IEEE 16th Asian Test Symposium (ATS'07), pp.199-204, October, 2007.

Test Scheduling for Memory Cores with Built-In Self-Repair

Tomokazu Yonedaf,

Yuusuke Fukudat*

and Hideo Fujiwaraf

tGraduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City, 630-0192, Japan
{yoneda, fujiwara}@is.naist.jp

Abstract

This paper presents a stage-based test scheduling for
memory cores with BISR scheme under power constraint.
We introduce a model to compute the expected test time for
a given test schedule for memory cores with BISR scheme
based on pass probabilities, and propose a test scheduling
algorithm to minimize the expected test time. Experimen-
tal results show a significant expected test time reduction
compared to the core-based test scheduling method which
minimizes the test time.
keywords: SoC, test scheduling, memory core, built-in self-
repair, power consumption.

1 Introduction

Rapid improvements in semiconductor technologies en-
able us to create the complex chips called SoCs. The test
cost of these monster chips is highly related to the test ap-
plication time. In the SoC test environment, cores are tested
in a modular fashion [1]. A modular test requires an on-
chip test infrastructure in the form of a wrapper per core
standardized as IEEE Std. 1500 [2] and test access mech-
anisms (TAM). A number of approaches have been pro-
posed for wrapper and TAM design including test schedul-
ing problem such that the test application time is minimized
[3,4,5,6,7,8].

Furthermore, with the increasing demand for SoCs to
include rich functionality, SoCs are being designed with
hundreds of memories with different sizes and frequencies.
Memory cores usually occupy a significant portion of the
chip area and dominate the manufacturing yield of the chip.
Keeping the memory cores at a reasonable yield level is im-
portant problem for SoCs. The promising way to solve this
problem is to employ built-in self-repair (BISR) scheme
for memory cores [9, 10, 11, 12, 13]. Several approaches
have been proposed for test scheduling problem for memory
cores [14, 15, 16]. However, the test scheduling problem for
the memory cores with BISR scheme is not addressed so far.

In general, the testing of memory core with BISR
scheme consists of the following three stages: (1) test (with
BIST circuitry), (2) diagnosis/repair (with built-in repair an-
alyzer) and (3) re-test (with BIST circuitry). One impor-
tant thing in test scheduling for memory cores with BISR
scheme is that all stages are not always executed. For ex-
ample, if no fault is detected in first test in stage 1, then, it

*He is currently with Renesas Technology Corp.

is not necessary to execute the following two stages. An-
other important thing is to consider the power consumption
during test.

To the best of our knowledge, this paper gives a first dis-
cussion and a formulation of the test scheduling problem for
memory cores with BISR scheme in production test. Since
we cannot predict which stage is necessary to execute or not
before test application, we have to consider the worst case
where all stages are executed and generate a test schedule
for it. Even though we have to consider the worst case, there
are some cases where the testing can be terminated before
its completion. We extend the abort-on-fail approach used
in [17, 18] to the abort-on pass/fail approach for the test
scheduling problem in this paper. Furthermore, we intro-
duce a model to compute the expected test time for a given
test schedule for memory cores with BISR scheme based
on pass probabilities, and propose an efficient and effective
stage-based test scheduling method by considering that it is
not necessary to execute the three stages of each core con-
secutively as long as they are executed in keep the order.
Experimental results for the modified ITC’02 benchmarks
show the effectiveness of the proposed method compared to
a core-based test scheduling method which minimizes the
test time.

The rest of this paper is organized as follows. Section
2 describes the memory core with BISR function we target
in this paper. We introduce an abort-on-pass/fail approach
in Section 3 and expected test time calculation in Section 4.
We present a test scheduling algorithm in Section 5. Exper-
imental results are discussed in Section 6. Finally, Section
7 concludes this paper.

2 Built-In Self-Repairable Memory Core

The memory core with BISR function and its test low
we target in this paper are shown in Figure 1 and Figure 2,
respectively. It consists of redundant cells, BIST circuitry,
repair analyzer, fuse box and multiplexers, and we assume
that only one time repair is considered in the production
test. In the 1st stage, the memory core is test by using BIST
circuitry. If no fault is detected, the core is evaluated as pass
and the testing is finished. If faults are detected, the faults
are analyze whether the redundant cells can repair them in
the 2nd stage. If the faults are not repairable, it is evaluated
as fail and the testing is finished. If the faults are repairable,
the repair information is transferred into fuse box and the

address

BIST/BISR | control, |, data in
¥
Repair data data
Analyzer
address address
Memory
Core
wrapper control control
Fuse Box—l BIST data out
L i Redundant Cells

pasé/fail data out

Figure 1. Memory core with BISR function.

Start BISR

1 1
1 1
1 1
i 1 i]
1 1
| test | 1 | diagnosis/repair | 1 | re-test |
1
. :
1 \ 1
detect H repair ! detect
faults? success?qes 1 faults? _~y
1 1
: : o
[pass] : [fail] : [pass] [fail]
1st stage : 2nd stage : 3rd stage
' '

Figure 2. BISR flow for memory core.

memory core is re-configured to avoid the faulty cells. After
that, it is tested by using BIST circuitry again. Finally, the
memory core is evaluated as pass or fail depending on the
result in the 3rd stage.

Depending on the memory type, size, target fault and
target yield, test/repair algorithms and the number of redun-
dant cells are different. In this paper, without loss of gener-
ality, we consider that BISR of memory core c¢; consists of
the following three stages.

e ;. test

e ;5 : diagnosis/repair

e 5,3 . re-test
Furthermore, the following information is given for each
stage s; ;.

e time;; : execution time required to complete s; ;

e power; j : power consumption during s; ;

e pp;;: pass probability for s; ;

In this paper, we assume that start time of a stage can be
controlled independently of other stages and the pass proba-
bilities for the cores are given a priori. However, it is shown
in [19] how statistical yield modeling for defect-tolerant cir-
cuits can be used to estimate pass probabilities for embed-
ded cores in an SoC.

3 Abort-on-Pass/Fail Approach

In this section, we explain the proposed abort-on-
pass/fail approach in the stage-based test scheduling for
memory cores with BISR function by using example sched-
ules shown Figure 3.

In normal core-based test scheduling without consider-
ing BISR scheme, the test time, when all tests are assumed
to be executed, is given as the maximum end time among all
tests. The test time for a sequential core-based test schedule

power T, ={ty t;}
Ty ={ts} expected test time = 567
core, core, time
t, t, t, t, ts ts
(a)
power T ={t, ts ts, t5}
T, ={ts ts} expected test time = 419.05
stage, 4 stage;, | stage,; | stage,; stage,, | stage,; [time
t t t ty ts ts
(b)
power T ={t, t, ts, tg}
T, ={ts ts ts} expected test time = 357.85
stage; ; | stage;, | stage,, | stage,, | stage;; | stage,; | time

t, t, t, t, ts ts
(©
Figure 3. Expected test time in abort-on-pass/fail
environment.

shown in Figure 3(a) is t,. However, when the abort-on-fail
approach proposed in [17] is assumed, the testing is termi-
nated as soon as a fault is detected. If the test of core; in
Figure 3 detects faults, the testing is terminated at time #3.

On the other hand, in stage-based test scheduling for
memory cores with BISR scheme we consider in this paper,
all stages are not always executed. However, test schedule
should be generated before test application and we cannot
predict which stage is necessary to execute or not before test
application. Therefore, we have to generate a test schedule
which includes all stages because all stages are executed
in the worst case. The test time can be calculated in the
same way as the core-based test scheduling. The test time
for a stage-based test schedule shown in Figure 3(b) is .
When the abort-on-fail approach is assumed, there is a pos-
sibility that the testing can be terminated at the end time
of every stage except 1st stages (even if faults are detected
at 1st stage in a core, there is a chance to be repaired cor-
rectly in the following stages). In Figure 3(b), the testing
can be terminated at time t,, f3, 5 and #¢ depending on the
pass probabilities. In addition to abort-on-fail approach, in
stage-based test scheduling for memory cores with BISR
scheme, we can consider the abort-on-pass approach where
the testing is terminated as soon as all cores are evaluated
as pass. In Figure 3(b), the testing can be also terminated at
time #4 and #¢; depending on the pass probabilities.

Therefore, it is important and effective to consider the
expected test time in stead of the test time in stage-based
test scheduling for memory cores with BISR scheme. In
this paper, we propose an efficient and effective scheduling
method for memory cores with BISR scheme by consider-
ing that it is not necessary to execute the three stages of each
core consecutively as long as they are executed in keep the
order shown in Figure 3(c).

4 Expected Test Time Calculation

In this section, we describe the expected test time cal-
culation for a given test schedule in abort-on-pass/fail ap-

proach.

Let C be the set of memory cores with BISR function
and end(s; ;) be the end time of stage s, ; in the given test
schedule, the test time 7 is defined by the following equa-
tion.

T = max{end(s;3)} €))]
c;eC
Let T, and Ty be the set of time slots where test can be
terminated without faults (abort-on-pass) and with faults
(abort-on-fail), respectively. Then, T, and T consist of the
following time slots.

e T, consists of

— max{end(s;1)}
eC

Ci
— end(s;3) forc; € C
such that end(s;3) > macx{end(s,-,l)}
ci€

e T consists of
— end(s;p) forc; e C
— end(s;3) forc; e C
Let P,(#) and P(t) be the probability that the testing is ter-
minated without faults at time ¢ € T, and with faults at time
t € Ty, respectively. Then, the expected test time E is de-
fined by the following equation.

E:Ep+Ef:Zt-Pp(t)+Zt~Pf(t) 2)
teT), teTy
Here, E, and E; denote the expected test time for abort-on-
pass case and for abort-on-fail case, respectively. P,(f) and
P (1) are calculated as follows.

Probability for Pass Case
First, we define the probability P,(z, k) that core c; is
evaluated as pass by time ¢ € T, as follows.

PPk, for end(sx3) > t

ppit + (1= ppi1) - PPe2 - PPr3 3)
for end(sy3) <t

P,(1,k) =

Then, by using the above equation, the probability P,(f)
is defined as follows. Here, we assume that 7, =
{ti,t2,.... 1;, ...} and t; <= t;4 (i.e., elements in T, are sorted
in the ascending order).

Py(t) = [| Pottr, b)
creC

Pyt) = [| Potti) = [| Ppltir k) foriz2 (5)
creC creC

Probability for Fail Case
First, we define the probability P,s(t, k) that core cy is
evaluated as not-fail by time ¢ € Tf as follows.

1 for end(sip) > t
PPt + (1L =ppi1) - ppia

for end(syp) <t <end(sk3) (6)
ppea + (1 = ppe1) - pPr2 - PPi3

for end(sy3) >t

Pnf(ts k) =

Table 1. Data for an example system.

Ist stage 2nd stage 3rd stage
corei | timejy ppi1 | timeiy ppix | timeiz ppi3
1 100 0.8 100 0.5 100 0.9
2 100 0.7 100 0.5 100 0.9

Then, by using the above equation, the probability P(f)
is defined as follows. Here, we assume that T, =
{ti,t, ..., 1;, ...} and t; <= t;; (i.e., elements in T’y are sorted
in the ascending order).

Pty = 1= | Pusti i) @

creC

Pty = [| Pasttict, = [[Pupttid) foriz2 (8)

ceC creC

To illustrate the expected test time calculation, we use the
test parameters shown in Table 1 for the test schedules
shown in Figure 3. The test time is 600 for all three test
schedules. In the core-based test scheduling shown in Fig-
ure 3(a), the expected test time is 567 where the pass prob-
ability for each core is set to pp; 1 + (1 — ppi1) - ppi2 - PPi3-
If we change the schedule unit from core to stage shown in
Figure 3(b), the expected test time is 419.05. Furthermore,
by considering that it is not necessary to execute the three
stages of each core consecutively as long as they are exe-
cuted in keep the order shown n Figure 3(c), the expected
test time is reduced to 357.85.

5 Scheduling Algorithm

In this section, we describe an efficient and effective
stage-based test scheduling method for memory cores with
BISR scheme. When we consider the test scheduling prob-
lem for memory cores with BISR scheme, the number of
TAM wires is not the constraint but the total power con-
sumption during test should be considered not to exceed a
certain limit. Therefore, our objective is to minimize the
expected test time under power constraints. Before describ-
ing the proposed algorithm, we formally present the test
scheduling problem Pps as follows.

Definition 1 Pp;5z: Given the maximum power consump-
tion P,,.., a set of cores C and for each core ¢; € C the
test parameters for each stage s; ; including time; ;, power; ;
and pp; ;, determine a test schedule such that: (1) the total
power consumption at any moment does not exceed Py,
(2) the precedence constraints are satisfied (i.e., for each
core ¢;, s;» must not start before s;; ends and s;3 must not
start before s;, ends) and (3) the overall expected test time
1s minimized.

5.1 Proposed Scheduling Algorithm

An outline of the proposed algorithm is presented in Fig-
ure 4. The above proposed algorithm is designed so that
two important factors (1) pass probability and (2) execution

[start]
!

| Stage clustering based on pass probability I
I

Are all clusters selected?
yes
no

Select an un-selected cluster G
with lowest pass probability

Schedule stages in G
in the descending order based on execution time
1

A 2

[end]

Figure 4. Overview of the proposed algorithm.

time of each stage can be taken into consideration. First,
the algorithm performs stage clustering based on its pass
probability so that the stages in each cluster have similar
pass probability (This step is explained in more detail in the
sequel of this section). Then, it repeatedly selects an un-
selected cluster with lowest pass probability, and decides
test schedule for each stage in the selected cluster. In this
step, we select an un-scheduled stage with longest execu-
tion time (not lowest pass probability) such that the preced-
ing stages are already scheduled. Then, we schedule it to
the earliest time slot such that the power and precedence
constraints are satisfied. This process is repeated until all
stages in the cluster are scheduled.

Stage Clustering Procedure

In this step, we first calculate the fail probability fp; ;
for each stage s; ; of core c; as follows, and sort stages in
the descending order based on its fail probability.

e fpi1=0

® fpiz==1=ppi)--ppi2)

e fpis=~ppi1)-ppiz-(1-ppi3)
Figure 5(a) shows an example of sorted stages. Then, let §
be the set of all stages except 1st stages, and we calculate
the variance Vg of fail probabilities in S and the threshold
variance Vy;, as follows.

Vs

. .2 P 2
_ Zs,‘_‘,es fpi; _ (Zx,vjESfpl,]))

IS| N

Vin=a- Vs (10)

Here, a is a constant value and we used seven values (10, 1,
0.1, 0.01, 0.001, 0.0001, 0.00001) in our experiments.
After that, we create a group G that consists of the stage
with highest fail probability, and add the stage with next
highest fail probability to G if the variance Vi, after adding
it does not exceed Vy;,. This process is repeated until Vg,
exceeds Vy,. When Vi, exceeds Vy,, we create a new group
G, and repeat the same procedure. Whenever the variance
Vi, of group G; exceeds Vy;,, we create a new group and
repeat the same procedure until all stages in § are clustered.

V= 0.001

G, : Vg,=0.000867 G,
s15:f01,=02 s12:fp12=02 S15:01,=02
S35 1py5=0.15 7211y, =0.15 Sp2:fpy,=0.15
51:3:fp1‘3=0.13 S13:fp15=0.13 s13:fpy3=0.13
S1y: Dy, = 0.1 G, : V5,=0.000289 siq:fp4=0

| | S32:fp32=0.1 Sp1:fpp1 =0

Sp3:fp3=0.07 S35 fpy5 =007 G; y
S33:fp33=0.06 S35 35 =0.06 S32:M3,=0.1
siq1:fp=0 Sy :fpy4=0 Sy3:fpy3=0.07
Sz1:fp21=0 Sp1:fpy=0 S33:fp33=0.06
S50 : P34 =0 Sy :fpgs =0 S31:fps1 =0

(a) (b) (c)
Figure 5. An example of the clustering procedure.

Figure 5(b) shows an example of clustering process for 2nd
and 3rd stages when Vy;, is 0.001.

Finally, 1st stage s; 1 of each core ¢; is added to the group
where 2nd stage s;, of the core belongs in order to satisfy
the precedence constraints in the following scheduling step.
Figure 5(c) shows the final result of the stage clustering pro-
cedure in the example.

The proposed algorithm can flexibly adjust the size of
clusters by using the parameter @ depending on the given
problem instance. Therefore, if it is better to give the pri-
ority to the execution time of each stage, then we can in-
crease the size of clusters (decrease the number of cluster)
in the stage clustering step and schedule the greater part of
stages in the descending order based on its execution time
in scheduling step. On the other hand, if we decrease the
size of clusters, then, we can schedule the greater part of
stages in the descending order based on its fail probability
(we can give the priority to the fail probability).

6 Experimental Results

We obtained experimental results for the ITC’02 bench-
marks [20]. As the original benchmark does not include
test data for memory cores with BISR scheme, we have
added those data ourselves. The test data we used in this
experiments for d695 is shown in Table 2. We assume
that all cores in the original benchmark are memory cores
with BISR scheme. For each core c;, we used the test time
when 16 bits TAM wires are assigned to ¢; as the execu-
tion time of 1st and 3rd stage (i.e., time;; and time;3), and
time;» = time;;/10. We have used the power consump-
tion shown in [7] as the power consumption for 1st and 3rd
stages for d695. For p22810 and p93791, we used the sum-
mation of the number of FFs in core ¢; as the power con-
sumption for Ist and 3rd stages. We assume that the power
consumption of 2nd stages is equal to power;; /10. We have
used two different sets of pass probabilities within the range
used in [18] for each benchmark. The first set is denoted as
“soc_high” where the pass probabilities of 1st stages vary
from 0.85 to 0.95. The second set is denoted as “soc_low”

Table 2. Data for d695_high.

Ist stage 2nd stage 3rd stage
corei | time; power; | PPil time;p powerip ppi2 time;3 poweri3 ppi3
1 38 660 0.94 4 66 0.8 38 660 0.96
2 1029 602 0.92 103 60 0.8 1029 602 0.96
3 2507 823 0.95 251 82 0.8 2507 823 0.98
4 5829 275 0.91 583 28 0.8 5829 275 0.97
5| 12192 690 0.93 1219 69 0.8 | 12192 690 0.98
6 11978 354 0.85 1198 35 0.8 11978 354 0.99
7 4219 530 0.87 422 53 0.8 4219 530 0.96
8 4605 753 0.85 461 75 0.8 4605 753 0.95
9 1659 641 0.94 166 64 0.8 1659 641 0.98
10 7586 1144 0.91 759 114 0.8 7586 1144 0.95
Table 3. Expected test time results (#cycles).
a=10 best @ for expected test time
soc Prnax T | E @ | T (Tm - T)/T | Ep (Em - E)/E
1500 53780 39439 0.10000 53394 -0.7 31409 -20.4
d695_high 2000 37795 23063 0.10000 38482 1.8 22213 -3.7
2500 28110 19002 0.00001 30723 9.3 18611 2.1
1500 53780 35826 0.00100 56712 5.5 27985 -21.9
d695_low 2000 37795 23325 0.00001 43851 16.0 20523 -12.0
2500 28110 19450 0.00010 36624 30.3 17617 9.4
15000 388434 | 169135 0.10000 412706 6.2 | 133095 -21.3
p22810-high | 18000 305758 | 116957 1.00000 305758 0.0 | 116957 0.0
21000 305758 | 104143 1.00000 305758 0.0 | 104098 0.0
15000 388434 | 100832 0.00100 372798 -4.0 56336 -44.1
p22810_low 18000 305758 66326 0.01000 355057 16.1 49074 -26.0
21000 305758 52749 0.01000 305758 0.0 45436 -13.9
30000 1380574 | 600596 0.00010 | 1411397 2.2 | 485525 -19.2
p93791_high | 40000 984478 | 463688 0.00010 | 1092855 11.0 | 379677 -18.1
50000 839856 | 359300 0.01000 909421 8.3 | 328442 -8.6
30000 1380574 | 206351 0.00010 | 1416285 2.6 | 180190 -12.7
p93791_low | 40000 984478 | 194239 0.00100 | 1004597 2.0 | 137355 -29.3
50000 839856 123013 0.00100 843941 0.5 117234 -4.7
average | I | I | 6.0 | -14.9
#oycles[k] «a is different). However, the proposed method can provide
45 the optimal result for any cases by setting o appropriately.
40T We can observe the similar trends in other SoCs used in our
22 I _ experiments.
25 L — Table 3 presents the expected test time results for the six
20 [, N N N N . SoCs. T in Column 3 and E in Column 4 denote the test
15 ~ Pmax=1500 time and the expected test time when we set to 10, respec-
10 = Pmax=2000 tively. We decided to use the results when o = 10 as the best
5 -+ Pmax=2500 cases for minimizing test time since all stages belong to one
0 ‘ ‘ cluster and only the execution time of each stage is taken
0.00001 0.0001 0001 0.01 0.1 1 10 alpha

Figure 6. Variation of expected test time for « in
d695_high.

where the pass probabilities of 1st stages vary from 0.5 to
0.95. We set the pass probabilities of 2nd stages to 0.8 and
the pass probabilities of 3rd stages vary from 0.95 to 0.99
for both two sets (i.e., “soc_high” and “soc_low”).

Figure 6 presents the variation of the expected test time
according to @ we used in the proposed heuristic algorithm
to adjust the number of clusters for d695_high. We can see
that there is no trend between « and the expected test time
(depending on the given power constraint, the best value for

into consideration during scheduling step when « 10.
From Column 5 to 9, we present the best expected test time
among seven values for o (10, 1, 0.1, 0.01, 0.001, 0.0001,
0.00001). Column 5 denotes the value of @ which gives the
best expected test time. Columns 6 and 8 denote the test
time 7, and the expected test time E,, for the & in Column
5. Column 7 and 9 denote the relative differences between
T and T,,, and between E and E,,. We can see that the pro-
posed method obtains savings in expected test time up to
44.1% by considering the pass probabilities using a. We
can obtain 14.9% saving in expected test time on average
while we lost only 6.0% in test time.

Table 4 shows the expected test time results for the two

Table 4. Expected test time for two different sched-
ule unit sizes (#cycles).

schedule unit

stage core Es - E.

soc Prax E E. E.
1500 31409 53108 -40.9
d695_high 2000 22213 37001 -40.0
2500 18611 28830 -354
1500 27985 44546 -37.2
d695_low 2000 20523 31130 -34.1
2500 17617 26390 -33.2
15000 133095 | 254533 -47.7
p22810-high 18000 116957 | 200031 -41.5
21000 104098 191910 -45.8
15000 56336 85872 -34.4
p22810_low 18000 49074 81785 -40.0
21000 45436 69329 -34.5
30000 485525 | 803096 -46.6
p93791_high | 40000 379677 | 665586 -49.9
50000 328442 | 558671 -52.4
30000 180190 | 239866 -33.7
P93791_low 40000 137355 192196 -39.9
50000 117234 | 163519 -36.4
average | I | | -40.2

different schedule units: (1) proposed stage-based schedul-
ing and (2) core-based scheduling where we consider the
three stages in each core as one core-unit, and test schedul-
ing and expected test time calculation is done based on the
core-unit. E; in Column 3 denotes the expected test time
for stage-based test scheduling, E. in Column 4 denotes the
expected test time for core-based test scheduling. Column 5
denotes the relative differences between E and E.. We can
see that the proposed method obtains savings in expected
test time up to 52.4% and 40.2% saving on average.

7 Conclusion

We have introduced a model to compute the expected
test time in the proposed abort-on-pass/fail test schedule en-
vironment for memory cores with BISR function and pro-
posed a power-constrained test scheduling method to mini-
mize the expected test time. To the best of our knowledge,
test scheduling problem for memory cores with BISR func-
tion has been formulated and addressed for the first time in
this paper. We have made experiments on six benchmarks
where we showed a significant expected test time reduction
compared to the core-based test scheduling method which
minimizes the test time.

Acknowledgments

This work was supported in part by Japan Society for the
Promotion of Science (JSPS) under Grants-in-Aid for Sci-
entific Research B(2)(No. 15300018) and for Young Sci-
entists(B)(No.18700046). The authors would like to thank
Prof. Michiko Inoue, Dr. Satoshi Ohtake and members of
Computer Design and Test Laboratory in Nara Institute of
Science and Technology for their valuable comments.

References

[1]

[2]

[3]

[4]

[5

=

[6]

[7

—

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core
based system chips,” in Proc. Int. Test Conf., pp. 130-143, Oct. 1998.
“IEEE standard testability method for embedded core-based inte-
grated circuits.” IEEE Std 1500-2005, 2005.

V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and
test access mechanism co-optimization for system-on-chip,” Journal
of Electronic Testing: Theory and Applications, vol. 18, pp. 213-230,
Apr. 2002.

S. K. Goel and E. J. Marinissen, “Effective and efficient test archi-
tecture design for SOC,” in Proc. Int. Test Conf., pp. 529-538, Oct.
2002.

Y. Huang, W. T. Cheng, C. C. Tsai, N. Mukherjee, O. Samman,
Y. Zaidan, and S. M. Reddy, “Resource allocation and test schedul-
ing for concurrent test of core-based SOC design,” in Proc. Asian
Test Symp., pp. 265-270, Nov. 2001.

V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On using rectangle
packing for SOC wrapper/TAM co-optimization,” in Proc. VLSI Test
Symp., pp. 253-258,, Apr. 2002.

Y. Huang, N. Mukherjee, S. Reddy, C. Tsai, W. T. Cheng, O. Sam-
man, P. Reuter, and Y. Zaidan, “Optimal core wrapper width selec-
tion and SOC test scheduling based on 3-dimensional bin packing
algorithm,” in Proc. Int. Test Conf., pp. 74-82, Oct. 2002.

E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Efficient test
solutions for core-based designs,” IEEE Trans. Computer-Aided De-
sign, vol. 23, pp. 758-775, May 2004.

T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hi-
daka, “Built-in self-repair analyzer (CRESTA) for embedded drams,”
in Proc. Int. Test Conf., pp. 567-574, Oct. 2000.

V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using
redundant words,” in Proc. Int. Test Conf., pp. 995-1001, Oct. 2001.
J.F.Li, J. C. Yeh, R. F. Huang, and C. W. Wu, “A built-in self-repair
design for rams with 2-d redundancy,” IEEE Trans. VLSI Systems,
vol. 13, pp. 742-745, June 2005.

Y. Zorian and S. Shoukourian, “Embedded-memory test and re-
pair:infrastructure IP for SoC yield,” IEEE Design and Test of Com-
puters, vol. 20, pp. 58-6, May/June 2003.

R. C. Aitken, “A modular wrapper enabling high speed BIST and
repair for small wide memories,” in Proc. Int. Test Conf., pp. 997—
1005, Oct. 2004.

C. W. Wang, J. R. Huang, Y. F. Lin, K. L. Cheng, C. T. Huang, C. W.
Wu, and Y. L. Lin, “Test scheduling of BISTed memory cores for
SoC,” in Proc. Asian Test Symp., pp. 356-361, Nov. 2002.

W. Wang, “March based memory core test scheduling for SOC,” in
Proc. Asian Test Symp., pp. 248-253, Nov. 2004.

M. Miyazaki, T. Yoneda, and H. Fujiwara, “A memory grouping
method for sharing memory BIST logic,” in Asia and South Pacific
Design Automation Conf., pp. 671-676, Jan. 2006.

E. Larsson, J. Pouget, and Z. Peng, “Abort-on-fail based test schedul-
ing,” Journal of Electronic Testing: Theory and Applications, vol. 21,
pp. 651-658, Dec. 2005.

U. Ingelsson, S. Goel, E. Larsson, and E. J. Marinissen, “Test
scheduling for modular SOCs in an abort-on-fail environment,” in
Proc. European Test Symp., pp. 8-13, May 2005.

S. Bahukudumbi and K. Chakrabarty, “Defect-oriented and time-
constrained wafer-level test length selection for core-based SOCs,”
in Proc. Int. Test Conf., pp. 1-10, Oct. 2006.

E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of bench-
marks for modular testing of SOCs,” in Proc. Int. Test Conf., pp. 519—
528, Oct. 2002.

