Fast and Effective Fault Simulation for Path Delay Faults Based on
Selected Testable Paths *

Dong Xiang Yang Zhao

School of Software, Dept. of Comp. Sci.
Tsinghua University,

Beijing 100084, China

Tsinghua University
Beijing 100084, China

Abstract — Test generation and fault simulation of
path delay faults are very time-consuming. A new fault
simulation method of fully enhanced scan designed cir-
cuits is proposed for path delay faults based on single
stuck-at tests without circuit transformation. The pro-
posed method identifies robustly and non-robustly testable
paths first, for which a selected path circuit (SPC) is con-
structed. The SPC circuit contains no internal fanouts.
Fault simulation of non-robustly testable paths is reduced
to 3-valued logic simulation of the SPC circuit. Fault sim-
ulation is completed on the SPC circuit by only tracing the
active part of SPC circuit. An effective fault dropping tech-
nique is also adopted based on the selective tracing scheme.
The proposed fault simulation scheme is extended to that
of robustly testable path delay faults. Experimental re-
sults confirm that the proposed fault simulator is exact. It
is shown according to experimental results that the pro-
posed fault simulator gets exact fault simulation results in
very short time. Sufficient experimental results are pre-
sented to compare with previous methods on CPU time
and accuracy.

Keywords —Fault simulation, non-robust testing, path
delay faults, robust testing, selected path circuit.

I. INTRODUCTION

Path delay fault test pairs can detect a lot of defects
that cannot be discovered by the single stuck-at fault tests.
Test generation and testing of path delay faults attract
much attention. One of the most important problems for
test generation of path delay faults is the huge number
of paths in the circuit, which can increase exponentially
with the size of the circuit. It is observed that most of
the path delay faults in a circuit are usually redundant.
It is unnecessary to spend much effort on test generation
and fault simulation of the redundant path delay faults [2,
9]. Recently, a very good structure called zero-suppressed
binary decision diagram is used to select testable or critical
paths in reasonable time [12].

Enough methods have been proposed to handle test gen-
eration of path delay faults by the single stuck-at fault test
generation techniques [11, 14, 18]. However, circuit trans-
formation is required for methods in [11, 14], which makes
them unable to handle large circuits. Xiang, et al. [18]
proposed a test generation method based on stuck-at tests,
which presents a compact test set for complete coverage in
reasonable time. The test generation method in [18] does
not need to transform the circuit unlike many previous
methods.

*This work was partially supported by the National Science
Foundation of China under grants 60373009 and 60425203.

Paper 26.2
1-4244-1128-9/07/$25.00 (©2007 IEEE

Dept. of Comp. Sci.
Tsinghua University
Beijing 100084, China

Kaiwei Li Hideo Fujiwara

Graduate Sch. of Inform. Sci.,
Nara Inst. of Sci. and Techn.
Ikoma, Nara 630-0101, Japan

Fault simulation for path delay faults has been studied
extensively [4, 5, 6, 7, 13, 16, 17], which contributes to most
of the CPU time to generate path delay fault test pairs.
Schultz, Fink and Fuchs [16] proposed a parallel fault sim-
ulation method for fault simulation of path delay faults.
Non-enumerative fault simulation of path delay faults at-
tracts a lot of attention. Pomeranz and Reddy [13] pro-
posed the first non-enumerative fault simulation method
in polynomial time of the circuit size. Several levels of
approximation with increasing accuracy and complexity
were also presented all in polynomial time of the circuit
size. An exact non-enumerative fault simulator was pro-
posed by Gharaybeh, Bushnell, and Agrawal in [5] based
on the path-status graph, which is suitable for fault simu-
lation of path delay faults for large circuits. Kagaris and
Tragoudas [7] proved that the non-enumerative fault sim-
ulation problem of path delay faults is NP-hard.

The proposed method selects non-robustly testable or
robustly testable paths first, and a selected path circuit
(SPC) is constructed based on the selected path set. Test
pairs of path delay faults are obtained from single stuck-at
fault tests. The SPC circuit contains no internal fanout.
Fault simulation reduces to logic simulation of the original
circuit, where the SPC circuit is searched exhaustively. An
effective fault dropping technique is also adopted with a
backward selective tracing scheme by effectively pruning
the SPC circuit. The proposed method is suitable for fault
simulation of both robust and non-robust test pairs of path
delay faults. Experimental results show that the proposed
fault simulator (called FastExact) is very fast compared
to two non-enumerative fault simulators. The FastExact
fault simulator presents exact fault simulation.

In the rest of this paper, preliminaries of the paper are
presented in Section 2. A new fault simulation scheme
based on forward logic simulation and the SPC circuit is
proposed in Section 3. A new procedure to construct an
SPC circuit that contains fanouts only at the inputs of
the SPC circuit is proposed in section 4. An interesting
fault simulation scheme is proposed in Section 5 by using
a backward selective tracing scheme to drop faults. The
fault simulation method is extended to robust test fault
simulation in Section 6. Experimental results are presented
in Section 7. The paper is concluded in Section 8.

II. PRELIMINARIES

Let gi-g2- ... -gn be a path p, and g;(v) be the value
of gate g; when applying the test vector v to the circuit,
where g1 and g, are primary input and primary output,
respectively. The off-inputs of f(gi,p) are the inputs of g;
that are not g;—1. The path can have a rising or falling

INTERNATIONAL TEST CONFERENCE 1



Figure 1: The Hasse diagram of the 10 values of the
logic system.

O 6
2| {al/0, b1/0}
1
b |7 0 {a1/0, b1/0}
a 1 1
1 {a1/0, buoy
E {22/0, b2/0}
0
73
{22/0, b2/0}
; 0 {2210, 6210, a3/0, b3/0}
22800, b3/0}
12300, b3/0}
I S 9
1 (b)

Figure 2: Example circuit fault simulation by logic
simulation: (a) the original ¢17, (b) the full transfor-
mation of ¢17.

transition at g1. A path p is a path delay fault if propaga-
tion time of the rising or falling transition through the path
exceeds a limit. Falling transition and rising transition at
the source node of a path p are py and p,., respectively.

Let cv and ncv be the controlling value and the non-
controlling value of a gate. The definition for a robust test
pair is directly obtained from [9].

Definition 1 Let f denote the on-input to gate g in the
target path. Let h denote an off-input to gate g. The off-
input h is called robust off-input with respect to an input
vector pair V if:

e there is a cv — ncv transition or stable non-
controlling value on h when the on-input f has a
cv — ncv transition, and

e there is a non-controlling value on h when the on-
input f has a ncv — cv transition.

Definition 2 A path delay fault for which there exists an
input vector pair such that it activates the required transi-

Paper 26.2

construct-select-path-circuit()

1. Add the first path p in P into the SPC circuit,
and delete p from P.

2. While P # (), for each p € P, do

(a) Check nodes of p from the input to the out-
put. Just put the node into SPC if it is not
in SPC. If a node [ of the path has been con-
tained in SPC, put the predecessor of the
node [ in the path as an input of the gate
whose output is [.

(b) Check the path p from [ to the end, if the suc-
cessor I’ of [ is still contained in the SPC, just
go ahead; otherwise, generate a new fanout
at the current node with node [ feeding the
gate I’ if I’ is not contained in SPC.

(¢) Continue the process in steps a and b until
reaching the output of path p.

3. For any node ! in the original circuit that is not
contained in the SPC, add [ into SPC as an input
of a gate if [ is an input of a gate that is contained
in both the original circuit and SPC, add ! to the
circuit as the input of the gate.

Figure 3: Selected path circuit construction for fault
simulation.

tions on the path and all off-inputs in the path are robust
off-inputs is called a robust testable path delay fault.

A non-robust test guarantees detection in the case of
a single path-delay fault [5, 4, 3]. Therefore, a path de-
lay fault for which there exists a non-robust test is called
singly testable. The conditions for a non-robust test pair
(v1,v2) are, (1) transition (with the appropriate direction
) is launched at the primary input of the target path, that
is, for any on-path line g, we have g(vi) # g(v2); (2) for
each gate along the target path, all off-inputs along the
path have non-controlling values under vs.

We can generate test pairs of path delay faults for fully
enhanced scan designed circuits without any circuit trans-
formation. For any target path, a new circuit (called equiv-
alent test generation circuit, ETGC) can be constructed
as follows: The new circuit includes the original circuit
in addition to another copy of the target path, where all
off-input lines of the target path are connected with the
corresponding lines in the original circuit. Test generation
of the target path delay fault is equivalent to test genera-
tion of the single stuck-at fault at the source node of the
additional path as presented in [18].

As for the robustly testable path delay faults, the fault
simulator and the test generator is implemented based on
the 10—valued logic system. The 10-valued logic system [3]
contains s0 (0,0), s0 (1,0), 51 (0,1), s1 (1,1), x0 (x,0), U,
x1(x,1), U0, Ul, and xx. Figure 1 presents the Hasse dia-
gram of the 10-valued logic system. Let value a and b be
connected, and a be the predecessor in the Hasse diagram.

INTERNATIONAL TEST CONFERENCE 2



We have value a contains value b. For example, x0 contains
both s0 and 50, Ul contains U and x1, and x1 contains 51
and sl. The equivalent test generation circuit (ETGC) for
a path can be constructed as follows: The target path in
the ETGC circuit as mentioned above is replaced by one or
more SPC circuits. For each gate in an SPC circuit, the ex-
tra nodes of the gate are connected with the corresponding
nodes in the original circuit. Test generation of a testable
path delay fault is reduced to test generation of the single
stuck-at fault at an input or a fanout branch of an input
in the extra SPC circuit. Note that all inputs inside the
extra SPC circuit are connected to the corresponding in-
puts in the original circuit. This technique can completely
simplify test generation for path delay faults. However,
fault simulation is still handled in the corresponding SPC
circuit based on the selective backtrace technique via logic
simulation that is introduced later in this paper.

Accuracy of a fault simulator is very important. We
call a fault simulator ezract if it produces no simulation
error in the process of fault simulation. That is to say,
the fault simulator detects all path delay faults and only
those faults that are detectable by the test pair set. The
proposed fault simulator is an exact one, the exactness of
which is confirmed experimentally in Section 7.

III. FORWARD FAULT SIMULATION

We introduce a new method for fault simulation of path
delay faults based on forward logic simulation and the SPC
circuit. It is shown that fault simulation for circuits with-
out internal fanout can be completed by using a logic sim-
ulation scheme. While it is impossible to transform a cir-
cuit completely when the circuit contains a huge number
of paths, we present a new scheme by constructing an SPC
circuit that contains only the selected critical and testable
paths.

Figure 2(b) presents the full transformed circuit of
the original circuit as shown in Figure 2(a). Logic
values of all nodes corresponding to the test vector
(1,2,3,4,5) = (0,1,1,1,1). It is clear that the test vec-
tor can detect single stuck-at faults a1/0, b1/0, a2/0,
b2/0, as/0 and b3/0. Therefore, the test vector pair
(1,2,3,4,5) = (00, 11, 01, 01, 11) covers path delay faults
{p1/r,p2/r,p3/7,pa/7,D5/7, D6/}, Where p1, p2, 3, P4, D5
and pe are paths 3—7—8-10,4—-7—-8-10,3—-7—-8—11,
4-7—-8-11,3—-7—9—-11and 4—7—9—11, and p/r
represents the rising transition on a path.

However, there exist a large number of path delay faults
that are untestable. These untestable faults can make the
size of the transformed circuit very large. Repeated fault
simulation on the untestable path delay faults is very time-
consuming. It is quite good if the untestable paths are
deleted from the transformed circuit, which can reduce the
size of the transformed circuit greatly.

To solve the above problem, an SPC circuit is con-
structed based on the selected critical and testable paths
for fault simulation of path delay faults. The selected crit-
ical and testable paths construct a simplified circuit that
can still contain enough number of reconvergent fanouts of
the original circuit. The SPC circuit is transformed into a
fanout-free one by moving all fanouts to the inputs of the
circuit. The SPC circuit has acceptable size because the
number of critical paths is much less than that of the total
paths in the original circuit.

Paper 26.2

forward-fault-simulation-by-logic-simulation()

1. Do logic simulation on the original circuit.

2. For each primary input ¢ without fanout, it corre-
sponds to a path p. P(i) = {p/f} if i is assigned
value 0, and P(i) = {p/r} if i is assigned value
1. For each fanout branch at the primary input
i, it corresponds to a path p, P(i) = {p/f} if i is
assigned value 0, and P(i) = {p/r} if i is assigned
value 1.

3. For each gate g with inputs i1, 42, ..., ik, P(g) =
U, P(i;), where all other inputs i; (t # j) are as-
signed the sensitization value by the test vector.

4. For any inverter g with input i, P(g) = P(i).

5. Continue the above process until reaching the out-
puts of SPC circuit. The test vector pair covers
faults U; P(¢), where ¢ is an output of the circuit.

Figure 4: Replacing fault simulation by logic simula-
tion.

The procedure to construct the SPC circuit as presented
in Figure 3 is based on the selected path set P. The first
path is put into the SPC circuit directly. For each of the
remaining paths, check from the source node. Just put the
node into the circuit if it is not found in the SPC circuit.
Put the predecessor of the node [ in the path as an input
of the gate whose output is [ in SPC circuit if node [ has
been in the SPC circuit. Continue the above process until
a node I’ of the path is found not in the SPC circuit. Let [
be the predecessor of I’ in the path, which has been in SPC
circuit. Generate a fanout at [, where the fanout branch
feed gate I’. Our method can construct an SPC circuit
based on any subset of testable paths. This feature of the
procedure presented in Figure 3 is very attractive.

Some nodes in the original circuit may be not contained
in the SPC circuit based on the selected testable and crit-
ical paths. Nodes in the original circuit that are not con-
tained in the SPC circuit and feed to one gate of the SPC
circuit should be added. These nodes, called extra nodes of
the SPC circuit, are added to the circuit. The constructed
SPC circuit may contain some internal fanouts, which is
transformed into one with no internal fanouts.

Fault simulation can be handled on the transformed
SPC circuit with the logic-simulation-based scheme pre-
sented in Figure 4. Logic simulation on the original circuit
is used for a given test vector to get values of the extra
nodes in the SPC circuit. It is necessary for the procedure
presented in Figure 4 to get values of those extra nodes for
the given test vector. Let P(i) be the sensitized path set
that contains gate @ in the SPC circuit. The sensitization
value of an AND or NAND gate is 1, and 0 for an OR or
NOR gate. Each path from the primary input (or pseudo
primary input) or a fanout branch of a primary input has
only one path leading to a primary output (or pseudo pri-
mary output). The proposed procedure checks each path
from its input to the output. It is detected by the test vec-

INTERNATIONAL TEST CONFERENCE 3



2
1
37
P
PR e
1
2
1
3
0
7
1 2 9 1
4 1
5 (b)

Figure 5: The SPC circuit: (a) the SPC circuit of ¢17,
(b) the full transformation of the SPC circuit.

@ B

b c b ¢
‘ ‘ ‘ ‘ ‘ a b a b c
a(d)
4 9 4 4 4

©

Figure 6: Useless paths in the SPC circuit: (a) General
structure, (b) an example, (c¢) the transformed circuit
of 6(b), and (d) the actual transformed circuit.

tor if all off-inputs of the path are assigned sensitization
values. The covered paths are kept in P(i) after running
the procedure in Figure 4, where ¢ is a primary output (or
pseudo-primary output). Different outputs keep separate
detected path sets.

Let us consider the circuit as shown in Figure 2(a) again,
and the following paths be selected as critical paths: {3-
7-8-11, 3-7-9-11, 4-7-9-11, 4-7-8-11, 3-7-8-10, 4-7-8-10 } =
{p1, P2, P3, P4, Ps, pe }. Figure 5(a) presents the SPC of ¢17
according to the procedure in Figure 4 and the given criti-
cal path set. Figure 5(b) gives the fully transformed circuit
of the SPC circuit in Figure 5(a). Our method gets the
values of all extra nodes based on logic simulation on the
original circuit corresponding to a test vector. As shown
in Figure 5(a), our method gets value of the extra node 6
based on logic simulation for the original circuit. The same
results as that presented in Figure 2 can be obtained. Test
vector 01111 covers single stuck-at faults a1/0, a2/0, a3 /0,
b1/0, b2/0, and b3/0. And test pairs (1,2,3,4,5) = (00, 11,

Paper 26.2

construct-fanout-free-SPC()

1. While one path in P has not been handled, do
steps 2, 3, 4, 5, 6, and 7.

2. Add the first path p € P into the SPC circuit,
and delete p from P. For each path p € P, check
whether the fanout at the primary input has been
in the SPC circuit. If so, exit; otherwise, do 3, 4,
5, 6, and 7.

3. Check whether all fanouts contained in p (corre-
sponding to the original circuit) have been in the
SPC circuit. If so, 6 and 7.

4. At least one fanout in p has been in the SPC cir-
cuit, check whether path p has the same fanout
branch in the original circuit. If not, exclude the
path p.

5. Check path p from the input to the output, if one
gate [ of the path has been in the SPC, put the
predecessor of the node [ in path p as an input of
gate I in the SPC.

6. Just put each node of path p into the SPC if it is
contained in the SPC. If one gate [ of the path p
has been in the SPC, put the predecessor of the
node [ in path p as an input of [.

7. For each new fanout added to the SPC, record
the corresponding branch number in the original
circuit.

8. For each node [ that feeds a gate of the SPC in
the original circuit, add [ to the gate as an extra
line. If P is empty, end. Otherwise, go to step 1.

Figure 7: Constructing a fanout-free SPC circuit.

01, 01, 11) covers path delay faults {p1/r, p2/7, ps/r, pa/r,
ps/7, pe/r}-

IV. CoNsTRUCTING FANOUT-FREE SPC CIRCUITS

The transformed SPC circuit may contain some paths
that are not contained in the selected path set. Figure 6(a)
presents the general structure of the SPC circuit. There ex-
ist at least max(n, m) selected testable paths to construct
the SPC as shown in Figure 6(a). There exist n-m paths in
the transformed circuit, where some of them may not be re-
ally the selected testable or critical paths. As shown in the
example in Figure 6(b), Figure 6(c) shows the transformed
circuit, and Figure 6(d) presents the actual transformed
circuit. Therefore, it is not good to transform the SPC
circuit directly. It is necessary to exclude those paths that
are not contained in the selected path set.

We would like to introduce a new procedure as pre-
sented in Figure 7 to construct multiple SPC circuits that
contain no fanouts, which can exclude the useless paths.
The procedure in Figure 7 generates a separate SPC cir-
cuit in each round. In each round, all remaining paths are

INTERNATIONAL TEST CONFERENCE 4



backward-fault-simulation-by-logic-simulation()
1. Do logic simulation on the original circuit.

2. For each primary output or pseudo-primary out-
put in the fanout-free SPC circuit, let its inputs
be i1, 19, ...,1n, for each of its inputs 7, recursively
do the following process in steps 2 and 3.

3. Check all other inputs that feed the gate are
assigned non-controlling values, if so, backtrace
from the input ¢ until reaching a primary input
or a pseudo-primary input; otherwise, stop at the
node.

4. For any inverter g with input ¢, backtrace to ;
continue the above process until reaching a pri-
mary input or a pseudo-primary input.

5. For all primary inputs or pseudo-primary inputs,
check whether the uncovered faults there are ac-
tivated, return all activated uncovered faults.

Figure 8: Backward fault simulation by selective trac-
ing.

Figure 9: Selective backtrace for fault simulation via
logic simulation.

checked once, but each path is not traversed completely.
Only the fanouts contained in each path are checked if it
is not included in the current SPC circuit. If the fanout
branch of a path p at the primary input has been in the
SPC, the path always generates a new fanout in the SPC
if it is included into the SPC circuit. Therefore, the path
p cannot be included into the current SPC. After that,
check whether all internal fanouts of the path p have been
in the SPC circuit. If so, check whether all internal fanout
branchs (excluding the fanout at the input) of path p have
been contained in the SPC circuit. If so, the path can be
merged into the SPC circuit.

A path p is merged into the SPC circuit at one or more
fanouts of the original circuit, or even internal fanouts not
contained in the SPC at the beginning part of the path.
When an internal fanout of a path has been contained in

- —_— (or_I)
> T DA
S0 (or s1)

I
I S o — or L)
) <0 (or s1) e

Figure 10: Robustly sensitizable conditions for path
delay faults.

~ e

Paper 26.2

backward-fault-simulation-for-robust-tests()

1. Get the robustly testable path set first based
on the techniques presented [12]. Construct the
fanout-free SPC circuit. Do 4—valued logic simu-
lation on the original circuit with the test.

2. For each primary output or pseudo-primary out-
put in the fanout-free SPC circuit that are as-
signed 50 or s1 by the test vector. Let its its
inputs be 41,19, ...,1i,, for each of its input 7, re-
cursively do the process in steps 2 and 3.

3. Check each input that is assigned value 50 or 51,
check whether all other inputs feed the gate are
assigned robustly sensitizable values; if so, back-
trace from the input ¢ until reaching a primary
input or a pseudo-primary input; otherwise, stop
at the node.

4. For any inverter g with input ¢, backtrace to ;
continue the above process until reaching a pri-
mary input or a pseudo-primary input.

5. For all primary inputs or pseudo-primary inputs,
check whether the uncovered transitions there are
detected by the test vector, return all detected
uncovered transitions.

Figure 11: Backward fault simulation for robustly
testable path delay faults by selective tracing.

the SPC circuit and it has the different fanout branch in
the original circuit from that of the one in the SPC circuit,
the path cannot be merged into the SPC circuit. Let two
paths starting from the same or different primary inputs
converge, they share the same gates for all remaining gates
in the fanout-free SPC circuit. A new fanout is added to
the SPC circuit when a path has one fanout not contained
in the current SPC circuit. Extra nodes are added to the
SPC circuit for any nodes feed one gate in the SPC cir-
cuit, where the extra nodes are not contained in the SPC
circuit. The number of fanout-free SPC circuits cannot
be very large. Also, the fanout-free SPC circuits are con-
structed once and for all. That is, the SPC circuits are only
constructed once during the whole process of test genera-
tion.

The CPU time to establish the SPC circuits can be very
large. Our method randomly partitions the path set into
multiple path subsets. The SPC circuits are constructed
corresponding to each path subset. The CPU time to es-
tablish the SPC circuits can be reduced drastically. Usu-
ally, the number of nodes in the SPC circuits does not
increase a lot. The number of path subsets can be simply
determined by the number of paths.

V. FauLT DROPPING USING BACKWARD SELECTIVE
TRACING

The fault simulation procedure presented in Figure 4
may contain some redundant process, where each line must

INTERNATIONAL TEST CONFERENCE 5



2
sl
3
©D L
8 o
- (1,0) 14
41 9 (L0)
©1 —
5 sl

Figure 12: Fault simulation example for robustly
testable path delay faults by selective tracing.

keep a list to record the set of single stuck-at faults that
propagate to itself. We would like to propose a backward
fault simulation procedure without any redundant work
as introduced in Figure 8. The new procedure backtraces
from all primary outputs or pseudo-primary outputs to
primary inputs or pseudo-primary inputs. For each gate,
backtrace to its input if the sensitization condition for that
input meets. That is, all other inputs of the gate are
assigned non-controlling values. Otherwise, stop at that
node. Continue the above process until reaching an input.
For each input, or each of its fanout branches if it is a
fanout, check whether the corresponding undetected fault
is activated by the test vector. If so, the fault is detected
by the test vector. The procedure in Figure 8 does not
need any redundant process. Also, no list is necessary for
each line to record the fault list.

Let us consider the example in Figure 2(b) again. Back-
trace from 10 and 11. Backtrace from 10 to 8; and 71,
which stops at 6 because the corresponding paths are not
included in the SPC circuit. It is found that a1 /0 and b1 /0
are detected by the test. Backtrace from 11 to 82 and 9,
and to 73 and 72, respectively. It is clear that faults a2/0,
b2/0, a3/0, and b3/0 are covered by the test. That is, the
test pair {1,2,3,4,5} = {11, 11, 01, 01, 11} covers the
rising transition path delay faults on paths {3-7-8-10, 3-7-
8-11, 3-7-9-11, 4-7-8-10, 4-7-8-11, 4-7-9-11}, where the first
value of the test pair is the initial value and the second is
the stable value.

The backward fault simulation process does not need to
traverse some nodes in an SPC circuit when the faults re-
lated to an input or a fanout branch at an input have been
covered. This technique can further reduce fault simulation
time and prune the SPC circuit effectively. As shown in
Figure 9, the path delay faults related to lines a and b have
been covered. Both lines are assigned a star label. The line
c is also assigned a star label. Let d be assigned a star la-
bel too. It is clear that e must be assigned a star label.
Therefore, it is unnecessary to traverse the lines preceding
to e, where faults corresponding to all predecessors of e
have been covered for the backward fault simulation from
g. This selective backtracing technique can further save
enough time when the SPC circuit contains no untestable
path delay faults. The SPC circuit pruning technique cor-
responds to the fault dropping process of the conventional
fault simulators.

Paper 26.2

VI. FAULT SIMULATION FOR ROBUSTLY TESTABLE
PATH DELAY FAULTS

Robust test generation for path delay faults can still be
completed by using a single stuck-at test generation tool
and the ETGC circuit model. The only differences are
that the logic system must be replaced by the 10-valued
logic system, and the robustly sensitizable conditions of
all off-path lines are different. The robustly sensitizable
conditions as presented in Figure 10 are as follows:

e As for a falling transition at an input of an AND gate
or NAND gate, its off-path inputs must be assigned
value s1; let a rising transition at an input of an AND
gate or NAND gate, its off-path inputs must be as-
signed x1.

e All off-path inputs must be assigned x0 in order to
propagate a falling transition on an input of an OR
or NOR gate robustly; as for a rising transition on an
input of an OR or NOR gate, its off-path inputs must
be assigned s0.

e For a rising transition or a falling on an input of an
XOR or a NXOR gate, its off-path inputs must be
assigned s0 or sl.

A backward fault simulation procedure is proposed for ro-
bustly testable paths in order to avoid the path set op-
erations. This can greatly reduce CPU time to do fault
simulation. This scheme does not need to keep a path set
for each node in the SPC circuits, which can save a large
amount of memory. The backward fault simulation proce-
dure is still proposed based on the 4-valued logic simula-
tion. It starts from the primary outputs or pseudo-primary
outputs by using a selective backtracing procedure.

The robustly sensitizable conditions as presented in Fig-
ure 10 are checked for all inputs at the output of a gate.
Backtrace continues along the input if the conditions are
met for it, otherwise, stop at that node. Continue the
above process until reaching a primary input or a pseudo-
primary input. All the detected path delay faults can be
collected at the inputs of the SPC circuit. An input of the
SPC circuit or only a branch at an input is pruned when
all path delay faults related to the input in the SPC circuit
have been covered. A gate in the SPC circuit can also be
pruned if all its inputs have been pruned as presented in
Figure 9. The computing complexity of the procedure in
Figure 11 is O(vec - N), where vec is the number of test
vectors, and N is the size of the SPC circuit.

Experimental results are presented to demonstrate that
the proposed backward fault simulation procedures obtain
exact fault simulation results in Section 7. Theoretical
proof of the exactness of the fault simulator is not pre-
sented because of space limit. Figure 12 presents the logic
simulation result for the robust test vector pair (2,3,4,5,6)
= (s1, 51, 51, s1, s1). The backward selective tracing iden-
tifies the set of uncovered path delay faults. Let {p1, p2, p3,
D4, D5, Pe} = {3-7-10-13, 3-8-11-14, 3-9-12-14, 4-7-10-13,
4-8-11-14, 4-9-12-14}. The robust test vector pair detects
rising transition path delay faults on all the above paths:

{p1/r, p2/r, p3/r, pa/r, p5/7, Ps/T}

VII. EXPERIMENTAL RESULTS

We have implemented the fault simulator called Fas-
tExact for non-robustly and robustly testable path delay

INTERNATIONAL TEST CONFERENCE 6



Table 1: Testable Path Selection based on ZBDD [12]

robust non-robust
Circuit | paths | CPU | paths | CPU
$298 343 0.03 364 0.04
s344 611 0.05 654 0.07
$349 611 0.05 656 0.08
$382 667 0.05 734 0.1
$386 413 0.04 414 0.09
s400 663 0.04 753 0.09
$420 738 2.59 738 0.13
s444 586 0.05 813 0.1
s510 729 0.07 738 0.1
$526 729 0.07 738 0.1
s641 1979 | 0.22 2270 0.35
s713 1184 | 0.24 4922 0.58
$820 980 0.21 984 0.18
s832 984 0.23 996 0.21
s838 2018 0.2 2018 0.2
$953 2302 | 0.18 2312 0.12
s1196 3581 | 0.72 3759 0.34
$1238 3589 | 0.83 3684 0.35
$1488 1875 | 0.38 1916 0.33
$1494 1882 | 0.38 1927 0.32
s1423 | 28696 | 10.88 | 45198 | 11.33
sb378 | 18656 | 3.45 | 21928 | 2.47
$9234 | 21389 | 57.01 | 59854 | 51.96
$13207 | 27603 | 10.45 | 476143 | 26.18
$35932 | 21783 | 30.59 | 58657 | 31.88
$38584 | 92239 | 62.81 | 334927 | 37.33

faults. As for non-robustly testable path delay faults, the
fault simulator is completed on the SPC circuit based on
the 3-valued (0, 1, and X) logic simulation, where the
SPC is constructed by the selected non-robustly testable
paths [12]. As for the robustly testable path delay faults,
the fault simulator is implemented based on the 4—valued
logic simulation (s0 (0,0), 50 (1,0), 51 (0,1), s1 (1,1)) cor-
responding to the 10-valued logic system, where the SPC
is constructed by the robustly testable paths. The ro-
bustly testable paths and non-robustly testable paths are
obtained based on the ZBDD in [12]. Table 1 presents
the number of robustly testable paths and non-robustly
testable paths, and the CPU time (seconds) for ZBDD to
acquire these testable paths. As shown in Table 1, ro-
bustly testable paths and non-robustly testable paths are
obtained for all circuits in very short CPU time.

The FastExact fault simulator is implemented by C lan-
guage using a Blade2000 workstation. FastExact is run on
the larger ISCAS89 circuits for the non-robust and robust
test sets, where the deterministic test vector pairs are ob-
tained by a stuck-at-test-based test generator [18]. The
paths represents the number of non-robustly testable or
robustly testable paths as shown in Table 2. In Table 2,
init and fsim represent CPU time (seconds) to construct
the SPC circuit and for the fault simulation, respectively.
The parameter vec. represents the number of test vec-
tors. FastExact obtains 100% fault coverage for all cir-

Paper 26.2

cuits. Table 2 presents fault simulation results of all non-
robustly testable paths and robustly testable paths for all
circuits except s15850 for non-robustly testable paths. Cir-
cuit s15850 uses only a subset of the longest non-robustly
testable path delay faults.

Table 3 presents comparison of the fault simulation re-
sults with FastExact and the exact fault simulation results.
The exact fault simulation checks all undetected path de-
lay faults in the fault list one by one whenever there is
a transition in the inputs of the circuit. It checks from
the source node of a path to the sink node. A path delay
fault is covered if all off-path lines are assigned sensitiza-
tion values. In Table 3, parameters ezxact, FastExact, det.,
paths, and vec. represent the exact fault simulation re-
sults, the proposed fault simulation results, the number of
path delay faults detected by the test pair set, the number
of path delay faults under consideration, and the number
of test pairs. Parameter CPU represents the CPU time
(seconds) only for the fault simulation, not including the
time to construct the SPC circuit. It is found that for all
circuits FastExact obtains exactly the same number of de-
tected faults as that of the exact fault simulator. However,
FastExact needs much less CPU time (seconds). The ex-
act fault simulation avoids creating a separate SPC circuit,
and instead it keeps the list of all the nodes on the path
currently under evaluation and the sensitization values of
their off-path lines. So the exact fault simulation requires
less storage than our proposed method. However, it needs
more CPU time to simulate all the undetected path de-
lay faults one by one. Only 100 test pairs are checked for
circuit s1423 because too much CPU time is required for
exact fault simulation, so is circuit s9234. The experimen-
tal results for random test pairs also prove the accuracy of
our proposed fault simulator, which are not presented for
space limit.

Table 4 presents comparison of the FastExact fault sim-
ulator with the DIM [7], ZOA [13](the zero order) fault
simulator and FOA (the first order) fault simulator in [13]
using the deterministic robust test vectors generated by
the SPC test generator [18]. It is found that the DIM fault
simulator needs much more CPU time (seconds) than that
of the FastExact fault simulator in all cases. However, the
DIM fault simulator still includes some undetected faults
in almost all cases. It also missed some detected faults in
some cases. The ZOA [13] fault simulator obtains a pes-
simistic fault coverages for all circuits in very short time.
As for the FOA [13] fault simulator, it obtains pessimistic
fault coverage estimation for all circuits in much more CPU
time than FastExact. Only 1000 test pairs are used for cir-
cuits s1423, s15850, and s38417 because the FOA and DIM
fault simulators needs too much CPU time.

Table 5 compares the performance of the FastExact
fault simulator with DIM [7], ZOA [13](the zero order
fault simulator) and the FOA fault simulator in [13] with
1000 random test pairs. The DIM fault simulator overesti-
mates fault coverage in almost all cases in much more CPU
time than that of FastExact. The fault simulators ZOA
and FOA underestimate fault coverage in almost all cases,
while the FOA needs much more CPU time than that of
FastExact and ZOA needs even less CPU time than that
of FastExact in some cases.

INTERNATIONAL TEST CONFERENCE 7



robust non-robust

Circuit | paths | vec. | FC cpu(s) paths vec. | FC cpu(s)

init | fsim init fsim
s13207 | 27603 | 2727 | 100 | 4.2 78.7 476143 | 2439 | 100 | 162 1238
s35932 | 21783 278 100 | 6.4 15.7 58657 69 100 | 18.2 | 9.97
s38417 | 598062 | 32348 | 100 | 585 | 20625 | 1138149 | 15658 | 100 | 1114 | 15471
s38584 | 92239 | 3484 | 100 | 18.3 282 334922 | 3842 | 100 | 188 1281
s15850 | 182673 | 7557 | 100 | 478 | 5813 121525 | 2417 | 100 | 447 | 3583

Table 2: Performance of the FastExact Path Delay Fault Simulator for Robust and Non-robust Tests

Table 3: Comparison with the Exact Fault Simulation Results

robust non-robust

Circuit | paths | wvec FastExact exact paths | wvec FastExact exact
det. | CPU det. CPU det. CPU | det. CPU
$382 667 | 103 | 667 0.03 667 10.5 734 58 734 0.03 734 6.95
s444 586 | 101 | 586 0.05 586 10.5 813 60 813 0.3 813 10.1
$526 694 | 129 | 694 0.05 694 16.1 720 81 720 0.3 720 10.2
s713 1184 | 94 | 1184 | 0.17 | 1184 75.5 4922 | 236 | 4922 1.3 4922 | 2563
s838 2018 | 681 | 2018 | 0.25 | 2018 222.8 2018 | 595 | 2018 | 1.78 | 2018 | 1312
s1238 3589 | 518 | 3589 | 1.33 | 3589 1920 3684 | 302 | 3684 | 1.05 | 3684 | 1613
s1423 | 28696 | 100 | 999 8.33 999 23402 | 45198 | 100 | 3590 | 21.4 | 3590 | 73.3h
s5378 | 18656 | 929 | 18656 | 39.8 | 18656 | 353753 | 21928 | 100 | 8565 | 9.85 | 8565 | 43.6h
$9234 | 21389 | 100 | 1717 | 8.13 | 1717 | 176953 | 59854 | 100 | 12004 | 40.2 | 12004 | 132h

VIII. CONCLUSIONS

A fast and exact fault simulator called FastExact is pro-
posed for path delay faults based on logic simulation and
selected path sets. A new circuit called the SPC circuit
is constructed by the non-robustly or robustly testable
paths, which contains fanouts only at the inputs of the
SPC circuit. A backward selective tracing scheme is run
on the SPC circuit for non-robustly testable faults to pro-
ceed only the active part based on logic simulation results
of all nodes, where the logic simulation results are obtained
on the original circuit. The backward selective tracing
scheme does not need to store any fault list, therefore, does
not need any extra memory. An effective fault dropping
scheme is also adopted to prune the SPC circuit in the
process of fault simulation. Experimental results confirm
the accuracy of the proposed fault simulator. Experimen-
tal results are presented to compare with several previous
methods on CPU time and accuracy. In the future re-
search, more efforts would be made to propose an effective
procedure instead of ZBDD in [12] to select testable path
delay faults.

REFERENCES

[1] N. M. Abdulrazzaq and S. K. Gupta, “Path delay
fault simulation for circuits with large numbers of
paths for very large test sets,” in Proc. of 21th IEEE
VLSI test Symposium, pp. 186-193, 2003.

[2] K. T. Chengand H. C. Chen, “Classification and iden-
tification of non-robust untestable path delay faults,”

Paper 26.2

8]

[4]

[5]

[6]

[7]

8]

[9]

[10]

INTERNATIONAL TEST CONFERENCE

IEEE Trans. on Computer-Aided Design, vol. 15,
no. 8, Aug. 1996.

K. Fuchs, F. Fink, and M. H. Schulz, “DYNAMITE:
An efficient automatic test pattern generation system
for path delay faults,” IEEFE Trans. on Computer-
Aided Design, vol. 10, no. 10, pp. 1323-1335, 1991.

F. Fink, K. Fuchs, and M. H. Schulz, “Robust and
non-robust path delay fault simulation by parallel
processing of patterns,” IEEFE Trans. on Computers,
vol. 41, no. 12, pp. 1527-1536, 1992.

M. A. Gharaybeh, M. L. Bushnell, and V. D. Agawal,
“The path-status graph with application to delay fault
simulation,” IEEFE Trans. on Computer-Aided Design,
vol. 17, no. 4, pp. 324-332, 1998.

K. Heragu, J. H. Patel, and V. D. Agrawal, “Improv-
ing a non-enumerative method to estimate path de-
lay fault fault coverage,” IFEE Trans. on Computer-
Aided Design, vol. 16, no. 7, pp. 759-762, 1997.

D. Kagaris and S. Tragoudas, “On the non-
enumerative fault simulation problem,” IEEE Trans.
on CAD, vol. 21, no. 9, pp. 1095-1101, 2002.

B. Kapoor, “An efficient method for computing exact
path delay fault coverage,” in Proc. of IEEE European
Design and test Conference, pp. 516-520, 1995.

A. Krstic and K. T. Cheng, Delay Fault Testing for
VLSI Circuits, Kluwer Academic, 1998.

H. K. Lee and D. S. Ha, “On the generation of
test patterns for combinational circuits,” Technical
Report12-93, Dept. of Electrical Eng., Virginia Poly-
technic Institute and State University, 1993.



FastExact Dim [7] ZOA [13] FOA [13]
Circuit | paths | vec. det. | CPU | det. CPU det. | CPU | det. CPU
s349 611 95 611 0.05 606 1.9 321 0.12 446 2.1
$382 667 103 667 0.03 679 1.7 433 0.13 593 3.9
s386 413 118 413 0.03 413 1.15 407 0.15 413 0.95
s400 663 102 663 0.05 679 1.78 419 0.12 575 4.1
s420 738 244 738 0.05 738 5.68 453 0.33 570 3.62
s444 586 101 586 0.05 674 2 415 0.15 573 4.62
s510 729 218 729 0.1 737 3.95 464 0.37 687 6.52
$526 694 129 694 0.05 701 2.32 609 0.23 686 3.17
s641 1979 179 | 1979 | 0.62 | 1937 | 31.82 | 669 04 1708 10.58
s713 1184 94 1184 | 0.17 1224 10.7 553 0.25 1070 7.07
$832 984 242 984 0.15 991 5.27 967 0.73 979 8.65
s838 2018 681 2018 | 0.25 2019 81.8 1152 1.92 1521 44.33
$953 2302 395 | 2302 | 0.45 | 2313 | 29.5 1147 | 1.33 | 2061 55.98
s1196 3584 544 | 3584 | 1.38 | 3575 | 67.33 | 1648 | 2.28 | 3201 87.58
s1238 3589 518 | 3589 | 1.33 | 3543 | 62.08 | 1699 | 2.27 | 3199 | 87.28
s1494 1882 384 1882 | 0.55 1895 | 36.58 | 1526 | 2.05 1795 32.25
s1423 | 28696 | 1000 | 6244 | 84.4 | 6028 | 465.7 | 1311 | 5.13 | 4045 398
sb378 18656 929 | 18656 | 39.8 | 18696 | 2722 6166 17.0 | 10198 | 26201
s9234 21389 | 1549 | 21389 | 84.1 | 22501 | 7219 7195 | 49.2 | 12496 6782
s13207 | 27603 | 2796 | 27603 | 279 | 28105 | 26217 | 16248 | 132 | 18224 | 53250
s15850 | 182673 | 1000 | 27608 | 1081 | 28824 | 14387 | 10601 | 55.6 | 21888 | 211140
s35932 | 21783 166 | 21783 | 10.9 | 26422 | 10417 | 18905 | 24.1 | 20622 | 28546
$38417 | 598062 | 1000 | 64460 | 530 | 66836 | 58485 | 34664 | 162 | 53387 | 141231
s38584 | 92239 | 2788 | 92239 | 706 | 91553 | 42.7h | 37371 | 465 | 62454 | 197.4h

Table 4: Comparison with the Previous Fault Simulators with the Deterministic Tests Generated by [18]

FastExact Dim [7] ZOA [13] FOA [13]
Circuit | paths det. CPU | det. CPU det. | CPU | det. CPU
s344 611 250 0.38 254 20.27 206 1.08 231 13.6
s386 413 135 0.2 135 15.13 134 1.27 135 7.72
s420 738 145 0.2 146 17.72 128 1.35 138 11.38
s444 586 246 0.4 308 22.7 225 1.52 234 16.68
$526 694 261 0.42 268 24.45 256 1.85 256 23.43
s713 1184 339 1.03 347 52.4 322 2.47 333 40.3
s838 2018 269 0.33 269 32.5 231 2.85 254 48.08
s953 2302 471 1.05 475 | 37.82 | 421 3.3 468 85.38
$1238 3589 629 2.08 636 50.23 523 4.33 624 70.45
s1494 1882 498 1.53 508 54.25 476 5.43 481 65.42
s1423 28696 1088 | 58.43 | 1118 | 130.8 868 5.08 1068 207.5
s5378 18656 | 6613 | 39.63 | 6781 | 818.6 | 3295 | 18.7 | 3904 2899
$9234 | 21389 | 2209 | 64.57 | 3032 930 2142 | 36.4 | 2178 2852
s13207 | 27603 | 4186 | 65.82 | 4795 | 3706 | 4081 | 47.5 | 4128 | 17916
s15850 | 182673 | 6367 | 906.4 | 7610 | 5304 | 5437 | 60.4 | 5730 | 19647
$35932 | 21783 | 15276 | 48.4 | 16302 | 20828 | 13167 | 143 | 14542 | 110780
838417 | 598062 | 29636 526 | 31723 | 44522 | 17468 | 192 | 29047 | 141198
$38584 | 92239 | 23603 | 254.3 | 24617 | 21622 | 20537 | 182 | 22947 | 256824

Table 5: Comparison with the Previous Fault Simulators with 1000 Random Test Vectors

Paper 26.2 INTERNATIONAL TEST CONFERENCE



(11]

(12]

(14]

(15]

(16]

(17]

Paper 26.2

S. Ohtake, K. Ohtani, and H. Fujiwara, “A method
of test generation for path delay faults using stuck-
at fault test generation algorithms,” in Proc. of
IEEE/ACM DATE, pp. 310-315, 2003.

S. Padmanaban and S. Tragoudas, “Efficient identi-
fication of (critical) testable path delay faults using
decision diagrams,” IEEE Trans. on Computer-Aided
Design, vol. 24, no. 1, pp. 77-87, 2005.

I. Pomeranz and S. M. Reddy, “An efficient non-
enumerative method to estimate path delay fault
coverage,” IEEE Trans. on Computer-Aided Design,
vol. 13, no. 2, pp. 240-250, 1994.

A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Equivalence of robust delay-fault and
single stuck-at fault test generation,” in Proc. of
ACM/IEEE DAC, pp. 173-176, 1992.

J. Saxena and D. K. Pradhan, “A method to derive
compact test sets for path delay faults in combina-
tional circuits,” in Proc. of IEEE Int. Test Confer-
ence, pp. 724-733, 1993.

M. H. Schulz, F. Fink, and K. Fuchs, “Parallel pat-
tern fault simulation of path delay faults,” in Proc. of
ACM/IEEE DAC, June, pp. 357-363, 1989.

Y. Wu and A. Ivanov, “Accelerated path delay fault
simulation,” in Proc. of IEEE VLSI Test Symposium,
pp. 1-6, 1992.

D. Xiang, K. Li, H. Fujiwara, and J. Sun, “Generat-
ing compact robust and non-robust tests for complete
coverage of path delay faults based on stuck-at tests,”
in 24th Proc. of IEEE Int. Conference on Computer
Design, pp. 446-451, 2006.

INTERNATIONAL TEST CONFERENCE

10



	ITC07
	Table of Contents
	Author Index




