
 

A Test Generation Method for State Observable FSMs to Increase Defect Coverage 
under the Test Length Constraint 

 
 

Ryoichi INOUE†  Toshinori HOSOKAWA††  and Hideo FUJIWARA‡ 

†Graduate School of Industrial Technology, Nihon University  1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan 
††College of Industrial Technology, Nihon University  1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan 

‡Graduate School of Information Science, Nara Institute of Science and Technology (NAIST) 
8916-5, Takayama, Ikoma, Nara 630-0192, Japan 

E-mail:  †c67010@cit.nihon-u.ac.jp,  ††t7hosoka@cit.nihon-u.ac.jp,  ‡fujiwara@is.naist.jp 

 
 

Abstract 
 

Since scan testing is not based on the function of the circuit, 
but rather its structure, scan testing is considered to be a form 
of over testing or under testing. It is important to test VLSIs 
using the given function. Since the functional specifications 
are described explicitly in the FSMs, high test quality is 
expected by performing logical testing and timing testing. This 
paper proposes a test generation method to detect specified 
fault models completely and to increase defect coverage as 
much as possible under test length constraint. We give 
experimental results for MCNC’91 benchmark circuits. The 
proposed test generation method achieves high bridging fault 
coverage, high transition fault coverage, and high path delay 
fault coverage compared to the conventional fault-dependent 
test generation method.  

keywords: state-observable FSMs, logical testing, timing 
testing, n-detection 
 
1. Introduction 
 

In recent years, very large scale integrated circuit (VLSI) 
testing has become increasingly important because the number 
of gates on VLSIs is increasing rapidly and the complexity of 
VLSIs is growing with advances in semiconductor technology. 
Currently, scan testing for the stuck-at fault model [1, 2] is one 
of the most popular test methods for VLSIs. However, it has 
been reported that scan testing for the stuck-at fault model may 
not detect defective VLSIs [4], and delay testing and at-speed 
functional testing can effectively improve test quality [3]. As 
mentioned above, scan testing is currently the most popular 
test method. Scan testing is based on the structure of the circuit 
rather than its function and generates test pattern. In scan 
testing, the states of the circuits are transferred to invalid states 
by the shift operation during the testing in order to detect 
faults. This method is considered to be a form of over testing 

and yield loss of VLSIs may occur. Scan testing also detects 
faults by shifting-in, the operation of a combinational circuit 
part, and shifting-out. Hence, faults are not detected by 
performing sequential operations of the circuits. This testing is 
considered to be a form of under testing. Therefore, the test 
quality deteriorates, and outflow of defective VLSIs into the 
market may occur. 

VLSI design methodologies using hardware description 
languages have recently been adopted to reduce VLSI design 
time. VLSIs are designed at the Register Transfer Level (RTL), 
and RTL circuits consist of a data path part and a controller 
part. The data path contains a hardware element (e.g., registers, 
multiplexers, and operational modules) and signal lines. The 
controller is represented by a finite state machine (FSM). A 
controller and a data path are interconnected by internal 
signals: control signals and status signals. A non-scan-based 
Design For Testability (DFT) method of the data path part is 
proposed in [5], whereas a non-scan-based DFT method for 
the controller part is proposed in [6]. At-speed testing is 
possible, and test patterns for a stuck-at fault model are 
completely generated by non-scan-based DFT methods. In [5, 
6], both control signals from a controller and status signals 
from a data path were assumed to be directly controllable from 
primary inputs and observable at primary outputs. As 
mentioned above, if at-speed functional testing and/or delay 
testing are applied to VLSIs with a non-scan-based DFT, the 
test quality can be further improved. As for the FSM, which is 
the controller part of an RTL circuit, the circuit specification is 
described explicitly. Thus, it is expected that the test quality 
becomes high by performing a logical testing and a timing 
testing under the constraints of the circuit specifications. 

In consideration of these tests, a fault-independent 
one-pattern test generation method and a fault-independent 
two-pattern test generation method that enable a complete 
logical testing and a timing testing have been proposed [7,8]. 
However, when the number of state transitions increases, the 
test length drastically increases. It is necessary to detect a 
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specified fault model (e.g. stuck-at fault) completely and to 
detect main fault models such as bridging fault, transition fault, 
and path delay fault as much as possible for state-observable 
FSMs. It was reported that an n-detection test generation 
method (FSOD) to increase the fault sensitization coverage [9] 
comparatively detected many bridging faults and transition 
faults. 

This paper proposes a test generation method to detect 
specified fault models completely and to increase defect 
coverage as much as possible under test length constraint. This 
paper also proposes weighted state transition coverage as a 
measure of test quality. 

This paper is organized as follows. In Section 2, the 
definition of state-observable FSMs. In Section 3, the 
detection conditions of main fault models and an n-detection 
test generation method to increase defect coverage are 
described. In Section 4, a test generation method for 
state-observable FSMs is proposed, and experimental results 
for MCNC’91 FSM benchmarks [10] with many state 
transitions are discussed in Section 5. Finally, Section 6 
concludes the paper and discusses future research possibilities. 
 
2. State-observable FSMs 
 
(Definition 1: State-observable FSMs) 
When an initial state can be identified by observing an output 
sequence without being dependent on the input sequence, the 
FSM is said to be state-observable. More specifically, when an 
initial state can be identified by observing an output sequence 
of length k, the FSM is said to be k state-observable. 

Figure 1 shows an example of an FSM. In this figure, ST0 
through ST5 and T0 through T11 show the states and the input 
values, respectively, of the state transitions (the value of each 
primary input ∈ {0, 1, X}, where X denotes don’t care). The 
DFT transformed an FSM to a one-state observable FSM by 
making the outputs of the status registers in the FSM 
observable. In this paper, a one-state observable FSM is 
hereinafter referred to simply as a state observable FSM. A 
synchronous sequential circuit is synthesized from the FSM by 
logic synthesis. Figure 2 shows the logic circuit model that 
corresponds to the FSM after logic synthesis. Since the pseudo 
primary inputs (PPI), which are the outputs of the status 
registers, are observable in this figure, the PPIs connect with 
the primary output. Thus, multiplexers are added on the PPI 
and are connected to the primary outputs of the data path in 
order to reduce the overhead of primary output pins [11]. Here, 
PI, PO, SR, PPI, PPO, and R denote the primary inputs, 
primary outputs, status registers, pseudo primary inputs 
(outputs of the status registers), pseudo primary outputs 
(inputs of the status registers), and a reset input, respectively.  
 In the test of state-observable FSMs, the PI value is applied 
to a state-observable FSM, the resulting PO values are 
observed, the state is then transferred from the current state to 
the next state, and the resulting PPI values are observed. A 
series of these procedures is referred to as a test for 

state-observable FSMs.  

Example 1: In Fig. 1, T0 is applied to state ST0 on the 
state-observable FSM and the state is transferred from ST0 to 
ST1. T1 is then applied, and the state is transferred from ST1 
to ST2. Next, test for the state-observable FSM is explained in 
detail. R is activated and the values of the status registers are 
initialized to ST0 in the first cycle. In the second cycle, T0 is 
applied and the values of the POs for (PI, PPI) = (T0, ST0) are 
observed just before the rising edge of the clock. Here, (PI, 
PPI) denotes that the value of PI is applied to the PPI value 
(state) for the state-observable FSM. Moreover, the PPI value 
is observed after the rising edge of the clock. Thus, it is 
verified that the state is successfully transferred from ST0 to 
ST1. In the third cycle, T1 is applied and the PO values for (PI, 
PPI) = (T1, ST1), which are observed just before the rising 
edge of the clock. The resulting PPI value is observed after the 
rising edge of the clock. Thus, it is verified that the state is 
successfully transferred from ST1 to ST2. 

The FSM has a completely specified FSM [14], in which the 
next state and the output are specified for all of the inputs of 
each state, and an incompletely specified FSM [11], in which 
the next state and the output are not specified for all of the 
inputs of each state. In this paper, in the incompletely specified 
FSMs, state transitions that are not specified are assumed to be 
the same as either of the state transitions that are specified. 
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Fig. 1 Example of an FSM (six states) 
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3. Detection Conditions for Each Fault Model 
 

First, an n-detection test generation method to increase fault 
sensitization coverage [9] is described. Next, detection 
conditions for the main fault models such as bridging faults [2], 
transition faults [3], and path delay faults [3] are described. 
 
3.1. An n-Detection Test Generation Method to 

Increase Fault Sensitization Coverage 
 
(Definition 2: Fault Sensitization Coverage) 
Fault sensitization coverage for fault f is defined as the ratio 
of the number of signal lines sensitized by test set T to the 
number of all signal lines that are reachable from f. Here, 
sensitized signal lines for f are lines on the fault propagation 
path at the time that f is detected. Fault sensitization coverage 
for the whole circuit is expressed by the average value of fault 
sensitization coverage for all faults. The formulas of fault 
sensitization coverage for f and the whole circuit are expressed 
as follows. 
・ ：Fault sensitization coverage for fault f fsen

100
f

senf ×=
 from reachable are which lines signal  theofNumber 

lines signal sensitized ofNumber (1) 

・SEN：Fault sensitization coverage for the whole circuit 

faults ofNumber 
∑=

fsen
SEN (2) 

An n-detection test generation method to increase fault 
sensitization coverage, FSOD can be used for stuck-at faults to 
increase fault sensitization coverage based on the following 
strategies. 

(1) For each fault, FSOD generates n test patterns that 
sensitizes different fault propagation path and detects 
faults.  

(2) FSOD selects D-frontier[1, 2] to sensitize long fault 
propagation path segments.  

 
3.2. Detection of Bridging Faults 
 

A bridging fault is a fault model that expresses a short 
between signal lines. Bridging faults are classified into AND 
type and OR type based on failure behavior. It is necessary to 
generate a test pattern that detects a stuck-at 0 (1) fault for one 
signal line and sets 0 (1) to the other signal line in order to 
detect an AND (OR) type bridging fault. In this paper, U 
model [12] is used. Both an AND type and an OR type must be 
detected for the detection of a U model of the bridging fault. A 
bridging fault may be able to be detected only when it 
sensitizes a specific path. Therefore, if test patterns are 
generated so that many paths are be sensitized as much as 
possible, bridging fault coverage is increased. Since FSOD 
sensitizes many fault propagation paths by increasing fault 
sensitization coverage, it is consider that the generated test 

patterns achieve high bridging fault coverage. 
 
3.3. Detection of Transition Faults 
 
 A transition fault model assumes that a delay fault affects 
only one signal line in the circuit. There are two transition 
faults associated with each signal line: a slow-to-rise fault and 
a slow-to-fall fault. It is assumed that in the fault-free circuit 
each signal line has some nominal delay. Delay faults results 
in an increase of this delay. Under the transition fault model, 
the extra delay caused by the delay fault is assumed to be large 
enough to prevent the transition from reaching any primary 
output at the time of observation. In other words, the transition 
fault can be observed independent of whether the transition 
propagates through a long or short path to any primary output. 
To detect a transition fault, it is necessary to apply a test 
pattern pair, V = (v1, v2). For testing a slow-to-rise (a 
slow-to-fall), the first pattern, v1, initializes the fault site to 0 
(1), and the second pattern, v2, is a test pattern for stuck-at-0 
(1) fault at the fault site. It is considered that FSOD can detect 
a small size of delay fault because it sensitizes a long fault 
propagation path to increase fault sensitization coverage. 
Because FSOD also generates n-detection test patterns, 
transition probability of fault sites between the first pattern and 
the second pattern is high. Then, the probability of transition 
fault detection is considered to increase. 
 
3.4. Detection of Path Delay Faults 
 

Under a path delay fault model, a combinational circuit is 
considered faulty if the delay of any of its paths exceeds a 
specified limit. A path is defined as an ordered set of gates {g0, 
g1, ...., gn}, where g0 is a primary input or a FF, and gn is a 
primary output or a FF. A delay defect on a path can be 
observed by propagating a transition through the path. There 
exist several classes of path delay faults according to the 
sensitization criteria. In this paper, a non-robust testable path 
delay fault [3] is dealt with. There are two transition faults 
associated with each path: a slow-to-rise fault and a 
slow-to-fall fault. In order to detect a non-robust testable path 
delay fault, it is necessary to apply a test pattern pair, V = (v1, 
v2). In order to test a slow-to-rise (slow-to-fall) fault, the first 
pattern, v1, initializes the primary inputs or the FFs on the path 
to 0 (1), and the second pattern, v2, is a test pattern for 
stuck-at-0 (1) fault at the primary inputs or the FFs on the path. 
Moreover, v2 must propagate the fault effect through the path. 
FSOD also generates test patterns to increase fault 
sensitization coverage for faults at primary inputs. Thus, since 
the probability that many paths are sensitized is high, it is 
considered that the generated test patterns may be able to 
detect many path delay faults. Since FSOD also generates 
n-detection test patterns, transition probability of a primary 
input (or a FF) between the first pattern and the second pattern 
is high. Thus, the probability of path delay fault detection 
increases. 

 



 

 
4. Test Generation Method for State-observable 

FSMs 
 

This method generates a test sequence by generating an 
FSM test generation graph from state-observable FSMs and 
searching for a path. We propose weighted one-state transition 
coverage and weighted two-state transition coverage as 
measures of test quality for logical testing and timing testing, 
respectively, for the generated test sequence.  
 
4.1. FSM Test Generation Graph 
 
(Definition 3: FSM test generation graph) 

An FSM test generation graph is a directed graph G(V, E, s, 
d, t), where a vertex v ∈ V denotes a state transition. Each 
vertex has a label s: V → A (A = {PPI1PPI2 … PPIm}, 
PPI1, PPI2, … , PPIm ∈  {0, 1}, where m denotes the 
number of status registers), a label d: V → A (A = {PPI1PPI2
… PPIm}, PPI1, PPI2, …, PPIm ∈ {0, 1}, and a label t: V 
→ B (B = {PI1PI2 …PIn}, PI1, PI2, …, PIn ∈ {0, 1}, 
where n denotes the number of primary inputs). The label s 
indicates the source state of the state transition, the label d 
indicates the destination state of the state transition. The label t 
indicates input values for the state transition. For any vertices 
u, v ∈ V, an edge (u, v) ∈ E indicates that the destination 
state in u is the same as the source state in v. The edge (u, v) 
represents a continuous state transition pair. Furthermore, the 
weights are assigned to each vertex and edge. The weight of a 
vertex, wv(v) (v ∈ V) is 1 if {s, t} in v is equivalent to test 
patterns that are generated by FSOD, and otherwise 0. Here, {s, 
t} denotes the concatenation of s and t. The weight of an edge, 
we((v1,v2)) (v1,v2 ∈  V, (v1,v2) ∈  E) is the Hamming 
distance between {s, t} in v1 and {s, t} in v2, if wv(v2) is 1. If 
wv(v2) is 0, then we((v1, v2)) is 0.  

The quality of logical testing is considered to increase by 
executing test patterns generated by FSOD. Therefore, the 
weight wv is assigned to the vertex. The transition between the 
first pattern and the second pattern must occur at a primary 
input or an FF on a path in order to increase the quality of path 
delay fault testing. Thus, when the Hamming distance between 
the first pattern and the second pattern is large, the probability 
that the transition occurs is high. It has been reported that 
when the number of transitions at primary inputs is large, the 
number of transition at internal signal lines is also large [13]. 
Thus, the probability for the detection of transition faults 
becomes high. 

Example 2: Figure 3 shows the state-observable FSM. Figure 
4 shows the FSM test generation graph of Figure 3. The two 
test patterns, (PPI1,PPI2,PI) = (1,0,0) and (PPI1,PPI2,PI) = 
(1,0,1), are generated for the combinational circuit after logic 
synthesis by the FSOD. In Figure 4, a state assignment code of  
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Fig. 3 Example of an FSM (three states) 
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Fig. 4 FSM test generation graph 

 
the source state (label s), a state assignment code of the 
destination state (label d), and the input value in each vertex 
corresponding to a state transition are assigned. Moreover, the 
weight wv is assigned to each vertex and the weight we is 
assigned to each edge. In Figure 4, triangles indicate the values 
of wv and a squares indicate the values of we. Each vertex is 
expressed as (s, d, t). The edge ((00, 01, 0), (01, 10, 1)) means 
that the state 00 transfers to the state 01 by the input 0 and the 
state 01 transfers to the state 10 by the input 1. Since the test 
pattern generated by FSOD, (PPI1,PPI2,PI) = (1,0,0), 
corresponds to the vertex (10, 10, 0), the wv is 1. Similarly, 
since the test pattern generated by FSOD, (PPI1,PPI2,PI) = 
(1,0,1), corresponds to the vertex (10, 00, 1), the wv is 1. In 
other vertices, wvs are 0. In the edge ((01, 10, 1), (10, 10, 0)) 
of we is assigned 3 that is the Hamming distance between 
(PPI1,PPI2,PI) = (1,0,0) is generated by FSOD and (s, d) = (01, 
1) of the start vertex (01, 10, 1). In the edge ((00, 10, 1), (10, 
10, 0)) of we is assigned 2 that is the Hamming distance 
between (PPI1,PPI2,PI) = (1,0,0) is generated by FSOD and (s, 
d)=(00, 1) of the start vertex (00, 10, 1). In the edge ((10, 10, 
0), (10, 10, 0)) of we is assigned 0 that is the Hamming 
distance between (PPI1,PPI2,PI) = (1,0,0) is generated by 
FSOD and (s, d) = (10, 0) of the start vertex (10, 10, 1). 
Likewise, in the edge ((00, 10, 1), (10, 00, 1)) of we is 
assigned 1 that is the Hamming distance between 
(PPI1,PPI2,PI) = (1,0,1) is generated by FSOD and (s, d) = (00, 
1) of the start vertex (00, 10, 1). In the edge ((01, 10, 1), (10, 
00, 1)) of we is assigned 2 that is the Hamming distance 
between (PPI1,PPI2,PI) = (1,0,1) is generated by FSOD and (s, 
d) = (01, 1) of the start vertex (01, 10, 1). In the edge ((10, 10, 
0), (10, 00, 1)) of we is assigned 1 that is the Hamming 

 



 

distance between (PPI1,PPI2,PI) = (1,0,1) is generated by 
FSOD and (s, d)=(10, 0) of the start vertex (10, 10, 0). In the 
other edges, we is 0.  
 
4.2. Weighted State Transition Coverage 
 

Weighted one-state transition coverage and weighted 
two-state coverage are calculated using the weights assigned to 
the vertices and the edges in the FSM test generation graph. 

(Definition 4: Weighted one-state transition coverage) 
The Weighted one-state transition coverage is expressed in 
equation (3) and is used as a measure of the test quality for 
logical testing.  

100(%)
 verticesallfor   weightsof Sum

sequenceby test  covered  verticesof  weightsof Sum
coveragen  transitiostate-one Weighted

×

=
(3) 

(Definition 5: Weighted two-state transition coverage) 
The Weighted two-state transition coverage is expressed in 
equation (4) and is used as a measure of the test quality for 
timing testing. 

{ }
%)100(

x veach vertefor  edgesinput  of  weightsThemax

sequenceby test  coveredwhich 
x veach vertefor  edgesinput  of weight The

max

 coveragen  transitiostate- twoWeighted

×⎭
⎬
⎫

⎩
⎨
⎧

=

∑
∑

v

v
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The following problem is formulated for the test generation 
for state-observable FSMs under test length constraint. 

(Formulation) 
Input: 
- a state-observable FSM. 
- a test set that can detect all detectable stuck-at faults on 

valid states. 
Constraint: test length 
Output: a test sequence for the state-observable FSM such 
that all detectable stuck-at faults on valid states are detected. 
Optimization: 
(1) maximization of weighted one-state transition coverage 
(2) maximization of weighted two-state transition coverage 

The valid states are assigned to PPI values as constrains. 
FSOD is performed for the combinational circuit part to 
generate the test patterns. Then, an FSM test generation graph 
is generated and given stuck-at fault test pattern set are 
assigned to the corresponding vertices on the FSM test 
generation graph. Next, the test patterns generated by the 
FSOD are assigned to the corresponding vertices on the FSM 
test generation graph. Finally, paths are searched on the FSM 
test generation graph such that all of the edges on which 
stuck-at fault tests are assigned are traversed at least once. The 
traversal passes along vertices at which as many test patterns 
generated by the FSOD are assigned as possible, so as to 

increase the weighted one-state transition coverage. The 
traversal also passes along the edges with the large possible 
weight, in order to increase the weighted two-state transition 
coverage. If all of stuck-at fault test patterns are not covered 
vertices under test constraint, it denotes no answer.  
 
4.3. Strategy of Test Generation 
 

The test generation strategy searches for all k state 
transitions from the current state in the FSM test generation 
graph. A state transition path is selected according to the 
following heuristics. 

(Heuristics) 
 In the early stage of test generation, the probability that 
uncovered vertices, at which stuck-at test patterns are assigned, 
appear is high in k state transition path because the number of 
uncovered vertices is large. In this case, the state transitions 
path is selected by the priority of heuristics 3, 4, 5, 1, and 2. As 
the number of uncovered vertices, at which stuck-at test 
patterns are assigned, is small, the probability that the patterns 
appear in the k state transition path is low. When the number 
of uncovered vertices at which stuck-at test patterns are 
assigned is 0 continuously m times, the state transitions path is 
selected by the priority of heuristics 1, 2, 3, 4, and 5. Here, k 
and m are used as parameters.  

Heuristic 1 
The algorithm preferentially selects a path that includes many 
uncovered vertices where stuck-at test patterns are assigned.  

Heuristic 2 
To reduce the test length, the algorithm preferentially selects a 
path such that the distance from the current state to uncovered 
vertices, where stuck-at test patterns are assigned, is short. 

Heuristic 3 
To increase the quality of logical testing, the algorithm 
preferentially selects a path such that the total sum of wv is 
large. As a result, the weighted one-state transition coverage 
becomes high. 

Heuristic 4 
To reduce test length, the algorithm preferentially selects a 
path such that the distance from the current state to uncovered 
vertices, where test patterns generated by FSOD are assigned, 
is short. 

Heuristic 5 
In order to increase the quality of timing testing, the algorithm 
preferentially selects a path such that the total sum of we is 
large. As a result, the weighted two-state transition coverage 
becomes high. 
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Fig. 5 Example of test sequence 

 
Example 3: Given the stuck-at test patterns, (PPI1,PPI2,PI) = 
(0,0,1), and (PPI1,PPI2,PI) = (0,1,1), Figure 5 shows the FSM 
test generation graph of Figure 3. FSOD generates the test 
patterns, (PPI1,PPI2,PI) = (1,0,0), and (PPI1,PPI2,PI) = (1,0,1). 
In Figure 5, the vertices indicated by dashed lines are vertices 
where stuck-at test patterns are assigned. When the test 
sequence (0, 1, 0, 1) is generated from the reset state, the 
weighted one-state transition coverage is 100% (2/2) whereas 
the weighted two-state transition coverage is 80 % 
((3+1)/(3+2)=4/5). 
 
5. Experimental Results 
 

The test generation method was implemented and was 
applied to MCNC'91 benchmark circuits [10]. The 
characteristics of MCNC’91 benchmark circuits are shown in 
Table 1. In this table, Circuit, #Node, #PI, #PO, #Reg, and 
#Edge denote the circuit name of the FSM, the number of 
states, the number of primary inputs, the number of primary 
outputs, the number of status registers and the number of state 
transitions, respectively. In these experiments, the FSMs were 
made state observable by DFT, and three test generations were 
performed for state-observable FSMs. Table 2 shows the 
experimental results of fault-independent one-pattern test 
generation method (1a) [7,8] and the fault-dependent 
one-pattern test generation method (1b) [7,8]. Table 3 shows 
the experimental results of the proposed method when the 
value of m was set to one. This algorithm detects stuck-at 
faults completely, it stops. The value m is parameter for a 
switching timing of algorithm shown in the heuristic priority 
rules. Table 4 shows the experimental results of the proposed 
method when test length constraint was set to 300 and 500. 
The circuits indicated by the “*” symbol in the table were ones 
for which stuck-at fault could not be detected completely by 
the test lengths of 300 and 500. The value k was set to 3 in all 
experiments. Moreover, the value n of n-detection for FSOD 
was set to 5. In Tables 2, 3, and 4, Circuit, TL, and CPU time 
denote the circuit name of the FSM, the test length, and the 
time for the test generation, respectively. SFC, BFC, PFC, 
TFC, W1STC, W2STC, and FSC denote the stuck-at fault 

coverage, the bridging fault coverage, the path delay fault 
coverage, the transition fault coverage, the weighted one-state 
transition coverage, and the weighted two-state transition 
coverage, respectively. Each logical testing targets only 
faults that can be detected on valid states [7]. Each timing 
testing targets only faults that can be detected on the transition 
between valid states [7,8]. 

First, the experimental results of the proposed method are 
considered when the value of m is one. Stuck-at faults can be 
completely tested. The weighted one-state transition coverage 
increased an average of 14.15%, and the weighted two-state 
transition coverage increased an average of 18.46% in the 
almost same test length compared to the fault-dependent 
one-pattern test generation method for the stuck-at fault model. 
Bridging fault coverage increased an average of 0.48%, and 
path delay fault coverage increased an average of 12.87%. In 
addition, transition fault coverage increased an average of 
9.53%. In particular, for styr, the weighted one-state transition 
coverage increased 10.2%, bridging fault coverage increased 
0.21%. Also, the weighted two-state transition coverage 
increased 11.82%, path delay fault coverage increased 23.38%, 
and transition fault coverage increased an average of 28.06%, 
and the quality of the timing testing was improved. 

Next, the experimental results are considered for the 
proposed test generation with the test length constrains. 
Stuck-at fault could be completely tested and the test length 
was greatly reduced compared with the fault-independent 
one-pattern test generation method and high fault coverage for 
a bridging fault, a transition fault, and a path delay fault can be 
obtained. In particular, for s386, when test length constraint 
was set to 500, the weighted two-state transition coverage 
increased 8.42%, the path delay fault coverage increased 
3.89% and the transition coverage increased 4.43%. 
 
6. Conclusion 
 

This paper proposed a test generation method to detect 
specified fault models completely and to increase defect 
coverage as much as possible under the test length constraint. 
This paper also proposed weighted state transition coverage as 
measures of test quality. The proposed test generation method 
was evaluated for MCNC '91 benchmark circuit and the 
following conclusions were obtained. 

(1) The proposed test generation method increased the test 
quality of logical testing and the timing testing compared 
with the fault-dependent one-pattern test generation 
method.  

(2) The proposed test generation method greatly reduced the 
test length compared with the fault-independent 
one-pattern test generation method and the quality of both 
the logical testing and the timing testing were 
comparatively high. 
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Table 1 FSM benchmark characteristics 
 

ex1 20 9 19 5 10240
planet 48 7 19 6 6144
s1 20 8 6 5 5120
s208 18 8 2 5 4608
s298 218 3 6 8 1744
s386 13 7 7 4 1664
s420 18 8 2 5 4608
styr 30 9 10 5 15360

#Reg #EdgeCircuit #Node #PI #PO 
 
 
 
 
 
 
 
 
 
 

Table 2 Experimental results for logical testing 
 
 
 
 
 
 
 
 
 
 

ex1 100.00 100.00 81.39 89.86 29997 100.00 72.82 34.60 100.00 95.43 52.39 81.49 145 2.71 2.24 0.08
planet 100.00 100.00 89.23 88.09 12299 100.00 73.31 1.31 100.00 97.53 67.56 79.13 243 5.28 3.79 0.01
s1 100.00 100.00 61.82 83.80 9012 100.00 73.94 3.85 100.00 94.55 38.18 69.64 154 4.42 3.72 0.07
s208 100.00 100.00 100.00 75.98 30943 100.00 74.51 89.42 100.00 95.47 71.62 66.54 103 9.28 5.07 0.20
s298 100.00 100.00 46.53 82.89 10528 100.00 37.43 87.10 100.00 97.95 46.02 82.86 1221 51.80 27.04 3.53
s386 100.00 100.00 83.17 79.67 6066 100.00 80.06 4.62 100.00 95.93 55.02 71.97 87 15.52 11.68 0.02
s420 100.00 100.00 97.40 73.81 29890 100.00 31.70 60.80 100.00 95.60 71.43 65.48 114 3.16 2.92 0.18
styr 100.00 100.00 61.47 86.61 42805 100.00 71.51 100.27 100.00 95.55 19.24 54.16 207 6.58 4.35 0.23
average 100.00 100.00 77.63 82.59 21442.50 100.00 64.41 47.75 100.00 96.00 52.68 71.41 284.25 12.34 7.60 0.54

1a 1b

TL
W1STC

(%)
CPUtime

(sec)
W2STC

(%)
PFC(%) TFC(%) TL PFC(%) TFC(%)

W2STC
(%)

Circuit CPUtime
(sec)

SFC(%) BFC(%)
W1STC

(%)
SFC(%) BFC(%)

 

 



 

Table 3 Experimental results (m = 1) 
 

ex1 100.00 95.37 53.74 84.18 112 14.58 13.56 0.48
planet 100.00 97.95 73.15 83.75 227 28.30 27.09 0.08
s1 100.00 95.45 57.20 84.43 149 12.15 14.05 0.31
s208 100.00 96.32 81.08 72.05 113 37.11 33.45 16.61
s298 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65
s386 100.00 95.85 67.96 78.52 85 25.86 27.60 0.17
s420 100.00 97.20 83.12 71.03 122 40.00 32.28 4.99
styr 100.00 95.76 42.62 82.22 181 16.78 16.17 1.64
average 100.00 96.48 65.55 80.94 279.50 26.49 26.06 67.24

Proposed method （m = 1）

W2STC
(%)

CPUtime
(sec)

TL
Circuit

SFC(%)
W1STC

(%)
BFC(%) PFC(%) TFC(%)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 Experimental results (test length constraint) 
 

ex1 100.00 97.74 66.74 87.02 300 63.05 53.09 1.67 100.00 98.43 76.51 89.48 500 91.86 75.12 3.16
planet 100.00 98.27 75.57 85.69 300 42.21 40.45 0.11 100.00 99.21 82.82 87.30 500 68.82 63.95 0.17
s1 100.00 97.04 65.93 86.61 300 45.30 43.76 0.76 100.00 98.18 74.95 88.50 500 71.27 65.94 1.37
s208 100.00 99.15 86.49 73.23 300 71.13 62.86 32.53 100.00 99.25 87.84 73.23 500 86.60 78.43 70.26
s298* 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65 100.00 97.91 65.49 91.31 1247 37.10 44.30 513.65
s386 100.00 98.20 85.11 83.44 300 88.51 77.86 0.47 100.00 99.00 87.06 84.10 500 100.00 88.48 2.09
s420 100.00 98.40 92.21 73.02 300 69.47 58.60 9.18 100.00 98.90 93.51 73.81 500 87.37 77.66 19.61
styr 100.00 96.56 47.72 85.80 300 35.83 31.31 2.60 100.00 97.37 53.29 87.24 500 67.80 53.34 4.54
average 100.00 97.91 74.25 82.12 300.00 59.36 52.56 6.76 100.00 98.62 79.43 83.38 500.00 81.96 71.85 14.46

Proposed method （TL = 500）Proposed method （TL = 300）
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