigning like

this for all primary inputs, signal line s can be set to G.
O.ED,

Theorem 13: OB for 2-level unate circuits (2U-0B,
for short) is solvable in time complexity Dl{mzj. Howewer,
OB for k-level (k = 3) unate circuits (kU-0OB, for short) 15 NP-
complete.

Proaf: From Lemma 3, OB is polynomially
transformable o FD. It is known that FD for 2-level unare
circuits is solvable in time G{mzj where m is the number of
lines. Hence, 2U-OB is solvable in time Gliml}.

Mext, in order to prove that 3U-OB is NP-complete,

we transform CM-SAT to 3U-0OB. Given any clause-
monotone CNF F in which each variable appears at most three
times. Without loss of gencrality, we assume that Cy, Cs, ...,

C]:I are the clauses with unnegated variables and Cp...l, Cp+21
Cq are the clauses with negated variables. For this
expression F, we construct a 3-level monotone circuit of
Figure 1 in the same way as the proof of Theorem 10.

The logical value of input line xq is observable at the
primary cutput if and only if there exists an input pattern such
that all the outputs of OR gates O, 05, ..., -‘.}p are 1 and all
the outputs of AND gates Aq, Aj, .., Ay , are 0. Hence
The logical value of input line xg is Dbnsmaqbl?: at the primary
cutput if and only if the given expression F is satisfiable,

The above construction of the circuit can be camried out
in an amount of time linear in the number of inputs.
Therefore, CM-3F-5AT is polynomially u-ansfngnijablc to 3U-

FD. Q.ED.

From Theorems 12 and 13, we see that OB is a harder
problem than CT. On the other hand, improvement of
observability can be achieved more easily than that of
controllability. In other word, generally speaking, extra
hardware for improving controllability is more expensive than
that of observability, Hence, in a view point of design for
testability, design methodologies for improwving controllability
might important than that of observability,

A circuit is said to be k-binate-bounded if it can be
changed into a unate circuit I:?' cutting at most k signal lines.

Theorem 14: CT for k-binate-bounded circuits is
solvable in time D[ﬂkm], where m is the number of lines in the
circuit. Therefore, if k < logop(m), then this controllability
problem can be selved in dme O(p({m)m).

Froof: Let C be a k-binate-bounded circuit. By cutting
signal lines B+ 54 oy B C 15 changed into a unate circuit.
Assign a value 0 or 1 1o every cutted lines. The number of
possible assignments for this is 2K. For each assignment,
perform forward and backward implications, i.e., determine
all the line values that are implied unigquely by other line
values. After the implications, the remaining circuit becomes a
unate circuit. Hence we can easily solve CT for the remaining
unate circuit in time O(m) from Theorem 12. The above
computation requires at most O(2%m) time. Q.E.D.
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V. Polynomial Time Class

In this section we inroduce a class of circuits for
which the fault detection problem can be solved in polynomial
time of the number of lines in the circuits. One-dimensional
cellular arrays like ripple-carry adders, two-dimensional
cellular arrays, decoder circuits, etc., belong to this class.

Consider a partition I1 = [Cy, Cy, ....C;] of a circuit
C, where Cy, Cy, ...,C, are sub-circuits of C, called blocks,

and satisfy Cian=¢ and C=CjUC,yU..UC,. Consider a

graph Gpj with respect to Il such that each vertex represents a
block and each edge corresponds to each connection line
berween blocks.

A combinational circuit C is said to be k-bounded if
there exists a partition I1 = {Cy, Cs, ...,C} of C such that:

(1) the number of inputs of each block C; (1 =i =t) is
at most k, and

{2) graph Gy has no cycle,

A combinational circuit C is said to be (kj, k3)-
bounded if it can be changed into a ky-bounded circuit by
cutting at most ko lines in C.

Example I: Figure 2 shows a p stage adder. Suppose
a partition such that each block corresponds to a full adder,
then we see that the adder is 3-bounded.

Example 2;: Consider a two-dimensional cellular armay
shown in Figure 3. Let Ny and N, be the numbers of

horizontal and wvertical inputs of each cell, respectively.
Suppose a pamtition such that each block corresponds to a set
of k cells of each column, then we see that the array is
{Npk+N, )-bounded.

Example 3: Consider a two-dimensional cellular array
shown in Figure 4. This array is augmented from the array of
Figure 3 by adding skew lines. Let N be the number of skew
lines of each cell, Suppose a partition such that each block
corresponds to a set of k cells of each column, then we see that
the array is (Npk+Nk-N+N j-bounded.

For k-bounded circuits we have the following theorem.

Theorem 15: Let C be a k-bounded circuit. Then there
is an algorithm of time complexity O(16¥m) to find a test for a
single stuck-at fault in C, where m is the number of lines in C.

Proaf: Let C be a k-bounded circuit. Let IT= {T,
Cq, ...yl be a partition of C. Without loss of generality, we
can assume that each primary output constitutes one hlock
individually. They are called primary ouiput blocks.

Our test generation procedure consists of two main
parts. The first is to construct a graph G from C defined
later. The second is to find a sub-tree corresponding to a test
of a given fault in the graph G. Five-valued logic (1, 0, X,
D, D) similar to the D-algorithm is used in our procedure,

(1) Construction of graph G.

Step 1: Foreach block C; (1 =i <t), construct vertices
of G as follows: Consider all the combinations of values 0,
I, D, D' on all inputs of C;, and for each input assignment
compute the values of internal lines of C;. If any

inconsistency occurs in the computation, then reject the
assignment. Note that the value D or [¥ on any predecessor
line of a faulty line L is an inconsistency. Let us represent
each of these assignments by a vertex in G



Step 2: For each pair of adjacent blocks C; and C; of
C, construct edges of G as follows: Let sy, 52, s be the
lines connected between Cj and Cj. Fora vertex u of C; and a
vertex v of Cj, if the values of 5, 53, .... sg on u and v are
the same, then place an edge between u and v.

Step 3: If there is a vertex v in G satisfying the
following condition, then delete the vertex v and the edges
connected to v,

Condition: Let v be a vertex of C;. There is no edge
between C; and its adjacent block C;.

(2) Construction of a test from graph G.

Let Cy be a block with a fault. A test is an input
assignment such that every assignment between blocks is
consistent and there is at least one sensitized path from Cgtoa
primary output. Hence we can easily see that a test
comesponds to a subtree T in G sarisfying the following:

(a) T contains one vertex for each block C; (1 2i 1),

(b} T contains faulty signal D or D' for at least one
primary output block.

The computation of steps 1 and 2 of part 1 can be
performed in time D[-tkm} and 0{16"&1}, respectively, where
M is the total number of signal lines between blocks. The
computation of part 2 can be performed in time O(E), where E
is the number of edges of G1. Hence, the total computation of

the above procedure can be carried out in time O(4km) +
O(16¥M) + O(16KM) < O(16¥m). Q.ED.

Caorollary 3: Let C be a k-bounded circuit such that k
< logyp(m) for some polynomial p(m), where m is the number
of lines in €. Then the fault detection problem for C is
solvable in time complexity D{p{m}"‘m].

Corollary 4: Let C be a (ky, ko)-bounded circuit.
Then there is an algorithm of dme complexity o(16514k2m) 1o
find a test for a single stuck-at fault in C, where m is the
number of lines in C.

Full
Adder

,
e

Figure 2. Adder

Cia *C W e Cia*
_{Czl 4‘:21 bt - - Cﬂ.l‘l._.

I

1

| 1 i
|
I

k1 Cya

Figure 3. (Npk + My)-bounded ciréuit

—
"

Figure 4. (Npk + Ngk - Ng + Ny)-bounded circuit



V1. Conclusion

In this paper, we have analyzed the computational
complexity of fault detection problems and warious
controllability and observability problems for combinational
logic circuits. 'We have shown that the fault detection problem
is still NP-complete even for monotone circuits limited in
fanout; even if we limit the number of reconvergent paths from
a fanout point to a constant , say three, the fault-detection
problem is still NP-complete. From this result and the fact
that, if we limit the total number of fanout points to a constant,
then the fault-detection problem can be solved in linear time,
we see that the main cause of NP-completeness is not the
number of reconvergent paths from a fanout point but the
number of fanout points which reconverge.

To smdy further into the problem of fault-detection, we
have divided it into two subproblems; controllability and
observability problems, and have shown that the observability
problem for unate circuits is NP-complete, but that the
controllability problem for unate circuits can be solved in linear
time. Furthermore, we have introduced two classes of
circuits; called k-binate-bounded eirewits and k-bounded
circuits. For k-binate-bounded circuits the controllability
problem is solvable in polynomial time, and for k-bounded

circuits the fault detection problem is solvable in po%’nmﬂial
time, when k < log pim) for some polynomial p(m). The class
of k-bounded circuits includes many practical circuits such as
decoders, adders, one-dimensional cellular arrays, two-
dimensional cellular arrays, etc.
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