

A Test Generation Method for State Observable FSMs to Increase Defect Coverage
under the Test Length Constraint

Ryoichi INOUE† Toshinori HOSOKAWA†† and Hideo FUJIWARA‡

†Graduate School of Industrial Technology, Nihon University 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan
††College of Industrial Technology, Nihon University 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan

‡Graduate School of Information Science, Nara Institute of Science and Technology (NAIST)
8916-5, Takayama, Ikoma, Nara 630-0192, Japan

E-mail: †c67010@cit.nihon-u.ac.jp, ††t7hosoka@cit.nihon-u.ac.jp, ‡fujiwara@is.naist.jp

Abstract

Since scan testing is not based on the function of the circuit,
but rather its structure, scan testing is considered to be a form
of over testing or under testing. It is important to test VLSIs
using the given function. Since the functional specifications
are described explicitly in the FSMs, high test quality is
expected by performing logical testing and timing testing. This
paper proposes a test generation method to detect specified
fault models completely and to increase defect coverage as
much as possible under test length constraint. We give
experimental results for MCNC’91 benchmark circuits. The
proposed test generation method achieves high bridging fault
coverage, high transition fault coverage, and high path delay
fault coverage compared to the conventional fault-dependent
test generation method.

keywords: state-observable FSMs, logical testing, timing
testing, n-detection

1. Introduction

In recent years, very large scale integrated circuit (VLSI)
testing has become increasingly important because the number
of gates on VLSIs is increasing rapidly and the complexity of
VLSIs is growing with advances in semiconductor technology.
Currently, scan testing for the stuck-at fault model [1, 2] is one
of the most popular test methods for VLSIs. However, it has
been reported that scan testing for the stuck-at fault model may
not detect defective VLSIs [4], and delay testing and at-speed
functional testing can effectively improve test quality [3]. As
mentioned above, scan testing is currently the most popular
test method. Scan testing is based on the structure of the circuit
rather than its function and generates test pattern. In scan
testing, the states of the circuits are transferred to invalid states
by the shift operation during the testing in order to detect
faults. This method is considered to be a form of over testing

and yield loss of VLSIs may occur. Scan testing also detects
faults by shifting-in, the operation of a combinational circuit
part, and shifting-out. Hence, faults are not detected by
performing sequential operations of the circuits. This testing is
considered to be a form of under testing. Therefore, the test
quality deteriorates, and outflow of defective VLSIs into the
market may occur.

VLSI design methodologies using hardware description
languages have recently been adopted to reduce VLSI design
time. VLSIs are designed at the Register Transfer Level (RTL),
and RTL circuits consist of a data path part and a controller
part. The data path contains a hardware element (e.g., registers,
multiplexers, and operational modules) and signal lines. The
controller is represented by a finite state machine (FSM). A
controller and a data path are interconnected by internal
signals: control signals and status signals. A non-scan-based
Design For Testability (DFT) method of the data path part is
proposed in [5], whereas a non-scan-based DFT method for
the controller part is proposed in [6]. At-speed testing is
possible, and test patterns for a stuck-at fault model are
completely generated by non-scan-based DFT methods. In [5,
6], both control signals from a controller and status signals
from a data path were assumed to be directly controllable from
primary inputs and observable at primary outputs. As
mentioned above, if at-speed functional testing and/or delay
testing are applied to VLSIs with a non-scan-based DFT, the
test quality can be further improved. As for the FSM, which is
the controller part of an RTL circuit, the circuit specification is
described explicitly. Thus, it is expected that the test quality
becomes high by performing a logical testing and a timing
testing under the constraints of the circuit specifications.

In consideration of these tests, a fault-independent
one-pattern test generation method and a fault-independent
two-pattern test generation method that enable a complete
logical testing and a timing testing have been proposed [7,8].
However, when the number of state transitions increases, the
test length drastically increases. It is necessary to detect a

IEEE 8th Workshop on RTL and High Level Testing (WRTLT'07), pp. 79-86, October 2007.

specified fault model (e.g. stuck-at fault) completely and to
detect main fault models such as bridging fault, transition fault,
and path delay fault as much as possible for state-observable
FSMs. It was reported that an n-detection test generation
method (FSOD) to increase the fault sensitization coverage [9]
comparatively detected many bridging faults and transition
faults.

This paper proposes a test generation method to detect
specified fault models completely and to increase defect
coverage as much as possible under test length constraint. This
paper also proposes weighted state transition coverage as a
measure of test quality.

This paper is organized as follows. In Section 2, the
definition of state-observable FSMs. In Section 3, the
detection conditions of main fault models and an n-detection
test generation method to increase defect coverage are
described. In Section 4, a test generation method for
state-observable FSMs is proposed, and experimental results
for MCNC’91 FSM benchmarks [10] with many state
transitions are discussed in Section 5. Finally, Section 6
concludes the paper and discusses future research possibilities.

2. State-observable FSMs

(Definition 1: State-observable FSMs)
When an initial state can be identified by observing an output
sequence without being dependent on the input sequence, the
FSM is said to be state-observable. More specifically, when an
initial state can be identified by observing an output sequence
of length k, the FSM is said to be k state-observable.

Figure 1 shows an example of an FSM. In this figure, ST0
through ST5 and T0 through T11 show the states and the input
values, respectively, of the state transitions (the value of each
primary input ∈ {0, 1, X}, where X denotes don’t care). The
DFT transformed an FSM to a one-state observable FSM by
making the outputs of the status registers in the FSM
observable. In this paper, a one-state observable FSM is
hereinafter referred to simply as a state observable FSM. A
synchronous sequential circuit is synthesized from the FSM by
logic synthesis. Figure 2 shows the logic circuit model that
corresponds to the FSM after logic synthesis. Since the pseudo
primary inputs (PPI), which are the outputs of the status
registers, are observable in this figure, the PPIs connect with
the primary output. Thus, multiplexers are added on the PPI
and are connected to the primary outputs of the data path in
order to reduce the overhead of primary output pins [11]. Here,
PI, PO, SR, PPI, PPO, and R denote the primary inputs,
primary outputs, status registers, pseudo primary inputs
(outputs of the status registers), pseudo primary outputs
(inputs of the status registers), and a reset input, respectively.
 In the test of state-observable FSMs, the PI value is applied
to a state-observable FSM, the resulting PO values are
observed, the state is then transferred from the current state to
the next state, and the resulting PPI values are observed. A
series of these procedures is referred to as a test for

state-observable FSMs.

Example 1: In Fig. 1, T0 is applied to state ST0 on the
state-observable FSM and the state is transferred from ST0 to
ST1. T1 is then applied, and the state is transferred from ST1
to ST2. Next, test for the state-observable FSM is explained in
detail. R is activated and the values of the status registers are
initialized to ST0 in the first cycle. In the second cycle, T0 is
applied and the values of the POs for (PI, PPI) = (T0, ST0) are
observed just before the rising edge of the clock. Here, (PI,
PPI) denotes that the value of PI is applied to the PPI value
(state) for the state-observable FSM. Moreover, the PPI value
is observed after the rising edge of the clock. Thus, it is
verified that the state is successfully transferred from ST0 to
ST1. In the third cycle, T1 is applied and the PO values for (PI,
PPI) = (T1, ST1), which are observed just before the rising
edge of the clock. The resulting PPI value is observed after the
rising edge of the clock. Thus, it is verified that the state is
successfully transferred from ST1 to ST2.

The FSM has a completely specified FSM [14], in which the
next state and the output are specified for all of the inputs of
each state, and an incompletely specified FSM [11], in which
the next state and the output are not specified for all of the
inputs of each state. In this paper, in the incompletely specified
FSMs, state transitions that are not specified are assumed to be
the same as either of the state transitions that are specified.

ST0

ST1

ST4

ST3

ST5

ST2

T0

T１ T3

T4 T5

T10

T7
T9

T2

T6

T11

T8

Fig. 1 Example of an FSM (six states)

Combinational
Circuit

POPI

State-Observable

SR
PPI PPO

POPI

Combinational
Circuit

R

SR
PPI PPO

R

State-Observable
Fig. 2 Logic model for a state-observable FSM

3. Detection Conditions for Each Fault Model

First, an n-detection test generation method to increase fault
sensitization coverage [9] is described. Next, detection
conditions for the main fault models such as bridging faults [2],
transition faults [3], and path delay faults [3] are described.

3.1. An n-Detection Test Generation Method to

Increase Fault Sensitization Coverage

(Definition 2: Fault Sensitization Coverage)
Fault sensitization coverage for fault f is defined as the ratio
of the number of signal lines sensitized by test set T to the
number of all signal lines that are reachable from f. Here,
sensitized signal lines for f are lines on the fault propagation
path at the time that f is detected. Fault sensitization coverage
for the whole circuit is expressed by the average value of fault
sensitization coverage for all faults. The formulas of fault
sensitization coverage for f and the whole circuit are expressed
as follows.
・ ：Fault sensitization coverage for fault f fsen

100
f

senf ×=
 from reachable are which lines signal theofNumber

lines signal sensitized ofNumber (1)

・SEN：Fault sensitization coverage for the whole circuit

faults ofNumber
∑=

fsen
SEN (2)

An n-detection test generation method to increase fault
sensitization coverage, FSOD can be used for stuck-at faults to
increase fault sensitization coverage based on the following
strategies.

(1) For each fault, FSOD generates n test patterns that
sensitizes different fault propagation path and detects
faults.

(2) FSOD selects D-frontier[1, 2] to sensitize long fault
propagation path segments.

3.2. Detection of Bridging Faults

A bridging fault is a fault model that expresses a short
between signal lines. Bridging faults are classified into AND
type and OR type based on failure behavior. It is necessary to
generate a test pattern that detects a stuck-at 0 (1) fault for one
signal line and sets 0 (1) to the other signal line in order to
detect an AND (OR) type bridging fault. In this paper, U
model [12] is used. Both an AND type and an OR type must be
detected for the detection of a U model of the bridging fault. A
bridging fault may be able to be detected only when it
sensitizes a specific path. Therefore, if test patterns are
generated so that many paths are be sensitized as much as
possible, bridging fault coverage is increased. Since FSOD
sensitizes many fault propagation paths by increasing fault
sensitization coverage, it is consider that the generated test

patterns achieve high bridging fault coverage.

3.3. Detection of Transition Faults

 A transition fault model assumes that a delay fault affects
only one signal line in the circuit. There are two transition
faults associated with each signal line: a slow-to-rise fault and
a slow-to-fall fault. It is assumed that in the fault-free circuit
each signal line has some nominal delay. Delay faults results
in an increase of this delay. Under the transition fault model,
the extra delay caused by the delay fault is assumed to be large
enough to prevent the transition from reaching any primary
output at the time of observation. In other words, the transition
fault can be observed independent of whether the transition
propagates through a long or short path to any primary output.
To detect a transition fault, it is necessary to apply a test
pattern pair, V = (v1, v2). For testing a slow-to-rise (a
slow-to-fall), the first pattern, v1, initializes the fault site to 0
(1), and the second pattern, v2, is a test pattern for stuck-at-0
(1) fault at the fault site. It is considered that FSOD can detect
a small size of delay fault because it sensitizes a long fault
propagation path to increase fault sensitization coverage.
Because FSOD also generates n-detection test patterns,
transition probability of fault sites between the first pattern and
the second pattern is high. Then, the probability of transition
fault detection is considered to increase.

3.4. Detection of Path Delay Faults

Under a path delay fault model, a combinational circuit is
considered faulty if the delay of any of its paths exceeds a
specified limit. A path is defined as an ordered set of gates {g0,
g1,, gn}, where g0 is a primary input or a FF, and gn is a
primary output or a FF. A delay defect on a path can be
observed by propagating a transition through the path. There
exist several classes of path delay faults according to the
sensitization criteria. In this paper, a non-robust testable path
delay fault [3] is dealt with. There are two transition faults
associated with each path: a slow-to-rise fault and a
slow-to-fall fault. In order to detect a non-robust testable path
delay fault, it is necessary to apply a test pattern pair, V = (v1,
v2). In order to test a slow-to-rise (slow-to-fall) fault, the first
pattern, v1, initializes the primary inputs or the FFs on the path
to 0 (1), and the second pattern, v2, is a test pattern for
stuck-at-0 (1) fault at the primary inputs or the FFs on the path.
Moreover, v2 must propagate the fault effect through the path.
FSOD also generates test patterns to increase fault
sensitization coverage for faults at primary inputs. Thus, since
the probability that many paths are sensitized is high, it is
considered that the generated test patterns may be able to
detect many path delay faults. Since FSOD also generates
n-detection test patterns, transition probability of a primary
input (or a FF) between the first pattern and the second pattern
is high. Thus, the probability of path delay fault detection
increases.

4. Test Generation Method for State-observable

FSMs

This method generates a test sequence by generating an
FSM test generation graph from state-observable FSMs and
searching for a path. We propose weighted one-state transition
coverage and weighted two-state transition coverage as
measures of test quality for logical testing and timing testing,
respectively, for the generated test sequence.

4.1. FSM Test Generation Graph

(Definition 3: FSM test generation graph)

An FSM test generation graph is a directed graph G(V, E, s,
d, t), where a vertex v ∈ V denotes a state transition. Each
vertex has a label s: V → A (A = {PPI1PPI2 … PPIm},
PPI1, PPI2, … , PPIm ∈ {0, 1}, where m denotes the
number of status registers), a label d: V → A (A = {PPI1PPI2
… PPIm}, PPI1, PPI2, …, PPIm ∈ {0, 1}, and a label t: V
→ B (B = {PI1PI2 …PIn}, PI1, PI2, …, PIn ∈ {0, 1},
where n denotes the number of primary inputs). The label s
indicates the source state of the state transition, the label d
indicates the destination state of the state transition. The label t
indicates input values for the state transition. For any vertices
u, v ∈ V, an edge (u, v) ∈ E indicates that the destination
state in u is the same as the source state in v. The edge (u, v)
represents a continuous state transition pair. Furthermore, the
weights are assigned to each vertex and edge. The weight of a
vertex, wv(v) (v ∈ V) is 1 if {s, t} in v is equivalent to test
patterns that are generated by FSOD, and otherwise 0. Here, {s,
t} denotes the concatenation of s and t. The weight of an edge,
we((v1,v2)) (v1,v2 ∈ V, (v1,v2) ∈ E) is the Hamming
distance between {s, t} in v1 and {s, t} in v2, if wv(v2) is 1. If
wv(v2) is 0, then we((v1, v2)) is 0.

The quality of logical testing is considered to increase by
executing test patterns generated by FSOD. Therefore, the
weight wv is assigned to the vertex. The transition between the
first pattern and the second pattern must occur at a primary
input or an FF on a path in order to increase the quality of path
delay fault testing. Thus, when the Hamming distance between
the first pattern and the second pattern is large, the probability
that the transition occurs is high. It has been reported that
when the number of transitions at primary inputs is large, the
number of transition at internal signal lines is also large [13].
Thus, the probability for the detection of transition faults
becomes high.

Example 2: Figure 3 shows the state-observable FSM. Figure
4 shows the FSM test generation graph of Figure 3. The two
test patterns, (PPI1,PPI2,PI) = (1,0,0) and (PPI1,PPI2,PI) =
(1,0,1), are generated for the combinational circuit after logic
synthesis by the FSOD. In Figure 4, a state assignment code of

S0 S1

S2
0

0

1

0

1
1

RESET

S0 S1

S2
0

0

1

0

1
1

RESET

Fig. 3 Example of an FSM (three states)

00→01
0

00→10
1

01→00
0

01→10
1

10→10
0

10→00
1

RESET RESET

2

3
0 2 1

1
1 1

0 0

0

0

0
0

0 0

0 0

00→01
0

00→10
1

RESET RESET

01→00
0

01→10
1

10→10
0

10→00
1

2

3
0 2 1

1
1 1

0 0

0

0
00

0
0

00

Fig. 4 FSM test generation graph

the source state (label s), a state assignment code of the
destination state (label d), and the input value in each vertex
corresponding to a state transition are assigned. Moreover, the
weight wv is assigned to each vertex and the weight we is
assigned to each edge. In Figure 4, triangles indicate the values
of wv and a squares indicate the values of we. Each vertex is
expressed as (s, d, t). The edge ((00, 01, 0), (01, 10, 1)) means
that the state 00 transfers to the state 01 by the input 0 and the
state 01 transfers to the state 10 by the input 1. Since the test
pattern generated by FSOD, (PPI1,PPI2,PI) = (1,0,0),
corresponds to the vertex (10, 10, 0), the wv is 1. Similarly,
since the test pattern generated by FSOD, (PPI1,PPI2,PI) =
(1,0,1), corresponds to the vertex (10, 00, 1), the wv is 1. In
other vertices, wvs are 0. In the edge ((01, 10, 1), (10, 10, 0))
of we is assigned 3 that is the Hamming distance between
(PPI1,PPI2,PI) = (1,0,0) is generated by FSOD and (s, d) = (01,
1) of the start vertex (01, 10, 1). In the edge ((00, 10, 1), (10,
10, 0)) of we is assigned 2 that is the Hamming distance
between (PPI1,PPI2,PI) = (1,0,0) is generated by FSOD and (s,
d)=(00, 1) of the start vertex (00, 10, 1). In the edge ((10, 10,
0), (10, 10, 0)) of we is assigned 0 that is the Hamming
distance between (PPI1,PPI2,PI) = (1,0,0) is generated by
FSOD and (s, d) = (10, 0) of the start vertex (10, 10, 1).
Likewise, in the edge ((00, 10, 1), (10, 00, 1)) of we is
assigned 1 that is the Hamming distance between
(PPI1,PPI2,PI) = (1,0,1) is generated by FSOD and (s, d) = (00,
1) of the start vertex (00, 10, 1). In the edge ((01, 10, 1), (10,
00, 1)) of we is assigned 2 that is the Hamming distance
between (PPI1,PPI2,PI) = (1,0,1) is generated by FSOD and (s,
d) = (01, 1) of the start vertex (01, 10, 1). In the edge ((10, 10,
0), (10, 00, 1)) of we is assigned 1 that is the Hamming

distance between (PPI1,PPI2,PI) = (1,0,1) is generated by
FSOD and (s, d)=(10, 0) of the start vertex (10, 10, 0). In the
other edges, we is 0.

4.2. Weighted State Transition Coverage

Weighted one-state transition coverage and weighted
two-state coverage are calculated using the weights assigned to
the vertices and the edges in the FSM test generation graph.

(Definition 4: Weighted one-state transition coverage)
The Weighted one-state transition coverage is expressed in
equation (3) and is used as a measure of the test quality for
logical testing.

100(%)
 verticesallfor weightsof Sum

sequenceby test covered verticesof weightsof Sum
coveragen transitiostate-one Weighted

×

=
(3)

(Definition 5: Weighted two-state transition coverage)
The Weighted two-state transition coverage is expressed in
equation (4) and is used as a measure of the test quality for
timing testing.

{ }
%)100(

x veach vertefor edgesinput of weightsThemax

sequenceby test coveredwhich
x veach vertefor edgesinput of weight The

max

 coveragen transitiostate- twoWeighted

×⎭
⎬
⎫

⎩
⎨
⎧

=

∑
∑

v

v
(4)

The following problem is formulated for the test generation
for state-observable FSMs under test length constraint.

(Formulation)
Input:
- a state-observable FSM.
- a test set that can detect all detectable stuck-at faults on

valid states.
Constraint: test length
Output: a test sequence for the state-observable FSM such
that all detectable stuck-at faults on valid states are detected.
Optimization:
(1) maximization of weighted one-state transition coverage
(2) maximization of weighted two-state transition coverage

The valid states are assigned to PPI values as constrains.
FSOD is performed for the combinational circuit part to
generate the test patterns. Then, an FSM test generation graph
is generated and given stuck-at fault test pattern set are
assigned to the corresponding vertices on the FSM test
generation graph. Next, the test patterns generated by the
FSOD are assigned to the corresponding vertices on the FSM
test generation graph. Finally, paths are searched on the FSM
test generation graph such that all of the edges on which
stuck-at fault tests are assigned are traversed at least once. The
traversal passes along vertices at which as many test patterns
generated by the FSOD are assigned as possible, so as to

increase the weighted one-state transition coverage. The
traversal also passes along the edges with the large possible
weight, in order to increase the weighted two-state transition
coverage. If all of stuck-at fault test patterns are not covered
vertices under test constraint, it denotes no answer.

4.3. Strategy of Test Generation

The test generation strategy searches for all k state
transitions from the current state in the FSM test generation
graph. A state transition path is selected according to the
following heuristics.

(Heuristics)
 In the early stage of test generation, the probability that
uncovered vertices, at which stuck-at test patterns are assigned,
appear is high in k state transition path because the number of
uncovered vertices is large. In this case, the state transitions
path is selected by the priority of heuristics 3, 4, 5, 1, and 2. As
the number of uncovered vertices, at which stuck-at test
patterns are assigned, is small, the probability that the patterns
appear in the k state transition path is low. When the number
of uncovered vertices at which stuck-at test patterns are
assigned is 0 continuously m times, the state transitions path is
selected by the priority of heuristics 1, 2, 3, 4, and 5. Here, k
and m are used as parameters.

Heuristic 1
The algorithm preferentially selects a path that includes many
uncovered vertices where stuck-at test patterns are assigned.

Heuristic 2
To reduce the test length, the algorithm preferentially selects a
path such that the distance from the current state to uncovered
vertices, where stuck-at test patterns are assigned, is short.

Heuristic 3
To increase the quality of logical testing, the algorithm
preferentially selects a path such that the total sum of wv is
large. As a result, the weighted one-state transition coverage
becomes high.

Heuristic 4
To reduce test length, the algorithm preferentially selects a
path such that the distance from the current state to uncovered
vertices, where test patterns generated by FSOD are assigned,
is short.

Heuristic 5
In order to increase the quality of timing testing, the algorithm
preferentially selects a path such that the total sum of we is
large. As a result, the weighted two-state transition coverage
becomes high.

00→01
0

00→10
1

01→00
0

01→10
1

10→10
0

10→00
1

RESET RESET

2

3
0 2 1

1
1 1

0 0

0

0

0
0

0

0 0

000→01
0

00→10
1

RESET RESET

01→00
0

01→10
1

10→10
0

10→00
1

2

3
0 2 1

1
1 1

0 0

0

0
00

0
0

00

Fig. 5 Example of test sequence

Example 3: Given the stuck-at test patterns, (PPI1,PPI2,PI) =
(0,0,1), and (PPI1,PPI2,PI) = (0,1,1), Figure 5 shows the FSM
test generation graph of Figure 3. FSOD generates the test
patterns, (PPI1,PPI2,PI) = (1,0,0), and (PPI1,PPI2,PI) = (1,0,1).
In Figure 5, the vertices indicated by dashed lines are vertices
where stuck-at test patterns are assigned. When the test
sequence (0, 1, 0, 1) is generated from the reset state, the
weighted one-state transition coverage is 100% (2/2) whereas
the weighted two-state transition coverage is 80 %
((3+1)/(3+2)=4/5).

5. Experimental Results

The test generation method was implemented and was
applied to MCNC'91 benchmark circuits [10]. The
characteristics of MCNC’91 benchmark circuits are shown in
Table 1. In this table, Circuit, #Node, #PI, #PO, #Reg, and
#Edge denote the circuit name of the FSM, the number of
states, the number of primary inputs, the number of primary
outputs, the number of status registers and the number of state
transitions, respectively. In these experiments, the FSMs were
made state observable by DFT, and three test generations were
performed for state-observable FSMs. Table 2 shows the
experimental results of fault-independent one-pattern test
generation method (1a) [7,8] and the fault-dependent
one-pattern test generation method (1b) [7,8]. Table 3 shows
the experimental results of the proposed method when the
value of m was set to one. This algorithm detects stuck-at
faults completely, it stops. The value m is parameter for a
switching timing of algorithm shown in the heuristic priority
rules. Table 4 shows the experimental results of the proposed
method when test length constraint was set to 300 and 500.
The circuits indicated by the “*” symbol in the table were ones
for which stuck-at fault could not be detected completely by
the test lengths of 300 and 500. The value k was set to 3 in all
experiments. Moreover, the value n of n-detection for FSOD
was set to 5. In Tables 2, 3, and 4, Circuit, TL, and CPU time
denote the circuit name of the FSM, the test length, and the
time for the test generation, respectively. SFC, BFC, PFC,
TFC, W1STC, W2STC, and FSC denote the stuck-at fault

coverage, the bridging fault coverage, the path delay fault
coverage, the transition fault coverage, the weighted one-state
transition coverage, and the weighted two-state transition
coverage, respectively. Each logical testing targets only
faults that can be detected on valid states [7]. Each timing
testing targets only faults that can be detected on the transition
between valid states [7,8].

First, the experimental results of the proposed method are
considered when the value of m is one. Stuck-at faults can be
completely tested. The weighted one-state transition coverage
increased an average of 14.15%, and the weighted two-state
transition coverage increased an average of 18.46% in the
almost same test length compared to the fault-dependent
one-pattern test generation method for the stuck-at fault model.
Bridging fault coverage increased an average of 0.48%, and
path delay fault coverage increased an average of 12.87%. In
addition, transition fault coverage increased an average of
9.53%. In particular, for styr, the weighted one-state transition
coverage increased 10.2%, bridging fault coverage increased
0.21%. Also, the weighted two-state transition coverage
increased 11.82%, path delay fault coverage increased 23.38%,
and transition fault coverage increased an average of 28.06%,
and the quality of the timing testing was improved.

Next, the experimental results are considered for the
proposed test generation with the test length constrains.
Stuck-at fault could be completely tested and the test length
was greatly reduced compared with the fault-independent
one-pattern test generation method and high fault coverage for
a bridging fault, a transition fault, and a path delay fault can be
obtained. In particular, for s386, when test length constraint
was set to 500, the weighted two-state transition coverage
increased 8.42%, the path delay fault coverage increased
3.89% and the transition coverage increased 4.43%.

6. Conclusion

This paper proposed a test generation method to detect
specified fault models completely and to increase defect
coverage as much as possible under the test length constraint.
This paper also proposed weighted state transition coverage as
measures of test quality. The proposed test generation method
was evaluated for MCNC '91 benchmark circuit and the
following conclusions were obtained.

(1) The proposed test generation method increased the test
quality of logical testing and the timing testing compared
with the fault-dependent one-pattern test generation
method.

(2) The proposed test generation method greatly reduced the
test length compared with the fault-independent
one-pattern test generation method and the quality of both
the logical testing and the timing testing were
comparatively high.

References [8] T. Hosokawa, R. Inoue, and H. Fujiwara, “Fault
Dependent/Independent Test Generation Methods for State
Observable FSMs,” IEEE 7th Workshop on RTL and High Level
Testing (WRTLT'06), pp. 13-18, November, 2006.

[1] H. Fujiwara, “Logic Testing and Design for Testability,” The MIT
Press, 1985. [9] T. Hosokawa and K. yamazaki, “An n-Detection Test Generation

Method to Increase Fault Sensitization Coverage”, IEICE Trans. Info.
and Syst.,Vol.J90-D, No. 6, pp. 1474-1482, June.2007 in Japanese.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital
systems testing and testable design,” IEEE Press, 1995.
 [3] A. Krstic, and K. -T. Cheng, “Delay Fault Testing for VLSI
Circuits,” Kluwer Academic Publishers, 1998. [10] S. Yang, “Logic synthesis and optimization benchmarks user

guide,” Technical Report 1991-IWLS-UG-Saeyang, Microelectronics
Center of North Carolina, 1999.

[4]P. C. Maxwell, R. C. Aitken, R. Kollitz, and A. C. Brown, “IDDQ
and AC Scan: The War Against Unmodelled Defects,” Proc. of IEEE
Int. Test Conf., pp.250-258, Oct., 1996.

[11] S. Ohtake, H. Wada, T. Masuzawa and H. Fujiwara, " A non-scan
DFT method at register-transfer level to achieve complete fault
efficiency, " IEEE Proc. Asian South Pacific Design Automation
Conference, pp.599-604, 2000.

[5]H. Wada, T. Masuzawa, K. K.Saluja, and H. Fujiwara, “Design for
strong testability of RTL data paths to provide complete fault
efficiency,” Proc. of 13th Int. Conf. on VLSI Design, pp.300-305,
2000.

[12] Y. Takamatsu, T. Shiosaka, T. Yamada, and, K. Yamazaki, “A
Fault Model and Test Generation for Bridging Faults in CMOS
Circuit,” IEICE Trans. Vol.J81-D, No.6, pp. 872-879, Jun.1998.

[6]S. Ohtake, T. Masuzawa, and H. Fujiwara, "A non-scan approach
to DFT for Controllers Achieving 100% Fault Efficiency," Journal of
Electronic Testing: Theory and Applications (JETTA), Vol. 16, No. 5,
pp.553-566, Oct. 2000.

[13] S. Kajihara, K. Ishida, K. Miyase, “Average Power Reduction in
Scan Testing by Test Vector Modification”, IEICE Trans. Info. and
Syst.,Vol.E85-D, No. 10, pp. 1483-1489, Oct.2002. [7] T. Hosokawa and H. Fujiwara, “A functional test method for state

observable FSMs,” IEEE 6th Workshop on RTL and High Level
Testing (WRTLT'05), pp.123-130, July 2005.

[14] T. Sasao, “Switching Theory for Logic Synthesis,” Kluwer
Academic Publishers, 1999.

Table 1 FSM benchmark characteristics

ex1 20 9 19 5 10240
planet 48 7 19 6 6144
s1 20 8 6 5 5120
s208 18 8 2 5 4608
s298 218 3 6 8 1744
s386 13 7 7 4 1664
s420 18 8 2 5 4608
styr 30 9 10 5 15360

#Reg #EdgeCircuit #Node #PI #PO

Table 2 Experimental results for logical testing

ex1 100.00 100.00 81.39 89.86 29997 100.00 72.82 34.60 100.00 95.43 52.39 81.49 145 2.71 2.24 0.08
planet 100.00 100.00 89.23 88.09 12299 100.00 73.31 1.31 100.00 97.53 67.56 79.13 243 5.28 3.79 0.01
s1 100.00 100.00 61.82 83.80 9012 100.00 73.94 3.85 100.00 94.55 38.18 69.64 154 4.42 3.72 0.07
s208 100.00 100.00 100.00 75.98 30943 100.00 74.51 89.42 100.00 95.47 71.62 66.54 103 9.28 5.07 0.20
s298 100.00 100.00 46.53 82.89 10528 100.00 37.43 87.10 100.00 97.95 46.02 82.86 1221 51.80 27.04 3.53
s386 100.00 100.00 83.17 79.67 6066 100.00 80.06 4.62 100.00 95.93 55.02 71.97 87 15.52 11.68 0.02
s420 100.00 100.00 97.40 73.81 29890 100.00 31.70 60.80 100.00 95.60 71.43 65.48 114 3.16 2.92 0.18
styr 100.00 100.00 61.47 86.61 42805 100.00 71.51 100.27 100.00 95.55 19.24 54.16 207 6.58 4.35 0.23
average 100.00 100.00 77.63 82.59 21442.50 100.00 64.41 47.75 100.00 96.00 52.68 71.41 284.25 12.34 7.60 0.54

1a 1b

TL
W1STC

(%)
CPUtime

(sec)
W2STC

(%)
PFC(%) TFC(%) TL PFC(%) TFC(%)

W2STC
(%)

Circuit CPUtime
(sec)

SFC(%) BFC(%)
W1STC

(%)
SFC(%) BFC(%)

Table 3 Experimental results (m = 1)

ex1 100.00 95.37 53.74 84.18 112 14.58 13.56 0.48
planet 100.00 97.95 73.15 83.75 227 28.30 27.09 0.08
s1 100.00 95.45 57.20 84.43 149 12.15 14.05 0.31
s208 100.00 96.32 81.08 72.05 113 37.11 33.45 16.61
s298 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65
s386 100.00 95.85 67.96 78.52 85 25.86 27.60 0.17
s420 100.00 97.20 83.12 71.03 122 40.00 32.28 4.99
styr 100.00 95.76 42.62 82.22 181 16.78 16.17 1.64
average 100.00 96.48 65.55 80.94 279.50 26.49 26.06 67.24

Proposed method （m = 1）

W2STC
(%)

CPUtime
(sec)

TL
Circuit

SFC(%)
W1STC

(%)
BFC(%) PFC(%) TFC(%)

Table 4 Experimental results (test length constraint)

ex1 100.00 97.74 66.74 87.02 300 63.05 53.09 1.67 100.00 98.43 76.51 89.48 500 91.86 75.12 3.16
planet 100.00 98.27 75.57 85.69 300 42.21 40.45 0.11 100.00 99.21 82.82 87.30 500 68.82 63.95 0.17
s1 100.00 97.04 65.93 86.61 300 45.30 43.76 0.76 100.00 98.18 74.95 88.50 500 71.27 65.94 1.37
s208 100.00 99.15 86.49 73.23 300 71.13 62.86 32.53 100.00 99.25 87.84 73.23 500 86.60 78.43 70.26
s298* 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65
s386 100.00 98.20 85.11 83.44 300 88.51 77.86 0.47 100.00 99.00 87.06 84.10 500 100.00 88.48 2.09
s420 100.00 98.40 92.21 73.02 300 69.47 58.60 9.18 100.00 98.90 93.51 73.81 500 87.37 77.66 19.61
styr 100.00 96.56 47.72 85.80 300 35.83 31.31 2.60 100.00 97.37 53.29 87.24 500 67.80 53.34 4.54
average 100.00 97.91 74.25 82.12 300.00 59.36 52.56 6.76 100.00 98.62 79.43 83.38 500.00 81.96 71.85 14.46

Proposed method （TL = 500）Proposed method （TL = 300）

CPUtime
(sec)

SFC(%) BFC(%) PFC(%) TFC(%) TL
W1STC

(%)
W2STC

(%)
SFC(%) BFC(%) PFC(%)

W1STC
(%)

W2STC
(%)

CPUtime
(sec)

Circuit
TFC(%) TL

