|

IEEE 8th Workshop on RTL and High Level Testing, October 2007

RTL Don’t Care Path Identification and
Synthesis for Transforming Don’t Care Paths into False Paths

Yuki Yoshikawa', Satoshi Ohtake? and Hideo Fujiwara?
I Graduate School of Information Science, Hiroshima City University
3-4-1 Ozuka-higashi, Asaminami, Hiroshima 731-3194, Japan
2Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City 630-0192, Japan
E-mail:'yosikawa@hiroshima-cu.ac.jp, *{ohtake, fujiwara}@is.naist jp

Abstract

Given a register-transfer level (RTL) circuit meeting a de-
sign specification, the RTL circuit may contain some func-
tionally unused paths from one register to another within
the design specification. Designers of the circuit may know
some of the functionally unused paths during design pro-
cesses, but not all of the functionally unused paths. If
designer-unknown and functionally unused paths are iden-
tified systematically at RTL and its information about the
paths are propagated to gate-level, the corresponding gate-
level paths can be eliminated from the target of testing. Oth-
erwise, they must be the target of testing. We consider testing
such paths to be futile. In this work, we first present a method
of identifying the functionally unused paths using RTL in-
Jformation, and also address synthesis for transforming the
identified paths into false paths. As a result, our approaches
contribute to identification of many untestable paths and re-
duction of the futile testing.

1. Introduction

For high speed circuits, delay testing is emphasized to
guarantee the timing correctness of circuits. Two fault mod-
els to test delay defects are commonly used: the transition
fault model and the path delay fault (PDF) model[l, 2]. In
recent works, for the transition fault model, a method of se-
lecting longest testable paths[3, 4] and a measure of evaluat-
ing its ability to detect small delays, called statistical delay
quality model(SDQM)[5] have been proposed; nevertheless,
the path delay fault model is more suitable in order to accu-
rately test accumulative small delays along paths.

A path under the PDF model is defined as an ordered
set of gates between two flip-flops. In PDF testing, the de-
lay along the path is compared to a desired system clock
period. There are two major problems associated with the
PDF testing: 1) circuits may contain an exponential num-
b.er of paths in the worst case, and 2) many paths are func-
tionally untestable. Thus, several methods of identifying
untestable paths have been proposed in the last decade.
As approaches at gate-level, for combinational circuits, the

Process 3

RTL don't care
path ident.

iProcess 4

Logic value
assignmentto
don’t care *X"

Synthesis for transforming
RTL don't care paths
into RTL false paths

Figure 1. Whole flow of our strategy.

techniques presented in [6, 7, 8] are approaches for identify-
ing combinationally untestable paths. The works for sequen-
tial circuits[9, 10] are equally important. However, these
gate-level approaches may be hard to handle all the expo-
nential number of paths in large scale circuits.

As an approach from upper level, a method of identifying
false paths' using register transfer-level (RTL) information
such as load-enable signals of registers and select signals of
multiplexers (MUXSs) is presented in our previous work[11].
In the work, paths are dealt with at RTL, called RTL paths,
and a sufficient condition to identify RTL paths as RTL false
was presented. Figure 1 shows the relation between our pre-
vious work and our proposed method in this paper. Our pre-
vious work corresponds to process 1 in Figure 1. An RTL
path is a bundle of gate-level paths between two registers.
The total number of RTL paths in a circuit is much smaller
than that of gate-level paths, therefore the identification can
be performed in a reasonable amount of time. Moreover,
a mapping from RTL paths in an RTL circuit to their cor-
responding gate-level paths in its gate-level circuit (process
2 in Figure 1) was also addressed. Our experiments have
shown that a large number of non-robust untestable paths
were identified for some benchmarks.

In this paper, we consider identification of functionally
unused RTL paths other than RTL false paths, which are

1The work is for identifying non-robust untestable paths but it can be
easily extended for identifying false paths.

IEEE 8th Workshop on RTL and High Level Testing, October 2007

called RTL don’t care paths. Consider an RTL circuit meet-
ing a design specification that is designed at RTL or given as
an output of high-level synthesis. If some resources, such as
operational modules or system buses, are shared, function-
ally unused paths between two registers are embedded in the
RTL circuit. With regard to control signal values (e.g., load-
enable of registers or select signals of MUXs) or data signal
values, the values are specified as meeting the design specifi-
cation. In some control step, some control signal value may
not be necessary to be specified for implementing the design
specification. By focusing on such unspecified values ’Xs’,
our path identification method identifies the functionally un-
used paths as RTL don’t care paths. This work corresponds
to process 3 in Figure 1.

Gate-level paths corresponding to the identified RTL
don’t care paths can be false or true depending on an assign-
ment value to *X” in logic synthesis. If such RTL don’t care
paths are unintentionally transformed into false paths dur-
ing synthesis, it is conceivable that identification of the false
paths at gate level is intractable. Therefore after the process
3, we transform RTL don’t care paths into RTL false paths.
Our approach is to determine an assignment to unspecified
values at RTL before logic synthesis and make the identi-
fied RTL don’t care paths RTL false (process 4 in Figure 1).
Consequently, our approach contributes to increase in the
number of identifiable untestable paths at RTL.

Experimental results show that there exist a lot of RTL
don’t care paths in some ITC’99 benchmark circuits and
most of the identified RTL don’t care paths are transformed
into RTL false paths.

2. Preliminaries
2.1. RTL circuit and RTL path

Our path identification method approaches to structural
RTL designs as shown in Figure 2. A structural RTL design
consists of a controller represented by a finite state machine,
and a datapath represented by RTL modules such as MUXGs,
operational modules and registers, and RTL signal lines be-
tween them. They are connected to each other by control
signal lines and status signal lines. The controller controls
control inputs of hardware elements (e.g., load-enable sig-
nals of registers and select signals of MUXSs) in the datapath.
On the other hand, status signals from the datapath are fed
into the controller. We assume that state transitions are com-
pletely specified for any pair of a state and an input vector.

If a target RTL circuit is described as a functional RTL, it
may be difficult to directly extract its structural RTL from the
description. In such a case, the information about structure
can be obtained during synthesis process. For example, the
commercial high-level synthesis tool Explorations tool (Y
Explorations, Inc.)[12] has a function to transform a func-
tional RTL to its structural RTL.

A path at gate-level is an ordered set of gates {go, g1, ..,
gn}, where gy is a primary input or a flip-flop and g, is a
primary output or a flip-flop when we consider a sequential
circuit. Also g;(1 <7< n—1) is a gate. The number of gate

-10-

Controller

---» Control signals
~=——=s_Status signals

Figure 2. An RTL circuit.

level paths in a circuit is extremely large. When we consider
the circuit at RTL, all gate level paths between two registers
are dealt with as an RTL path which contains a bundle of
paths. In this paper, we use the concept of RTL paths[13].
An RTL path is a path which starts at a primary input or a
register and ends at a register or a primary output, which is
passing through only combinational modules and has a bit
width. The number of RTL paths in an RTL circuit is much
smaller than that of gate-level paths in its gate-level circuit.
2.2. Logic synthesis

Our path identification method is applied to RTL paths in
an RTL circuit and the information about the paths at RTL
is propagated to gate-level paths in a gate-level circuit trans-
formed by a logic synthesis. Then it is necessary to clarify
the correspondence of RTL paths to gate-level paths. As one
solution to achieve the clarification, we consider a restricted
synthesis called module interface preserving-logic synthe-
sis.

Definition 1 (Module interface preserving-logic synthes:s[ll[]

Given an RTL circuit, if logic synthesis transforms each
RTL medule and each RTL signal line into an individual
gate-level netlist and individual one bit signal lines, respec-
tively, the logic synthesis is referred to as module interface
preserving-logic synthesis (MIP-LS). O

During an MIP-LS for an RTL circuit, each RTL mod-
ule is transformed to an individual gate-level netlist. Then
optimization is performed within each module. Each RTL
signal line connecting RTL modules is split to single-bit sig-
nal lines. Therefore, for the RTL circuit, the connectivity
of all the RTL modules is guaranteed to be propagated to a
synthesized gate-level circuit through any MIP-LS.
2.3. RTL path classification

We classify RTL paths into three types: RTL false paths,
RTL true paths and RTL don't care paths, depending on
whether the corresponding gate-level paths are false. Each
definition is as follows.
Definition 2 (RTL false path[11]) An RTL path p in an
RTL circuit is RTL false if any gate-level path corresponding
to p in its gate-level circuit is gate-level false for any logic
synthesis. a

Sl

IEEE 8th Workshop on RTL and High Level Testing, October 2007

Definition 3 (RTL true path) An RTL path p in an RTL
circuit is RTL true if at least one gate-level path correspond-
ing to p in its gate-level circuit is gate-level true for any logic
synthesis. a
Definition 4 (RTL don’t care path) An RTL path p in an
RTL circuit is RTL don’t care if there exists a logic synthe-
sis where any gate-level path corresponding to p in its gate-
level circuit is gate-level false and there also exists a logic
synthesis where at least one gate-level path corresponding
to p in its gate-level circuit is gate-level true. o
It may be hard under any logic synthesis to map an RTL
path to all the gate-level paths corresponding to the RTL path
completely. To achieve the mapping, we restrict logic syn-
thesis to MIP-LS.
Definition 5 (RTL don’t care path w.r.t. MIP-LS) An
RTL path p in an RTL circuit is RTL don’t care w.r..
MIP-LS if there exists an MIP-LS where any gate-level
path corresponding to p in its gate-level circuit is gate-level
false and there also exists an MIP-LS where at least one
gate-level path corresponding to p in its gate-level circuit is
gate-level true. ‘ ’ m)
In this paper, we focus on identification of RTL don’t care
paths w.r.t. MIP-LS. RTL don’t care paths w.r.t. MIP-LS are
referred to as RTL don’t care paths and denote as RTL-DC
in the rest of this paper.

_ 3. RTL-DC path identification

In this section, we recall sufficiency of RTL false paths
and present sufficiency of RTL-DC paths.

Let C and C' be an RTL circuit and its gate-level cir-
cuit synthesized by an MIP-LS, respectively. Let p be an
RTL path in C. Let F = {Fj|1 < j < m} be a set of flip-
flops in C' corresponding to an m bit register R in C. 7(R)
denotes a mapping from R to F. Let Rs and Re be regis-
ters that are the starting register and the ending register of
p, respectively. Let My, Ma,...,M; be RTL modules on p.
Suppose that p passes through input ports Mjin, Min, ..., Miin
and output ports Miou, Maour, .., Miow- Let O be a set of all
gate-level paths between t(Rs) and T(Re) passing through
MlimM louhMZimMZOuIy ---7MiﬂaM0llf in order. 8(1’) denotes
a mapping from p to 0.

Theorem 1 shows sufficiency for which an RTL path p in
an RTL circuit C is RTL false. The conditions of Theorem 1

" are based on a transition at the starting point of p, its prop-

agation along p and its capture at the ending point. For p,
Vg € §(p) in a gate-level circuit C' is gate-level false if The-
orem 1 is satisfied. The conditions of Theorem 1 are used in
Theorem 2.

Theorem 1 [11] An RTL path p in an RTL circuit C is RTL
false if one of the following three conditions is satisfied for
any input sequence.

Condition I: No transition is ever launched at the register of
the starting point of p.

" Condition 2: No transition at the starting point of p is ever

propagated to the ending point along p.

-11-

Condition 3: No value captured into the register at the end-
ing point of p is ever propagated to any primary output. O
Theorem 2 shows sufficiency for which p is an RTL-DC
paths.
Theorem 2 An RTL path p in an RTL circuit C is RTL-DC |
if one of the following three conditions or one of the three
conditions of Theorem 1 is satisfied for any input sequence
and there exists at least one input sequence that satisfies one
of the following three conditions and no condition of Theo-
rem 1.
Condition 1: 1t is unspecified whether a transition is
launched at the register of the starting point of p or not.
Condition 2: 1t is unspecified whether the transition at the
starting point of p is propagated to the ending point along p
or not.
Condition 3: 1t is unspecified whether the value is captured
into the register at the ending point of p. a
A path to transfer data from one register to another is deter-
mined by the select signal of each MUX on the path. The
timing of data transfer between two registers is determined
by the load-enable signal of each register. In this section,
from the information on control signals, we show sufficient
conditions for identifying RTL-DC paths.

The state register (SR) in a controller represents states of
the controller. Control signals for each state and a next state
are determined by the value of the SR and status signals from
a datapath and/or the PI. We distinguish an RTL path start-
ing at the SR in a controller from the other RTL paths. By
considering state assignment, we can know the timing when
transitions are launched for each bit of the SR and the direc-
tions of the transitions. Therefore we take the information
about the state assignment and the directions of the transi-
tions into account for identifying RTL-DC paths starting at
the SR. A register in a datapath is referred to as a datapath
register (DR).

RTL paths starting at DR/PI

Let Rs and Re be the starting register and the ending regis-
ter of p, respectively. Let Cgs and Cg. be load-enable signals
of Rs and Re, respectively. If the load-enable signal of a reg-
ister is equal to *1°, the register loads a value; otherwise, it
holds its value. Note that if the register does not have a hold
function, we assume that the register has a load enable signal

* line and the value of that signal is always 1°. If the starting

point of p is a PI or the ending point of p is a PO, the PI and
the PO are treated as a register with no hold function. Let
M; and Cy, (1 < i < n) be aMUX on p and its select signal,
respectively, where n is the number of MUXs on p. Let Cf{,,
be the control value of M at time k. When M; selects the
input on p, the value of the select signal is denoted as pay;.
For example, suppose that p is the RTL path Ry-M;-ALU-
M>-R3 in Figure 2. When M, and M, select p, pa, = 0 and
bmy, = 0.

We mainly focus on non-robust untestable paths. Under
single fault assumption (a single path is only affected by de-
lay), the delay on a non-robust untestable path does not af-
fect the circuit performance. Thus, in this paper, a gate-level
path is said to be false if the path is non-robust untestable. If

'IEEE 8th Workshop on RTL and High Level Testing, October 2007

(X.*) RTLpathp(ls*) (L*)
(*0orX (% X)) (*0)-
(*lorX)— (%lorX (X
- Condition 1 Condition 2 Condition 3

(* denotesOorlorX)

Figure 3. An example of three conditions of
Theorem 4

we relax the single fault assumption, the delay on a non-
robust untestable path may affect the circuit performance
depending on the delays on its off-paths. Our path identi-
fication method can also deal with functionally unsensitiz-
able paths by simple extension of the sufficient condition for
non-robust untestable.

Theorem 3 shows sufficiency for which an RTL path p in
an RTL circuit C is RTL false. The conditions of Theorem
3 are conditions with respect to load-enable signals of regis-
ters and select signals of MUXs. The conditions are used in
Theorem 4. ,

Theorem 3 [11] An RTL path p is RTL false if at least one
of the following conditions is satisfied for any state transition
from time k to k+ 1.

Condition 1: (1) Ck, = 0 or (2) Rs is uncontrollable at time
k.

Condition2: 3|1 <i< n, C"+ # pu;, where n is the number
of MUXs on p.

Condition 3: (1) Ck}' = 0 or (2) Re is unobservable at time
k+1. o
The second condition of Theorem 3 means that at least one
MUX on p do not select p at time &£+ 1. If the condition is
extended such that at least one MUX on p do not select pat
time k and k+ 1, any gate-level path correspondmg to pis
functionally unsensitizable.

Theorem 4 An RTL path p is RTL-DC if one of the follow-
ing three conditions or one of the three conditions of Theo-

. rem 3 is satisfied for any state transition from time k to k+ 1

and there exists at least one state transition that satisfies one
of the following three conditions and no condition of Theo-
rem 3.

Condition 1: Ck, = X, where X denotes that no logic value

is specified.

Condition 2: 3i]1 < i < n,Cf}' = X, where n is the number
of MUXSs on p.

Condition 3: CE' = X. m]

The conditions of Theorem 4 show the conditions of con-
trol signals for two time frames % and & + 1. Examples of
them are shown in Figure 3. If Condition 1 of Theorem 4

is satisfied for a state transition, it is unspecified whether a -

transition is launched at Rs at time k. If Condition 2 is sat-
isfied for the state transition, it is unspecified whether the
transition at Rs is propagated to Re along p at time k+ 1. If
Condition 3 is satisfied for the state transition, it is unspeci-
fied whether the transition is captured at Re at time &+ 1.
For each state transition that satisfies at least one of the

-12-

three conditions of Theorem 4 and does not satisfy any con-
dition of Theorem 3, if a logic value is assigned to X such
that the state transition satisfies at least one of the three con-
ditions of Theorem 3, p becomes RTL-false. Otherwise, p
remains RTL-DC or becomes RTL true.

RTL paths starting at SR-fT

. For RTL paths starting at flip-flops in the SR (SR-ff), The-

orem 4 can also be applied. The SR in a controller uploads
a new value every clock cycle. It means that Cps always be-
comes 1 (load). Therefore, RTL paths from the SR-ff to DRs
do not satisfy Condition 1 of Theorem 4. Here, we consider
transitions for each SR-ff. The relation between states and
values of flip-flops is determined by state assignments. We
can obtain the information on state assignments during logic
synthesis, or designers can also determine state assignments
before logic synthesis. From the information on state assign-
ments and state transition, we can know the timing when a
transition is launched at each flip-flop. For example, let us
consider state assignments to the controller in Figure 2. We
assume that the SR in the controller consists of two flip-flops
(FFO0,FF1), and (0,0), (0,1) and (1, 1) are assigned to So,
Si and S, respectively. When S transfers to S), FF1 has a
rising transition. If an RTL path p satisfies Theorem 4 at any
time & when a transition is launched at the starting point of
p, pis RTL-DC.

4. Logic value assignment for fransforming
RTL-DC paths into RTL false paths

This section presents a method to transform identified
RTL-DC paths into RTL false paths by assigning logic val-
ues to each unspecified part X. For an RTL-DC path, there
exist more than one state transition where at least one of the
three conditions of Theorem 4 is satisfied and no condition
of Theorem 3 is satisfied. If a logic value is assigned to X
such that for all such state transitions, one of the conditions
of Theorem 3 is satisfied, then the RTL-DC path becomes
RTL false. Note that our approach uses X to increase RTL
false paths, however we can also use the X for reduction
of area of the circuit or improvement of performance of the
circuit during logic synthesis. Therefore, our proposed algo-
rithm transforms RTL-DC paths to RTL false while keeping
the number of assignments to X as small as possible. The
input, output and optimization for our algorithm are as fol-
lows.

Input: A set of RTL-DC paths and a state transition table.
Output: A set of RTL false paths and a state transition
table(after a logic value is assigned to each X).
Optimization:
First priority: Maximizing the number of RTL false
paths transformed from RTL-DC paths.
Second priority: Minimizing the number of X to which
a logical value is assigned.

EEE 8th Workshop on RTL and High Level Testing, October 2007

4.1. Heuristic approach

When a logic value is assigned to each X, the number
of combinations of the assignments is 21, where |X| is the
total number of X on control vectors. Searching all the
possibility is a hard problem if |X| becomes large. There-
fore, we use some heuristics. First we consider logic value
assignment to each X that maximizes the number of RTL
false paths transformed from RTL-DC paths. This task can
be reduced to the problem called Maximum- Satisfiability
(MAX-SAT). Some approximation algorithms for solving
the MAX-SAT problem have been already proposed[14] and
we use one of the approximation algorithms. After that, we
minimize the number of X to which a logical value is as-
signed. The minimization is that, for each logic value as-
signed to each X in solving the MAX-SAT problem, the
logic value is replaced to X again unless the number of
RTL false paths decreases by the substitution. These are
our heuristic approaches to the transformation from RTL-
DC paths to RTL false paths.

Reduction to the MAX-SAT problem

Given a set of m clauses Cj ...Cy; in conjunctive normal
form over n logical variables, the MAX-SAT problem is to
find a truth assignment for the logical variables that satisfies
a maximum number of clauses. Here we show how to for-
mulate as the MAX-SAT problem using a circuit in Figure 4
as an example.

The table in Figure 4 shows a state transition table of an
FSM and the circuit shows the datapath part. Suppose the
RTL path P1 from R1 to R3 in Figure 4 is RTL-DC. For the
state transition S0 — S1 (i = 0,j = 1), P1 satisfies the first
and third conditions of Theorem 4 because the control sig-
‘nal value of the starting register R1 at S0 is X (Vs,1 =X) and
that of the ending registers R3 at S1 is also X (Vs;3 =X).
By assigning logic value *0’(hold signal) to either Vs, or
Vs,3, P1 satisfies the first or third condition of Theorem 3
for SO — S1. Here, we assign variables Xj and X3 to Vs,
and Vs,3, respectively. Then, an equation Xj VX> = 1, which
is to satisfy the conditions of Theorem 3, is obtained.

Suppose that P2 (R2-M1-Add-Sub-R4) is also RTL-DC.
For §1 — S2 (i=1,j = 2), both P1 and P2 satisfy the sec-
ond condition of Theorem 4 because the select signal of M1
at 82 is X (Vs,5 =X). We assign variable X3 to Vs, s, then for
P1 and P2 at S1 — S2, equations X3 = 1 and X5 = | are ob-
tained, respectively. By generating such equations for all the
state transitions that satisfy only the conditions of Theorem
4, clauses C;,C, for P1 and P2 are obtained. For each RTL-
DC path in a circuit, one clause can be formulated like the
following equations.

C1 = (X1 VX2) A (N3)
Cy = (X3)
Cn= (X VXGVX) A (X V)

If the total number of RTL-DC paths is », a set of clauses
is C = {C,Ca,...,Cy}. Under an assignment satisfying

Si, §j
(Vsiz» Vi)
(Vsir» V1)
State transition table hi
PS | NS(Sj) Output vector (Vsis» Vsjs) P2
(Si) | R=0 | R=1 | (VsiVsi2VsiVsiaVsis) P1 /
S0 | SI S0 XX101
st | s2| so 11X10 (Vsiz» V3
§2 | s0 | S0 0111X y
(Vsiar Vsja)
PS: Present state, NS: Next state,
! 1 Datapath part
R : Reset pai p

Figure 4. An example of RTL-DC paths

C, = 1, the corresponding RTL path is RTL false. The ob-
jective of the MAX-SAT problem is to find an assignment
T for maximizing 37_, C¢. The assignment 7 maximizes
the number of RTL paths transformed from RTL-DC to RTL
false.

Minimization of logic value assignments

To minimize the number of logic value assignments, for
the assignment 7', we replace each assigned logic value with
X unless the number of RTL false paths decreases by the
substitution. The replacement is done targeting for clauses
where 7 does not satisfy true because T cannot transform
RTL-DC paths, which correspond to the clauses that 7 does
not satisfy true, into RTL false. Therefore we try to replace
every logic value in such clauses with X.

5. Experimental results

This section presents the effectiveness of RTL-DC paths
identification and transformation from the identified RTL-
DC paths to RTL false paths. We applied the identification
and transformation approaches to ITC’99 benchmarks using
a Sun Blade 2000 workstation. Original VHDL codes of
ITC’99 benchmarks are written by functional RTL, accord-
ingly control signals for registers and MUXs from a con-
troller at each state are not clear. To clarify control signals
for registers and MUXSs at each state transition, we have re-
coded B07, B14, B20, B21 and B22 such that each circuit
is composed of a controller and a datapath separated from
each other. Each re-coded circuit contains its original circuit
function. The controller part is implemented by an FSM and
the datapath part is constructed of components and intercon-
nections between them, where a component is a register or a
MUX or an operational module. We used Design Compiler
and Prime Time (Synopsys) as a logic synthesis tool and a
timing analysis tool, respectively.

Table 1 reports the number of identified RTL-DC and
RTL false paths using the sufficient condition of Theorem 4
and that of Theorem 3, respectively. The first column shows
each re-coded circuit name with ”_s”. The second, third and
fourth columns show results for RTL paths starting at DR
(datapath register). The second column shows the number of
RTL paths starting at DR. The third column shows the num-
ber of RTL-DC paths that are identified by the three condi-
tions in Theorem 4. B07_s has 21 RTL paths starting at DR

IEEE 8th Workshop on RTL and High Level Testing, October 2007

Table 1. Number of identified RTL-DC paths using the sufficient condition of Theorem 4.

DR SR-fF: Rise SR-ff: Fall
Circuit | #RTL path | #RTL-DC | #RIL-F | #RTL path | #RTIL-DC | #RIL-F | #RIL path | #RIL-DC | #RIL-F
B07.s 21 3(14%) | 5(24%) 63 | 11(17%) | 10(16%) 63 | 24(38%) | 4(6%)
Bld4s 349 | 148 (42%) | 190 (54%) 233 0(0%) | 219 (94%) 233 | 211 (91%) | 0(0%)
B20s 710 | 296 (42%) | 380 (54%) 469 0(0%) | 438 (93%) 469 | 422(90%) | 0(0%)
B21s 710 | 296 (82%) | 380 (54%) 469 0(0%) | 438(93%) 469 | 422(50%) | 0(0%)
B22s 1059 | 444 (42%) | 576 (54%) 702 0(0%) | 657 (94%) 702 | 633 (90%) | 0(0%)
Table 2. Number of RTL false paths transformed from RTL-DC paths.
DR SR-ff; Rise SR-fF: Fall
Circuit | #RTL path | #RTL-DC #RTL-F | #RTL path | #RTL-DC | #RIL-F | #RTL path | #RTL-DC | #RIL-F
B07.s 21 0(0%) 8 (38%) 63 0(0%) | 21(33%) 63 0(0%) | 28(44%)
Blds 349 0(0%) | 338(96%) 233 0(0%) .| 219 (94%) 233 0(0%) | 211(91%)
B20.s 710 0(0%) | 676 (95%) 469 0(0%) | 438 (93%) 469 0(0%) | 422 (90%)
B21s 710 0(0%) | 676(95%) 469 0(0%) | 438 (93%) 469 0(0%) | 422 (90%)
B22s 1059 0(0%) | 1020 (96%) 702 0(0%) | 657 (94%) 702 0(0%) | 633 (90%)

Table 3. Number of gate-level paths corresponding to identified RTL false paths.

DR SR-ff: Rise SR-fF: Fall Total
Circuit | #GL path | #GL-F | ratio | #GL path | #GL-F [matio | #GL path | #GL-F | ratio | #GL path | #GL-F | ratio
BO7s | 19,404 | 4,105 | 21% 2008 | 955 | 33% | 27,688 | 26,137 | 94% | 50,000 | 31197 | 62%
Blds | 43,668 | 47,161 | 96% T | 512 | 66% 558 | 216 | 39% | 50,000 | 47,889 | 96%
B20_s 46,475 | 40,864 | 838% 2,468 1,280 | 52% 1057 925 | 88% 50,000 | 43,069 | 86%
B2ls 46,136 | 40,764 | 83% 2,576 768 | 30% 1288 1024 | 80% 50,000 | 42,556 | 85%
B22_s 47,828 | 38,435 | 80% 1223 1,219 | 99% 949 815 | 86% 50,000 | 40,469 | 81%

and our method identified 3 of 21 (14%) RTL paths as RTL-
DC . For Bl4_s, our method identified 148 of 349 (42%)
RTL paths as RTL-DC. For B20_s, B21_s and B22_s, the ra-
tios of identified RTL-DC paths are almost the same as that
of B14_s. This is because B20, B21 and B22 are composed
of Bl4s and/or 2 modified version of B14s as components.
Analysis for another circuit having a different structure such
as B15 is interesting and this is our future works. The CPU
time required for identifying RTL-DC paths for each B14._s,
B20_s, B21_s and B22_s was a few seconds. The fourth col-
umn shows the number of RTL false paths that are identified
by the sufficient condition of Theorem 3. More than half of
the RTL paths starting at DR in Bl4.s, B20_s, B21_s and
B22_s were identified as RTL false. B14_s is a processor,
and the controller of the processor has only two states: an in-
struction fetch state and an instruction execution one. Since
many registers, except for the instruction register, maintain
their values with hold signals at the fetch state, many RTL
paths tend to satisfy the first or the third condition of The-
orem 3, accordingly our method identified many RTL paths
as RTL false. Note that, in this paper, more than one cycle
tolerant paths are considered to be false. Dealing with such
multi-cycle tolerant paths is our future work.

Columns under ”SR-ff:Rise” and “SR-ff:Fall” show re-
sults for RTL paths starting at SR-ffs with rising transitions
and RTL paths starting at SR-ffs with falling transitions,
respectively. The SR (state register) in each controller of
Bl4.s, B20.s, B21_s and B22._s consists of one flip-flop be-
cause it has two states. The fetch state and the execution
state correspond to logic 0’ and ’1°, respectively. Rising
transitions at SR-ffs are launched at the execution state and
the transitions tend not to be captured at the ending registers

-14-

because many registers hold their values at the next fetch
state. Therefore, there were many RTL false paths for B14_s,
B20_s, B21.s and B22_s. Falling transitions tend to have op-
posite aspects to rising transitions.

Table 2 shows the number of RTL false paths transformed
from RTL-DC. For all the benchmarks, this time it happened
that all the identified RTL-DC paths were transformed to
RTL false paths although it is good trend for us. How-
ever, it is important to analyze some trends for other circuits.
This further examination is our future work. For B07_s and
B14_s, we evaluate their area overhead during logic synthe-
sis which are caused by a logic value assignment to X’. For
B07_s, the area before logic value assignment was 3,101
(one NOT-gate corresponds to 1) and the area after logic
value assignment became 3,105, For B14_s, the area became
24,072 from the original area 23,990. For these two circuits,
the ratio of increased area was less than 1%. By logic value
assignment, the area of a controller part increases, however
that is much smaller than that of a datapath part.

. Table 3 reports the number of gate-level paths corre-
sponding to RTL false paths that are identified from The-
orem 3, or transformed from RTL-DC paths that are identi-
fied from Theorem 4. We extracted gate-level paths from the
longest paths, which has larger propagation delay, by using
the “report path” function of Prime Time. For every circuit
B07s, B14_s, B20_s, B21_s and B22_s, we extracted 50,000
gate-level paths from the longest, respectively. The second
column shows the number of gate-level paths starting at DRs
among the extracted 50,000 paths. The third column shows
the number of gate-level false paths starting at DRs that cor-
respond to RTL false paths that we identified. For Bl4.s,
47,161 of 49,232 (96%) paths were identified as false by our

IEEE 8th Workshop on RTL and High Level Testing, October 2007

proposed method. For B20_s, B21.s and B22.s, the ratio of
gate-level false paths to the extracted paths was also high.
This means our proposed method was able to identify many
longest false paths. The next six columns show the evalua-
tion for gate-level paths starting at SR-ffs with rising transi-
tions and starting at SR-ffs with falling transitions, respec-
tively. For BO7.s, a large number of gate-level paths with
falling transition were identified as false (26,137/27,688) al-
though the ration of RTL false paths to RTL paths starting
at SR-ff with falling transition is not so high (28/63). This
means that RTL paths corresponding to many longest gate-
level paths were identified as false. For each Bl4_s, B20_s,
B21.s and B22_s, the number of gate-level paths starting at
SR-ffs was much less than that of paths starting at DRs. The
last three columns show the total number of extracted gate-
level paths and identified gate-level false paths. These re-
sults report a lot of the longest false paths were identified for
these benchmarks by our path identification method.

6. Conclusion

In our previous work[11], we have introduced a concept
of register-transfer level (RTL) false path and have shown
that gate-level paths corresponding to RTL false paths are
false. In this paper, we have presented a concept of RTL
don’t care (RTL-DC) path. An RTL-DC path can become
either an RTL false path or an RTL true path depending on
logic value assignment to unspecified coordinates of output
vectors of a controller. If such RTL-DC paths are uninten-
tionally transformed into false paths during synthesis, it is
conceivable that identification of the false paths at gate level
is intractable. Thus, we have proposed a method for iden-
tifying RTL-DC paths and transforming the identified RTL-
DC paths into RTL false paths. The experimental results
have shown that our proposed method identifies many RTL-
DC paths for some 1TC’99 benchmark circuits and most of
the identified RTL-DC paths are transformed into RTL false
paths. Our approaches can contribute to identification of
many gate-level untestable paths and reduction of the fu-
tile testing within a reasonable amount of time compared to
gate-level path identification approaches.
Acknowledgment
The authors would. like to thank Profs. Tomoo Inoue of
Hiroshima City University, Michiko Inoue and Tomokazu
Yoneda of Nara Institute of Science and Technology for their
valuable discussion and their cooperation. This work was
supported in part by Semiconductor Technology Academic
Research Center (STARC) under the Research Project and in
part by Japan Society for the Promotion of Science (JSPS)
for Young Scientists (B) (No.17700062).

References

[1] G.L.Smith, “Model for delay faults based upon paths,” Proceeding of
International Test Conf., pp.342-349, Nov. 1985.

[2] A. Krstic and K.T. Cheng, Delay Fault Testing for VLSI Circuits,
Kluwer Academic Publishers, 1998.

[3]

4]

[5

—

(6]

Y|

[8

—

9

[10]

(1

[12]

[13]

(14

Y. Shao, S.M. Reddy, 1. Pomeranz, and S. Kajihara, “On select-
ing testable paths in scan designs,” IEEE European Test Workshop,
pp.55-58, 2002.

W.Qin, J. Wang, D.M.H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi,
and H.Balachandran, “K longest paths per gate test generation for
scan-based sequential circuits,” Proc. International Test Conference,
pp.223-231, 2004.

Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Ka-
jihara, “Invisible delay quality - sdgm model lights up what could not
be seen,” International Test Conference, pp.1-9, 2005.

K.T. Cheng and H.C. Chen, “Classification and identification of non-
robust untestable path delay faults,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol.15, no.8, pp.854-853,
Aug, 1996.

S. Kajihara, K. Kinoshita, 1. Pomeranz, and S.M. Reddy, “A method
for identifying robust dependent and functionally unsensitizable
paths,” Proc. Int. Conf. on VLSI Design, pp.82-87, 1997.

$.M. Reddy, S. Kajihara, and 1. Pomeranz, “An efficient method to
identify untestable path delay faults,” [EEE the 10th Asian test sym-
posium, pp.233-238, Nov. 2001

A. Krstic, S.T. Chakradhar, and K.T. Cheng, “Testable path delay
fault cover for sequential circuits,” Proc. European Design Automa-
tion Conference, pp.220-226, Sep. 1996.

R. Tekumalla and P.R. Menon, “Identifying redundant path delay
faults in sequential circuits,” Proc. 9th International Conf. VLSI De-
sign, pp.406—411, Jan 1996.

Y. Yoshikawa, S. Ohtake, and H. Fujiwara, “False path identification
using RTL information and its application to over-testing reduction
for delay faults,” IEEE the 14th Asian Test Symposium, Oct. 2007,
To appear.

Y Explorations, Inc., Explorations tool,
http://www.yxi.com/index html.

M.A. Amin, S. Ohtake, and H. Fujiwara, “Design for hierarchical
two-pattern testability of data paths,” IEICE Trans. on Information
and Systems, vol.E85-D, no.6, pp.975-984, Jun. 2002.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Al-
gotithms, Springer-Verlag, 2005.

