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Abstract

While design-for-testability (DFT) techniques are gen-
erally used in order to reduce test generation complexity,
they induce over-testing problems. In general, DFT tech-
niques make a large number of untestable paths testable.
However delay on the path that becomes testable does not
affect circuit performance because the path was originally
untestable. Therefore we consider testing such path to be
over-testing. In this work, we reduce the over-testing by
identifying false paths using register transfer level informa-
tion. Our method identifies a subset of false paths within a
reasonable time. Experimental results for some RTL bench-
mark circuits show the effectiveness of our false path iden-
tification method.

1. Introduction

Design-for-testability (DFT) techniques such as en-
hanced scan [1] or standard scan with skewed-load test-
ing [2] or broadside testing [3] are used to reduce test
costs. These techniques make all or most of the sequen-
tially untestable paths testable. However, delay on the path
that becomes testable by some DFT never affect the cir-
cuit performance. This is because no transition launched
at the starting point of the untestable path is ever propa-
gated to the ending point of the path during normal opera-
tion. Therefore we consider testing such paths to be over-
testing. The over-testing causes yield loss or overkill of
products because good circuits in normal operations may
be regarded as faulty ones under test mode. Moreover test
generation time and test application time become shorter if
the over-testing is reduced.

To reduce the over-testing, first, untestable paths in an
original circuit should be identified. Then the information
about the untestable paths should be propagated to the ac-
tual test environment, that is, the paths that become testable
by a DFT have to be excluded from testing. In the last
decade, several path identification methods have been pro-
posed. For combinational circuits, the techniques presented
in [4, 5, 6] are approaches for identifying combinationally
untestable paths at gate-level. The works for sequential cir-
cuits [7, 8] are equally important. However, these gate-
level approaches may be hard to handle all the exponential
number of paths in large scale circuits. In [9], false paths
are identified at RTL. However, their interest is to prevent
an inaccurate decision about circuit performance caused by
identifying false paths as critical paths. Hence they do not

list identified false paths and do not consider shorter false
paths than critical paths.

As an approach from higher level, we propose a method
of identifying false paths using RTL information such as
load-enable signals of registers and select signals of mul-
tiplexers (MUXs). In this paper, we first show a suffi-
cient condition for identifying non-robust untestable paths.
Then we also discuss extension of the condition for iden-
tifying functionally unsensitizable (false) paths. We deal
with paths at RTL, called RTL paths. An RTL path is a
path which starts at a primary input or a register and ends
at a register or a primary output, which passes through only
combinational modules and has a bit width. The total num-
ber of RTL paths in a circuit is much smaller than that of
gate-level paths, therefore our path identification method
can be performed in a reasonable amount of time. Experi-
mental results for some RTL benchmark circuits show that
our method can identify many RTL paths as false in a few
seconds. In addition, we show that there are a lot of gate-
level paths corresponding to the RTL paths that are identi-
fied as false.

2. Preliminaries
2.1. RTL circuit

Our path identification method approaches to structural
RTL designs. A structural RTL design consists of a con-
troller represented by a finite state machine and a datap-
ath composed of RTL modules, which are MUXs, com-
binational operation modules and registers, and RTL sig-
nal lines between them. They are connected to each other
by control signal lines and status signal lines. The con-
troller controls control inputs of the RTL modules. We as-
sume that all the control inputs of the RTL modules in the
datapath are directly controlled by the controller. On the
other hand, status signals from the datapath are fed into the
controller. We assume that state transitions are completely
specified for all pairs of a state and an input vector.

If a target RTL circuit is described as a functional RTL,
it may be difficult to directly extract its structural RTL from
the description. In such a case, we can obtain the informa-
tion about structure during synthesis process.

2.2. Logic synthesis

Our path identification is applied to RTL paths in an
RTL circuit and the information about the identified paths



at RTL is propagated to gate-level paths in a gate-level cir-
cuit transformed by logic synthesis. Then it is necessary to
clarify the correspondence of RTL paths to gate-level paths.
As one solution to achieve the clarification, we consider
a restricted synthesis called module interface preserving-
logic synthesis.
Definition 1:(Module interface preserving-logic synthe-
sis)
Given an RTL circuit, if logic synthesis transforms each
RTL module and each RTL signal line into an individual
gate-level netlist and individual single-bit signal lines, re-
spectively, the logic synthesis is referred to as module in-
terface preserving-logic synthesis (MIP-LS). O
During an MIP-LS for an RTL circuit, optimization can
only be performed within each module. Therefore, the con-
nectivity of all the RTL modules is guaranteed to be prop-
agated to a synthesized gate-level circuit through any MIP-
LS.

3. False path identification
3.1. RTL false path

We define an RTL false path as follows.
Definition 2: (RTL false path)
An RTL path p in an RTL circuit is RTL false if any gate-
level path corresponding to p in its gate-level circuit is gate-
level false for any logic synthesis. a
Our objective is to identify bundles of gate-level paths
as false by finding RTL false paths. However, it may be
hard under any logic synthesis to map an RTL path to all
the gate-level paths corresponding to the RTL path com-
pletely. To achieve the mapping, we restrict logic synthesis
to MIP-LS.
Definition 3: (RTL false path with respect to MIP-LS)
An RTL path p in an RTL circuit is RTL false with respect
to MIP-LS if any gate-level path corresponding to p in its
gate-level circuit is gate-level false for any MIP-LS. O
In this paper, we focus on identification of RTL false paths
w.r.t. MIP-LS. RTL false paths w.r.t. MIP-LS are just re-
ferred to as RTL false paths in the rest of this paper.
Theorem 1: An RTL path p in an RTL circuit is RTL false
if at least one of the following three conditions is satisfied
for any input sequence.
Condition 1: No transition is ever launched at the register
of the starting point of p.
Condition 2: No transition at the starting point of p is ever
propagated to the ending point along p.
Condition 3: No value captured into the register at the end-
ing point of p is ever propagated to any primary output. O
If at least one of the three conditions of Theorem 1 is
satisfied for any input sequence, any gate-level path cor-
responding to p in a gate-level circuit synthesized by any
MIP-LS is gate-level false. The proof is shown in [10]

3.2. Control-dependent false path

In this section, we show sufficiency of RTL false paths
focusing on control signals of a controller. An RTL path
identified by the sufficient condition is referred to as a
control-dependent false path (CFP).

The state register (SR) in a controller represents states of
the controller. We distinguish an RTL path starting at the

SR in a controller from the other RTL paths. By consider-
ing state assignment, we can know the timing when transi-
tions are launched for each bit of the SR and the directions
of the transitions. Therefore we take the information about
the state assignment and the directions of the transitions
into account for identifying RTL false paths starting at the
SR. A register in a datapath is referred to as a datapath reg-
ister (DR).

RTL paths starting at DR/PI

Let P be a set of RTL paths that starts at a DR or a PI. Now
we consider whether p € P is a CFP or not. Let Rs and Re
be the starting register and the ending register of p, respec-
tively. Let Cgry and Cg, be load-enable signals of Rs and
Re, respectively. If the load-enable signal of a register is
equal to ’1’, the register loads a value; otherwise, it holds
its value. Let M; and Cy, (1 <i<n)beaMUX on p and its
select signal, respectively, where n is the number of MUXs
on p. Let Cf, be the control value of M at time k. When
M; selects the input on p, the value of the select signal is
denoted as py;.

In the following discussion, we consider identification
of non-robust untestable paths. Under single fault assump-
tion (a single path is only affected by delay), the delay
on a non-robust untestable path does not affect the cir-
cuit performance. In this paper, a gate-level path is said
to be false if the path is non-robust untestable. If we re-
lax the single fault assumption, the delay on a non-robust
untestable path may affect the circuit performance depend-
ing on the delays on its off-paths. Our path identification
method can also deal with functionally unsensitizable paths
by simple extension of the sufficient condition for non-
robust untestable.

We first consider uncontrollability and unobservability
of registers. Then we show a sufficient condition for con-
trol signals to identify RTL false paths in Lemma 1.
Definition 4: (Uncontrollability of register R at time )
Let g be an RTL path whose ending register is R. For each
state at time ¢ — 1, if both of the following conditions are
satisfied, R is uncontrollable at time 7.

e For each ¢, control signal values of all the MUXs on

q at time ¢ and those at time t — 1 are the same.
e Each source register R, of R is uncontrollable at time

t—1or C};l = 0, where a source register of R at time
t is a register whose value affects R at time 7. O

Definition 5: (Unobservability of register R at time ¢)
Let r and Rr be an RTL path starting at R and its ending
register, respectively. For each state at time # + 1, if ev-
ery r satisfies at least one of the following conditions, R is
unobservable at time 7.
e Jill <i< n,CﬁZl # ry;, where n is the number of
MUXs on r.

o CH'=0.
e Rr is unobservable at time ¢+ 1. O

Lemma 1: An RTL path p is RTL false if at least one of
the following three conditions is satisfied for any state tran-
sition from time & to k+ 1.

Condition 1: (1) Ck_ =0 or (2) Rs is uncontrollable at time
k.

Condition 2: Ji|1 <i < n,lef,,fl # pu,, where n is the num-
ber of MUXSs on p.

Condition 3: (1) C,];:l =0 or (2) Re is unobservable at time
k+1. O



Lemma 1 is properly included in Theorem 1. The proof is
shown in [10].

Any gate-level path corresponding to p is non-robust
untestable if p is RTL false. The second condition of
Lemma 1 means that at least one MUX on p does not se-
lect p at time k + 1. If the condition is extended such that at
least one MUX on p does not select p at time k and k+ 1,
any gate-level path corresponding to p is functionally un-
sensitizable.

RTL paths starting at SR-ff

For RTL paths starting at flip-flops in the SR (SR-ff),
Lemma 1 can also be applied. The SR in a controller up-
loads a new value every clock cycle. It means that Cg;
always becomes 1 (load). Therefore RTL paths from the
SR-ff to DRs do not satisfy Condition 1 (1) of Lemma
1. Here we consider a transition at each SR-ff. The re-
lation between each state and a value for each SR-ff is de-
termined by state assignments. We can obtain the infor-
mation on state assignments during logic synthesis or de-
signers can also determine state assignments before logic
synthesis. From the information on state assignments and
state transition, we can know the timing when a transition
is launched at each flip-flop.

An RTL path is false with respect to a rising (resp.
falling) transition if at least one of the three conditions of
Lemma 1 is satisfied for all the time ¢ when a rising (resp.
falling) transition launches at the SR-ff of the starting point
of the RTL path.

3.3. Experimental results

In this section, we evaluate the effectiveness of iden-
tifying RTL false paths as control-dependent false paths
(CFPs). The circuit characteristics of RTL benchmarks are
shown in Table 1. LWF, Tseng, Paulin and JWF are widely
used benchmark circuits. MPEG and RISC! are more prac-
tical and larger circuits provided by industry. Each cir-
cuit consists of a controller and a datapath. The first eight
columns show circuit name, the bit width of the datapath,
the numbers of the PIs, the POs, the registers and the states
in the controller, and the total area of the circuit, respec-
tively. Logic synthesis was performed by DesignCompiler
(Synopsys). The last two columns show the number of RTL
paths. Columns DR and SR-ff show the number of RTL
paths where an RTL path starts at a datapath register or a
PI and the number of RTL paths where an RTL path starts
at an FF in the SR, respectively.

Table 2 shows the results for the number of RTL paths
identified as CFPs. The second, third and fourth columns
under DR show the number of RTL paths identified as CFPs
starting at DR, the number of RTL paths starting at DRs,
and the ratio of the number of CFPs to that of RTL paths,
respectively. For LWF, Tseng, Paulin, JWF and MPEG,
CPU times required for identifying CFPs were less than 1
second. For JWF circuit, many RTL paths (117 of 153)
were identified as CFPs. MPEG has many registers with
no hold function. Therefore, many starting registers launch
transitions and many ending registers capture the propa-
gated transitions every clock cycle. Hence the number of
CFPs is small. For RISC, the CPU time required for identi-
fying 1,235 CFPs of 10,181 RTL paths is about 10 seconds.

IThese circuits were provided for the Joint Research (1997-2001) with
Semiconductor Technology Academic Research Center (STARC).

Table 1. Characteristics of benchmarks.

Bit # RTL paths
Circuit | width | #PIs | # POs | # REGs | # States | Area DR]| SR-ff
LWF 8 3 2 6 41 1,561 19 26
Tseng 8 4 3 7 51 2975 20 42
Paulin 8 3 2 8 6] 3,391 29 67
JWE 8 6 5 15 8| 4,758 153 408
MPEG| 8 7 16 241 163 | 77,554 651 2,152
RISC | 32 1 3 39 10 (97,739 | 10,181 | 38,122

The next three columns and the last three columns show re-
sults for RTL paths starting at SR-ffs with rising transitions
and starting at SR-ffs with falling transitions, respectively.
For all the circuits except for RISC, the ratios of RTL paths
identified as CFPs are similar to those of RTL paths start-
ing at DRs. For RISC, a large number of RTL paths are
identified.

Table 3 shows the result of gate-level false paths corre-
sponding to RTL paths identified as CFPs. We extracted
gate-level paths from the longest path, which has larger
propagation delay, by using the “report path” function of
the timing analysis tool Prime Time (Synopsys). For LWF,
Tseng, Paulin and JWF, we extract all the paths in each cir-
cuit. For MPEG and RISC, we extract 300,000 and 200,000
gate-level paths from the longest path, respectively. The
second column shows the number of gate-level paths cor-
responding to CFPs. We can say that these gate-level false
paths were identified by our method. The third column
shows the total number of gate-level paths starting at DRs.
The fourth column shows the ratio of the second column to
the third column. For Paulin, our method identified 10,598
of 33,476 (32%) gate- level paths as false paths within 1
second. We perform sequential test generation (TetraMax,
Synopsys) for only 100 paths in Paulin, then it took 498
second to identify 51 paths as untestable. If an RTL path
that passes a large scale operational module such as a mul-
tiplier is identified as a CFP, a large number of gate-level
paths are identified as false paths. For MPEG, most of
the extracted 300,000 paths start at DRs. Gate-level paths
corresponding to CFPs starting at DRs were not included
among the extracted paths. One reason is that gate-level
paths corresponding to the identified CFPs have short prop-
agation delays, hence they were not included among the ex-
tracted paths. As another reason, MPEG may have a small
number of false paths.

4. Reduction in Over-testing

To reduce over-testing, we consider that PDFs on paths
identified as false are excluded from a fault list targeted
by test generation, and then test generation is performed
for the fault list. However, during test application, pat-
terns generated by the test generation may still detect the
excluded faults accidentally. This is because a generated
pattern to detect some PDF in the fault list may also acti-
vate other PDFs simultaneously. In this work, we evaluate
such circumstance. In this experiment, we adopt an en-
hanced scan technique as a DFT method. Table 4 shows
the results of over-tested PDFs for each benchmark circuit.
Fault lists are generated by using the “write path” function
of Prime Time. The second column shows the total num-
ber of PDFs. The third column shows the number of PDFs
on CFPs. We generate test patterns for fault lists exclud-
ing PDFs on CFPs, then perform fault simulation for fault



Table 2. Number of RTL paths identified as CFPs.

DR SR-ff: Rise SR-ff: Fall
Circuit | #CFP | #RTL path ratio #CFP | #RTL path ratio #CFP | #RTL path ratio
LWF 3 9] 16% 4 26 | 15% 4 26 | 15%
Tseng 8 20 | 40 % 13 42 | 31% 11 42 | 26 %
Paulin 12 29 | 41 % 25 67 | 37 % 30 67 | 45%
JWF 117 153 | 76 % 285 408 | 70 % 319 408 | 718 %
MPEG 32 651 5% 64 2,152 3% 64 2,152 3%
RISC 1,235 10,181 | 12% | 28411 38,122 | 75% | 18,968 38,122 | 50 %
Table 3. Number of gate-level paths corresponding to CFPs.
DR SR-ff: Rise SR-ff: Fall
Circuit | #GL false | #GL path | ratio | #GL false | #GL path | ratio | #GL false | #GL path | ratio
LWF 314 2,180 | 14 % 330 1461 | 23% 350 1461 | 24 %
Tseng 2,337 5,192 | 45% 142 414 | 34 % 236 414 | 57 %
Paulin 10,598 33476 | 32 % 10,387 26,898 | 39 % 12,197 26,898 | 45 %
JWF 9,760 32,522 | 30 % 36,331 49,094 | 74 % 41,018 49,094 | 84 %
MPEG 0 257,552 0 % 922 39,398 2 % 192 3050 6 %
RISC 1,76 174,063 1 % 1,375 6,39 | 21 % 9,882 19,541 | 51 %

Table 4. Number of over-tested PDFs.

Circuit | Total #PDFs | #PDFs on CFPs | #Over-tested PDFs
LWF 3,598 619 392 (63%)
Tseng 5,868 2,928 1,185 (40%)
Paulin 37,171 19477 2,195 (11%)
JWF 45,658 37,150 3,452 (9%)
MPEG 41,521 340 220 (65%)
RISC 25,496 6,974 509 (7.3%)

lists including the total PDFs. The fourth column shows the
number of tested PDFs among PDFs shown in the third col-
umn. Our experimental results show that 10-60% of the re-
moved PDFs is accidentally tested (over-tested) if we gen-
erate two-pattern tests with no input constraint.

To avoid the over-testing, we use constrained two-
pattern tests called single-port-change (SPC) two-pattern
tests[11]. The concept of SPC two-pattern tests was origi-
nally proposed by authors to reduce area overhead required
for DFTs compared to that required for DFTs by our previ-
ous work[12]. We can utilize the concept for avoiding the
over-testing completely. An SPC two-pattern test changes
the second vector at only one port and sets stable for the
other ports. Here a port means an output of a register, and
it has bit width. An SPC two-pattern test can test PDFs on
paths starting at the port whose second vectors are changed.
With respect to test quality, SPC two-pattern tests guaran-
tee robust (resp. non-robust) test for a PDF if the PDF is ro-
bust (resp. non-robust) testable[11]. In terms of reduction
in over-testing, when SPC two-pattern tests are generated
for fault lists excluding PDFs corresponding to CFPs, the
removed PDFs are never tested.

5. Conclusion

In this paper, we have introduced a concept of register-
transfer level (RTL) false paths and proposed a method of
identifying them. Our experimental results showed that a
large number of gate-level false paths were found by identi-
fying RTL false paths. Time required for the identification
was much shorter than that for the identification at gate-
level. To reduce over-testing, path delay faults (PDFs) on
the identified false paths are excluded from the fault list
targeted by test generation. However even if the PDFs
are removed from the fault list, the generated test patterns
incidentally test the removed faults. Therefore, we have
also proposed a method to avoid over-testing by generating

single-port-change two-pattern tests. In the experimental
results, we showed that 10-60% of removed PDFs is over-
tested if we normally generate unconstrained two-pattern
tests.
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