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Abstract
The class of acyclically testable sequential circuits [7] in-

cludes that of acyclic sequential circuits, and furthermore
these classes are equivalent in test generation complexity. In
this work, we consider an extension of the class of acyclically
testable sequential circuits. To extend the class, we introduce
a pair of justification and propagation thru trees, instead of
the thru trees presented in [7]. Based on the thru tree pair, we
propose an extended class of acyclically testable sequential
circuits. While the new class properly includes the previous
class, it is conjectured that the test generation complexity of
the new class is equivalent to that of the previous one. Ex-
perimental results show that the DFT method based on the
proposed class requires smaller overhead than the previous
one with smaller test generation time.
Key words : test generation, acyclic testability, design-

for-testability, combinational test generation complexity, τk
notation.
1 Introduction
The test generation problem even for combinational cir-

cuits, was shown to be NP-complete [1], but empirical
observations tell us that the test generation complexity of
practically encountered combinational circuits seems to be
polynomial[2]. On the other hand, the problem of test gen-
eration for sequential circuits is hard to be solved in prac-
ticable time. In many cases, the problem is converted into
that for combinational circuits by full scan design. How-
ever, there exist some sequential circuits whose test gener-
ation is practically tractable as well as the test generation
complexity of combinational circuits. Ooi et al. introduced
that any sequential circuits can be classified by denoting
τ = Θ(nr) (n is the size of the combinational circuit, r is
some constant larger than 2) as the test generation complex-
ity of combinational circuits[3, 4]. For example, the test gen-
eration complexity for the sequential circuits that have bal-
anced structure or internally balanced structure is said to be
τ-equivalent because it is equivalent to combinational test
generation complexity[5, 6]. The test generation complex-
ity of general acyclic sequential circuits is denoted by τ2-
bounded (O(τ2(n))). This means general acyclic sequen-
tial circuits are comparatively easily testable though they are
more hardly testable than combinational circuits and the se-
quential circuits with balanced structure and internally bal-
anced structure. In addition, the authors introduced a wider
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Figure 1. Sequential circuit S1

class called acyclically testable sequential circuits whose test
generation complexity is τ2-bounded. Note that this class is
wider than the class of acyclic sequential circuits but its test
generation complexity is equivalent to that of the acyclic se-
quential circuits [7]. They defined a thru tree whose its root
is a primary output, its leaves are primary inputs and each of
its edges represents a thru function. A sufficient condition of
acyclical testability were defined based on the thru trees.
In this work, we discuss an extension of the class of

acyclically testable sequential circuits. We propose a pair
of justification and propagation thru trees instead of the thru
trees presented in [7]. Based on the thru tree pair, we in-
troduce a new class of sequential circuits named extended
acyclically testable sequential circuits. The class of extended
acyclically testable sequential circuits properly includes that
of acyclically testable sequential circuits. This implies that
the DFT based on the extended acyclical testability requires
smaller hardware overhead than the DFT based on the acycli-
cal testability. Experimental results show that the DFT over-
head based on the extended acyclical testability is smaller
than that based on the previous class, while complete fault
efficiency can be obtained.
2 Acyclically testable circuits
2.1 R-graph for sequential circuits
An example sequential circuit considered in this work is

illustrated in Fig. 1. A sequential circuit is composed of com-
binational logic blocks(CLBs), registers and connections be-
tween CLBs and registers. Some CLBs have thru functions.
Here we consider two types of thru functions as shown in
Fig. 2. One is a simple thru: it transfers the data of an input
of the CLB to the output independent of other inputs. The
other is a merge thru: it binds the data of a certain number of
inputs and transfers them to the output without modification.
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A sequential circuit is represented by an R-graph defined
as follows.
Definition 1 (R-graph): An R-graph is a directed graph
GR = (V,A,w,r, t) that has the following properties.

1. A vertex v (∈V ) corresponds to a register, a primary in-
put or a primary output. Sets VR, VI and VO are a set of
registers, primary inputs and primary outputs, respec-
tively. Then, the set V represents the union of VR, VI
and VO, i.e., V =VR∪VI ∪VO.

2. An arc (u,v) (∈ A) denotes a connection via combina-
tional logic blocks or directly from u corresponding to
a register or a primary input to v corresponding to a reg-
ister or a primary output.

3. The mapping w(v) (w : V → Z+) denotes the bit width
of v corresponding to a register, a primary input or a
primary output, where Z+ denotes a set of non-negative
integers.

4. The mapping r(v) (r : v→ {h,φ}) defines the type of
the vertex. If r(v) = h, v corresponds to a hold register.
Otherwise if r(v) is empty, i.e., r(v) = φ , v corresponds
to a register with no hold function, a primary input or a
primary output.

5. For any arc (u,v), if (u,v) has a thru function ti, the
mapping t(u,v) is denoted by t(u,v) = ti. If there exists
no thru function for (u,v), t(u,v) is empty (t(u,v) = φ ),
i.e., t :V 2 → F ∪{φ}, where F = {t1,t2, ...,tm} denotes
a set of thru functions．

For example, Fig. 3 shows an R-graph for sequential cir-
cuit S1.
If a thru function ti is active according to the values of a

subsetV ′ of primary inputs and registers(i.e.,V ′ ⊆VI∪VR), ti
is said to be activated byV ′, and expressed as α(ti) =Vt (α :
F → 2V ). If α(ti) is empty (i.e., α(ti) = φ ), ti is always
activated.
2.2 The test generation complexity of acyclic se-

quential circuits
In [3, 4], the test generation complexity of combinational

circuits is denoted by τ(n) (= Θ(nr)) (n is the size of the
combinational circuit, and r is some constant larger than 2),
and that of a sequential circuit is expressed by means of τk.
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Figure 4. Sequential circuit S2
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Based on this notation, the test generation complexity of
acyclic sequential circuits is denoted by O(τ2(n)) (i.e., τ2-
bounded). This implies that the class of acyclic sequential
circuits is comparatively easily testable. For example, con-
sider an acyclic sequential circuit S2 illustrated in Fig. 4. The
test generation for S2 can be performed on a time expansion
model (TEM) as shown in Fig. 5. A TEM consists of CLBs
and their connections, and represents the time when the out-
put of each CLB is determined by other CLBs. Note that a
TEM has no registers and thereby is a combinational circuit.
When a test pattern (PI10, PI20, PI3, PI4, PI11, PI21

: PO1) = (A, B, C, D, E , F : G) is obtained from TEM
C(S2,CLB2) for CLB2 of S2 illustrated in Fig. 5, the corre-
sponding test sequence for S2 is (PI1, PI2, PI3, PI4, PI5 :
PO1, PO2) = ⟨ (A, B,C, D, X : X , X), (E , F , X , X , X : X , X),
(X , X , X , X , X : G, X) ⟩. Here, the length of a TEM refers to
the number of time frames (i.e., the difference between the
maximum and minimum numbers labeled for CLBs plus 1)
in the CLB. For example, the length of TEMC(S2,CLB2) in
Fig. 5 is 3.
2.3 Acyclical testability
The previous work [7] introduced a class of acyclically

testable sequential circuits whose test complexity is equiva-
lent to that of acyclic sequential circuits, i.e., the complexity
is τ2-bounded. For example, sequential circuit S1 in Fig. 1
is acyclically testable. R-graph of S1 is illustrated in Fig.
3. Note that the R-graph has a cycle consisting of vertices
R3, R4 and R5, i.e., it is not acyclic. In this R-graph, any of
vertices R3, R4 and R5 can compose a feedback vertex set
(FVS)1. Sequential circuit S1 has a path from primary input
PI3 to primary output PO1, consisting only of simple thrus

1For a direction graph G = (V,A), a subset of the vertex set V ′ (⊆ V ) is
a feedback vertex set if the subgraph of G induced by V −V ′ is acyclic.
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t1, t2 and t3. Accordingly, R3 and R4 can be justified from
PI3, and can be observed at PO1. In other words, the path
with thrus can be considered to be a scan path of R3 and R4,
and consequently the test generation for S1 can be achieved
in the same way as acyclic sequential circuits. Such a thru
path is referred to as a thru tree [7]. In [7], the sufficient con-
ditions of acyclically testable is denoted with the concept of
thru tree. One of the conditions is that an FVS is covered by
the thru trees, e.g., in the R-graph in Fig. 3, the thru tree with
thrus t1, t2 and t3 covers an FVS {R3}. If a sequential circuit
satisfies the sufficient conditions, a TEM for any CLB in the
sequential circuit can be constructed. For example, a TEM
C(S1,CLB5) forCLB5 of S1 is shown in Fig. 6.
3 Extended class of acyclically testable se-
quential circuits
Let’s consider sequential circuit S3 in Fig. 7. Note that,

unlike sequential circuit S1 in Fig. 1, S3 has no thru func-
tion inCLB4. Fig. 8 shows the R-graph for sequential circuit
S3. As we can see from Fig. 8, S3 has no thru tree from
PI3 to PO1. Accordingly it is not acyclically testable. How-
ever, we can obtain a TEM for any CLB. A TEM for CLB5
C(S3,CLB5) is shown in Fig. 9.
For a given TEM, a test sequence generated for a

fault in C(S,B) must correspond to a test sequence for
the corresponding fault in S. A test pattern generated
on C(S3,CLB5) can be transformed to a test sequence.
When a test pattern (PI10,PI20,PI30,PI4,PI11,PI21,PI31 :
PO1) = (E,F,A′,B,G,H,D : C′′) is obtained on TEM
C(S3,CLB4) for CLB5 of S3 illustrated in Fig. 9, the
corresponding test sequence for S3 is (PI1,PI2,PI3,PI4 :
PO1) = ⟨(E,F,A′,X : X),(X ,X ,X ,B : X),(G,H,D,X :
X),(X ,X ,X ,X : X),(X ,X ,X ,X :C′′)⟩.
This example implies that an FVS in an R-graph does

not always need to be covered by thru trees whose root and
leaves are a primary output and primary inputs, respectively.
In the R-graph in Fig. 8, two FVSs R4 and R3 are covered
by the two partial thru trees, one contains just thru functions
t1 and the other contains t3. Hence, any value of register R4
can be justified with thru function t1, and any value of reg-
ister R3 can be propagated to primary output PO1 with thru
function t3. Such justification and propagation are sufficient
for testing CLBs.
In the following discussion, we present justification thru

trees and propagation thru trees in place of the thru trees
defined in [7], and propose an extended class of acyclically
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testable sequential circuits.
3.1 Thru trees for justification and propagation
For any cycle, if there exists a thru path for justification to

any register on the cycle and a thru path for propagation from
any register on the cycle, a TEM for testing any CLB can be
derived. Here, a pair of thru trees are defined as follows.
Definition 2 (Justification thru tree and propagation thru
tree): Let GR = (V,A,w,h,t) be an R-graph. A justification
thru tree TJ = (VJ,AJ),(VJ ⊆V,AJ ⊆ A) is a subgraph ofGR
that satisfies the following conditions.
1. Any leaf v (∈ VJ) corresponds to a primary input, i.e.,

v ∈VPI .

2. Any arc (u,v) (∈ AJ) has a thru function, i.e., t(u,v) ̸=
φ .

3. All inputs of a merge thru function are included in TJ or
no input is includes in TJ , i.e., ∀ti ⊆ F, (t−1(ti)∩AJ =
t−1(ti))∨ (t−1(ti)∩AJ = φ).

A propagation thru tree TP = (VP,AP),(VP ⊆V,AP ⊆ A)
is a subgraph of GR that satisfies the following conditions.
1. The root v (∈VP) corresponds to a primary output, i.e.,

v ∈VPO.
2. Any arc (u,v) (∈ AP) has a thru function , i.e., t(u,v) ̸=

φ .



Definition 2 implies that any vertex (or a register) in a
justification thru tree TJ can be justified from primary in-
puts, and any vertex (or a register) in a propagation thru tree
TP can be observed at a primary output. Note that justifi-
cation and propagation with thru trees can be regarded as
scan-in and scan-out operation, respectively. Therefore, if
justification (resp. propagation) thru trees cover an FVS for
an R-graph, we can justify (resp. observe) at least one regis-
ter on every cycle in the sequential circuit corresponding to
the R-graph.
In the R-graph of sequential circuit S3 (Fig. 8), justifica-

tion and propagation thru trees are TJ = (VJ = {PI1,R4},
AJ = {(PI1,R4)}) and TP = (VP = {R3,PO1}, AP =
{(R3,PO1)}), respectively. Note that the FVS for the R-
graph is corresponding to that for R-graph of S1. Vertices
R4 and R3 are included in thru trees TJ and TP, respec-
tively. Accordingly registers R3 and R4 in the FVS can
be justified from primary input and the registers can be ob-
served from a primary output. Based on this property, TEM
C(S3,CLB5) for CLB5 of S3 can be obtained as shown in
Fig. 9. Note that if arc (PI4,R5) has a thru function, the sub-
graph ({PI4,R5},{(PI4,R5)}) can be another justification
tree, and hence a different TEM can be available.
When a justification thru tree is identical to a propaga-

tion one, i.e., TJ = TP, the thru tree corresponds to the thru
tree defined in [7]. Thus, a class of pairs of justification and
propagation thru trees includes that of the thru trees defined
in [7].

3.2 Extended acyclically testable sequential cir-
cuits

A thru function for a sequential circuit is activated accord-
ing to values in registers or primary inputs. These thru tree
relationship is denoted as follows.
Definition 3 (Dependency between thru trees): Let
Ti = (Vi,Ai) and Tj = (Vj,Aj) be thru trees of GR. Let
thru tree Ti = (Vi,Ai), D(Ti) denote a set of registers or
primary inputs that activate a thru function t (∈ Ti), i.e.,
D(Ti) = ∪a∈Aiα(t(a)). If there exists a vertex v that acti-
vates a thru function t(∈ Ti), i.e., v ∈ D(Ti), Ti depends on
vertex v. And, for two thru trees Ti and Tj, if the union of
D(Ti) and Vj is not empty, i.e., D(Ti)∩Vj ̸= φ , Ti depends on
Tj and this relation is represented as Ti ≺ Tj.
For a sequential circuit with justification and propagation

thru trees, if the sequential circuit has a dependency between
thru trees, there is a possibility that thru functions cannot be
activated in some TEMs.
Let us consider sequential circuit S3 illustrated in Fig. 7.

Suppose that thru function t1 is activated by the value of PI2
(α(t1) = PI2), that is, the justification thru tree TJ = (VJ =
{PI1,R4},AJ = {(PI1,R4)}) depends on primary input PI2.
Here, let us consider that registers R2 and R4 are justified
simultaneously. Because of α(t1) = PI2, primary input PI2
needs a particular value to justify R4 with thru function t1.
On the other hand, to justify R2, another particular value may
be needed on primary input PI2. Thus, these values on pri-
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Figure 10. Time expansion model C(S3,CLB4)
for CLB4 of S3

mary input PI2 may be conflict, and consequently some test
patterns forCLB4 may not be justified.
Some dependencies of thru trees can be solved with a hold

function of a register. For example, in S3 shown in Fig. 7, if
registers R2 or R4 have a hold function, input to CLB1 and
activation for thru function t1 can be implemented in separate
time frames. As a result, TEM C(S3,CLB4) can be obtained
as shown in Fig. 10. Whether the value confliction should
be adjusted with hold functions depends on not only the de-
pendency of thru trees but also the dependency of paths. The
definition of path dependency is as follows.
Definition 4 (Dependency between paths): Let p =

(u1,u2, ...,unp) and q = (v1,v2, ...,vnq) be paths in an R-
graph. If the following conditions are satisfied, p depends
on q.

1. The lengths of paths p and q are equal, i.e., np = nq(=
n).

2. The end vertices on paths p and q are the same, i.e.,
unp = vnq .

3. The first arc (u1,u2) of paths p has a thru function, i.e.,
t(u1,u2) ̸= φ .

4. The start vertices on paths p and q are the same or the
thru function of arc (u1,u2) is activated by vertex v1 on
q, i.e., v1 ∈ α(t(u1,u2)).

Based on the above definitions, a sufficient conditions of
extended acyclically testable sequential circuits is as follows.
Definition 5 (a set of thru tree pair in sequential circuit):
For an R-graph GR = (V,A,w,r,t) of a sequential cir-

cuit S, if S has a set of justification thru trees TTTJ = {TJi =
(VJ
i ,AJi ), i = 1,2, ...,nJ} and propagation thru trees TTTP =

{TPi = (VP
i ,APi ), i= 1,2, ...,nP}, and hold registers such that

satisfies the following conditions, S is said that S has a set
of thru tree pair (TTTJ ,TTTP). Here, TTT = TTTJ ∪TTTP, VJ

T = ∪nJi=1VJ
i ,

VP
T = ∪nPi=1VP

i .
1. The set of justification thru trees TTTJ satisfies the follow-
ing conditions.
(a) All thru trees in TTTJ are disjoint, i.e., ∀i, j(i ̸=

j),VJ
i ∩VJ

j = φ .
(b) A vertex set VJ

T includes all vertices composing at
least one FVS, i.e., for any FVSV ′(⊆V ),V ′ ⊆VJ

T .
(c) Any vertex v(∈VJ

T ) corresponds to a hold register,
i.e., ∀v ∈VJ

T ,r(v) = h.



2. The set of propagation thru treesTTTP satisfies the follow-
ing conditions. 　
(a) All thru trees in TTTP are disjoint i.e., ∀i, j(i ̸=

j),VP
i ∩VP

j = φ .

(b) Vertex set VP
T includes all the vertices composing

at least one FVS, i.e., for any FVS, V ′(⊆V ), V ′ ⊆
VP
T .

(c) For any vertex v(∈ VP
T ),v corresponds to a hold

register, i.e., ∀v ∈VP
T ,r(v) = h．

3. Let Tk = (Vk,Ak) be a justification thru tree included in
TTTJ . Thru tree Tk satisfies the following conditions.

(a) A thru tree Tk doesn’t depend on itself(Tk ̸≺ Tk)．
(b) Any vertex v ∈ D(Tk) on which Tk depends is in-

cluded in other justification thru trees or VPI , i.e.,
∀v ∈D(Tk),v ∈ (VJ

T −Vk)∪VPI．

4. For any justification thru tree TJ(∈ TTTJ) and T ̸= TJ(∈
TTT ) satisfy the following conditions.

(a) Thru tree TJ depends on any vertex that doesn’t
depend on T , i.e., D(TJ)∩D(T ) = φ．

(b) If T depends on TJ , TJ doesn’t depend on T , i.e.,
T ≺ TJ ⇒ TJ ̸≺ T .

5. Let p = (u1,u2, ...,unp) and q = (v1,v2, ...,vnq) be any
pair of paths that satisfy the following conditions.

• In any path of p and q, any cycle is simple 2.
• Path p depends on q.
• Let uip (1 < ip < np) be a vertex. The path

(u1, ...,uip) is included in a justification thru tree,
and the subsequent arc (uip ,uip+1) is not included
in any justification thru tree. Path p includes no
subpath (u jp , ...,ukp) (ip < jp≤ kp < np) such that
vertex u jp is included in a justification thru tree
and ukp is included in a propagation thru tree, i.e.,
u jp ∈VJ

T and ukp ∈VP
T .

• Path q includes no subpath (v jq , ...,vkq) (1 < jq ≤
kq < nq) such that vertex v jq is included in a justi-
fication thru tree and vkq is included in a propaga-
tion thru tree, i.e., v jq ∈VJ

T and vkq ∈VP
T .

Either p or q, denoted by p̂ = (û1, û2, ..., ûn), includes a
vertex ûk such that :

(a) for a subpath p′ = (ûk, ˆuk+1, ..., ûn) of p̂, the length
|p′| of p′ is equal to or longer than the length |p′′|
of a distinct path p′′ = (ûk, ..., ˆunp), and

(b) a vertex ûk has a hold function , i.e., r(ûk) = h.

2A cycle (v1, v2,..., vk), where v1 = vk , is simple if v2, v3,..., vk are dis-
tinct.

Table 1. Circuit information
name #FF area of register area of CLB
ex1 40 680 1984
ex2 96 1632 2357
lwf 48 816 3966

If a sequential circuit satisfies Definition 5, the sequential
circuit is said to be extended acyclically testable sequential
circuit. If the product of the maximum height of thru trees
in TTTJ and TTTP and the depth of dependency in the set of thru
trees TTT = TTTJ ∪TTTP is a constant, Definition 5 corresponds to
the definition of acyclical testability except in regard to thru
trees. Furthermore, the thru tree defined in [7] is also any of
justification and propagation thru trees. Therefore, we have
the following theorem.
Theorem 1: The class of extended acyclically testable se-
quential circuits is a super set of the class of acyclic sequen-
tial circuits[7]．
Based on the above, it is possible to conjecture as follows.

Conjecture : Test generation complexity of extended acycli-
cally testable sequential circuits is τ2-bounded.
This proof is a future work.

4 Case studies
We show the effectiveness of the proposed class by our ex-

periments, using SUN blade2000 workstation (UltraSPARC-
III+, CPU 1.02GHz, Memory 2GB). For three sequential cir-
cuits shown in Table 1, we attempted three types of DFTs:
full-scan design (FS), acyclically testable design (AT) and
extended acyclically testable design (EAT). In FS, all reg-
isters are replaced with scaned-FFs. In AT and EAT, some
thru functions are added to CLBs so that a given circuit be-
comes acyclically testable and extended acyclically testable,
respectively. After the DFTs, we generated a TEM for each
CLB in each sequential circuit. Note that, in FS, a TEM for
a CLB corresponds to the CLB. Target faults of each circuit
were faults in each CLB and wires between elements in the
circuits. In a TEM, some CLBs appear more than once, e.g.,
CLB1 appears at time frames 0 and 1 in the TEM as shown in
Fig. 5. Therefore, a single fault in a CLB of a sequential cir-
cuit is mapped to a multiple fault in the corresponding TEM.
In our experiments, we converted such a multiple fault into
a single fault by the method of [8] and employ TetraMax
(Synopsys, Inc.), which is a combinational TPG for single
stuck-at faults. The circuit size was estimated provided that
the area size of an inverter is one. We achieved 100% fault
efficiency for all the circuits with three DFTs.
Table 2 shows area overhead, test application cycle, num-

ber of test patterns, test generation time and total size of
TEMs. TEMs are performed by the definition [7], for AT
and EAT. Column area overhead shows the difference of the
circuit size before and after the DFTs. The test applica-
tion cycle shown in the fourth column for FS is calculated
by (number o f test patterns)× ((number o f FFs) + 1)+
(number o f FFs)), and that for AT and EAT is calculated
by (number o f test patterns)× (length o f TEM). Column



Table 2. Case studies
name method area overhead test application number of test generation total size

cycle test pattern time(s) of TEMs
FS 280 2336 56 0.02 1984

ex1 AT 73 336 56 0.06 1984
EAT 49 348 58 0.22 2700
FS 672 4073 41 0.06 2357

ex2 AT 96 280 56 0.12 2357
EAT 48 288 48 1.02 4343
FS 336 3527 71 0.20 3966

lwf AT 145 492 82 0.37 3966
EAT 97 426 71 1.23 5484

TEM area denotes the sum of the size of TEM for each CLB
in a circuit. Note that the size of a TEM does not include that
of the CLBs on thru trees because the root (a leaf) of a justi-
fication (propagation) thru tree can be regarded as a primary
input (output).
From Table 2, we can see the followings. The area over-

head for AT and EAT is smaller than that for FS. Moreover,
our method, EAT, needs smaller area overhead than AT. This
is because the number of thru functions required by EAT is
less than that of AT. The test application cycle for AT and
EAT is smaller than that for FS since AT and EAT do not
need scan operation. The test application cycle for EAT is
comparable to AT.
Three DFTs are comparable in the number of test patterns.

For ex2 and lwf, the number of test patterns of EAT can be
small as compared with AT. The reason is that TEMs of EAT
is often implemented justification and propagation of values
without using thru functions. Because the number of thru
functions required for EAT is less than that of AT. Therefore,
the one test pattern of EAT can find many faults compared
with that of AT.
For ex2, although the number of test patterns for EAT is

smaller than AT, the test application cycle for EAT is not.
This is because the sum of the length of TEMs for EAT is
greater than that for AT. The total size of TEMs for EAT is
larger than that for AT. In EAT, instead of thru functions, the
logic of CLBs is used for justification and propagation as fre-
quently as possible. As a result, the size of TEMs for EAT
is larger than that for AT, so that the test generation time for
EAT increases. However, since a TEM is a combinational
circuit, we can achieve complete fault efficiency with practi-
cal time.

5 Conclusion
In this work, we proposed the extension of the class of

acyclically testable sequential circuits whose the test genera-
tion complexity is τ2-bounded. In the new class, we defined
justification and propagation thru trees instead of the thru
trees presented in [7] and proposed the sufficient conditions
of the class. Case study show that the area overhead of ex-
tended acyclically testable sequential circuits is smaller than
that of the acyclically testable sequential circuits, and com-
plete fault efficiency is achieved as well as the acyclically

testable sequential circuits.
Our future work is evaluation and experiment of larger

circuits, analysis of test generation complexity of extended
acyclically testable sequential circuits. We are now making
further experiments for large circuits. We can expect that
the experimental results also show the effectiveness of our
improvement. The final manuscript will include the experi-
mental results.
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