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Abstract
This paper presents a wrapper and TAM co-optimization

method for reuse of SoC functional interconnects to minimize
test time under area constraint. The proposed method consists
of (1) an ILP formulation for wrapper and transparent TAM co-
optimization, and (2) a simulated annealing based heuristic ap-
proach to reduce the computational cost of the proposed ILP
model. Experimental results show the effectiveness of the pro-
posed methods compared to the previous transparency-based TAM
approaches and the conventional dedicated test bus approaches.
keywords: SoC test, wrapper, TAM, reuse of interconnect.

1 Introduction

SoCs are increasingly designed and tested in a modular fash-
ion [1], and the following three are key components for the modu-
lar test: (1) wrapper , (2) test access mechanism (TAM) and (3)
test scheduling. A number of approaches have been proposed
for wrapper and TAM design including test scheduling problem
[2, 3, 4, 5]. These approaches use the infrastructure dedicated to
test as TAMs. However, regardless of how efficient the wrapper,
TAM and test schedule optimization are, the TAM dedicated to test
requires considerable area overhead.

Therefore, a number of approaches have been proposed for the
TAM architectures which are not dedicated to test, but reuse the
existing components in the SoC. They are roughly classified into
three types: 1) the method reusing functional buses [6, 7], 2) the
methods reusing functional networks [8, 9] and 3) the methods
based on transparency [10, 11, 12, 13]. The wrapper and TAM
co-optimization problem to minimize test time was discussed in
the methods reusing functional buses and networks while there is
no discussion on it in the methods based on transparency. This is
because (1) they didn’t consider scan design explicitly and (2) it is
potentially difficult to achieve concurrent test by the transparency-
based TAMs (more discussion in Section 2).

To the best of our knowledge, this paper presents a wrapper and
transparent TAM co-optimization method to minimize test time
under area constraint for the first time. We present an integer lin-
ear programming (ILP) formulation for the wrapper and transpar-
ent TAM co-optimization. Though the proposed ILP model is ef-
fective for small SoCs, we cannot find the optimal solution within
a reasonable time for large SoCs. Therefore, we also propose a
simulated annealing (SA) based heuristic approach to reduce the
computational cost of the proposed ILP model. Experimental re-
sults show the effectiveness of the proposed methods compared to
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the previous transparency-based TAM approaches and the conven-
tional dedicated test bus approaches.

2 Motivation
In this section, we discuss the limitations of the previous

transparency-based TAM approaches and present an effective
wrapper configuration for transparent TAMs.

Fig. 1(a) and (b) show an example SoC that the transparency-
based methods target and its transparent TAM for core C2, respec-
tively. In the previous methods based on transparency, they pro-
vided complete transparent access for every functional port shown
in Fig. 1(b). Consequently, C2 cannot be tested concurrently with
the other cores, and only the sequential test is possible. On the
other hand, if we use the IEEE 1500 wrapper [14] to test the core,
we can select any bit-width of transparent access to test the core in
the similar way to the dedicated TAM approaches. Fig. 1(c) shows
an example of 3-bit transparent test access to C2. However, C2 still
cannot be tested concurrently with the other cores even though C1

is free. This is because only the way to propagate the test responses
of C1 is to pass through C2 in the transparency-based TAM design
in this example.

In this paper, we introduce a wrapper configuration that can
perform INT ES T and BYPAS S modes simultaneously in order
to increase test concurrency in the transparent TAM design effec-
tively. Fig. 2(a) shows an example of the proposed wrapper config-
uration where INT ES T with 3-bit functional TAM and BYPAS S
for 2-bit transparency are realized concurrently. Bypass registers
and multiplexers are added not to prevent the core from being
tested. By using the proposed wrapper configurations effectively
in the transparency-based TAM design, we can increase test con-
currency and reduce the overall test time while keeping the area
overhead low. For example, we can test C1 and C2 concurrently
without increasing the SoC functional interconnects by using the
proposed wrapper configuration for C2 as shown in Fig. 2(b).

3 Problem Formulation
In the dedicated test bus based TAM designs, it is well known

that there is a trade-off relation between TAM area and test time.

(a) (b) (c)

Figure 1: (a) An example system S 1. (b) Transparent test access for core
C2. (c) Transparent test access for C2 with 3-bit wrapper.
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(a) (b)

Figure 2: (a) Proposed wrapper configuration (3-bit INT ES T + 2-bit
BYPAS S ). (b) Concurrent transparent test access for C1 and C2.

We observe the similar trend in the transparent TAM approach us-
ing the proposed wrapper configurations. We can reduce test time
by increasing the bit-width of SoC functional interconnects and
SoC external I/O ports. However, we consider that the cost for
adding extra SoC I/O ports is much higher than that for increas-
ing internal interconnects. Therefore, we consider the following
optimization problem in this paper.

Definition 1 Popt: Given a set of cores with test parameters, a set
of interconnects and maximum allowable increase of interconnects
in bit Cmax, determine a wrapper and transparency-based TAM for
each core such that: (1) the bit-width of each SoC I/O port and its
associated interconnect remains the same, (2) the total increase of
interconnects does not exceed Cmax, and (3) the overall test time is
minimized.

4 Wrapper and Transparent TAM Co-
Optimization

4.1 ILP Formulation
In this paper, we use the session based test scheduling where

test sets are grouped into sessions and new tests are allowed to
start only when all tests in the preceding session are completely
executed. To solve Popt, for each core k, we decide a test session
and a TAM width to test k, and select interconnects used as TAM
for k. For each interconnect, the sum of the TAM width used to
test cores scheduled in a session is the final TAM width used as
TAM in the session. If the final TAM width exceeds the original
bit-width of the interconnect, we have to increase the bit-width
of it. From the above decisions and selections, finally, we can
determine a wrapper configuration for each core in each session to
provide the required functionality. We present an ILP formulation
to solve Popt as follows.

0-1 Variables :
s j,k : s j,k = 1 if core k is tested in session j
r j,k,l : r j,k,l = 1 if core k is tested in session j with l bit TAM

Integer Variables :
xi, j,k : TAM width on interconnect i to test core k in session j

Other Notations :
Ek,in : a set of input interconnects of core k
Ek,out : a set of output interconnects of core k
w(i) : the original bit-width of interconnect i

time(k, l) : the test time of core k with l bit TAM

Constraints :
1.
∑

j s j,k = 1 for ∀k, i.e., every core is scheduled in exactly one
session

2.
∑

l r j,k,l = s j,k for ∀ j, k, i.e., every core under test k has exactly
one wrapper configuration for INT ES T

3.
∑

i∈Ek,in
xi, j,k =

∑
i∈Ek,out

xi, j,k =
∑

l l · r j,k,l for ∀ j, k, i.e., every
core under test k has a set of input/output interconnects used
as input/output TAM with the width corresponding to the se-
lected wrapper configuration

4.
∑

i∈Ek′ ,in xi, j,k =
∑

i∈Ek′ ,out
xi, j,k for ∀ j, k, k′(! k), i.e., if core

k′(! core under test k) is used as a part of TAM for k, the
sum of the TAM width for k at the input ports of k′ is equal
to the sum of the TAM width for k at the output ports of k′

(TAM width preservation)
5. max j

(∑
k xi, j,k

)
≤ w(i) for ∀i associated with SoC I/O ports,

i.e., every interconnect associated with an SoC I/O port can-
not be increased

6. Cmax ≥
∑

i

(
max
(
max j

(∑
k xi, j,k

)
,w(i)

)
− w(i)

)
, i.e., the total

increase of internal interconnect does not exceed Cmax

Objective :
Minimize

∑
j maxk

(∑
l time(k, l) · r j,k,l

)

We can easily include the dedicated test bus design in the pro-
posed ILP formulation and consider transparency-based TAM de-
sign, dedicated test bus based TAM design and their hybrid TAM
design in the proposed ILP formulation.

4.2 Experimental Results for ILP

We made experiments on three SoCs: S 1 we handcrafted
shown in Fig. 1(a), d695 and p93791 from ITC’02 SOC Test
Benchmarks [15]. The test parameters for core C1, C2, C3 and
C4 in S 1 are identical to module 1, 5, 6 and 10 in p93791, respec-
tively. For d695 and p93791, since the original benchmark SoCs
do not have any data on the connectivity between cores, we used
randomly-generated interconnects for the SoCs. Table 1 shows
the characteristics for the three SoCs. Column 4 denotes the num-
ber of SoC I/O bits which can be used as the transparent TAM I/O.
Column 5 denotes the number of the dedicated test bus based TAM
I/O bits added to the original SoC for comparison purpose.

Tables 2, 3 and 4 show the test time results for S 1, d695
and p93791, respectively. Columns “tTAM”, “dTAM” and
“tTAM+dTAM” denote the cases where we design the transparent
TAM only, the dedicated test buses based TAM only, and their hy-
brid TAM, respectively. We used a commercial ILP solver ILOG
CPLEX [16] on a SunFireV490 workstation with UltraSPARC
IV+ 1.8 GHz processor and 32 GB memory for all the experi-
ments. We set the time limit of the ILP solver to 10, 600 and 7200
seconds for S 1, d695 and p93791, respectively. The bold number
in the tables means that the ILP solver can reach the optimal solu-
tion within the time limit. On the other hand, the non-bold number
denotes the best intermediate solution at the time limit. “-” and
“NA” mean that the ILP solver cannot find any intermediate solu-

Table 1: Characteristics for three SoCs.
SoC core interconnect tTAM I/O(bits) dTAM I/O(bits)
S 1 4 9 16 16

d695∗ 10 20 14 32
p93791∗ 32 52 32 32



Table 2: Test time results (#cycles) for S 1.
tTAM dTAM tTAM+dTAM

Cmax (16bit I/O) (16bit I/O) (32bit I/O)
∞ 620325 620325 341858
25 620325 954863 349288
12 620325 2658613 600728
8 774299 5317007 774299
4 1112067 NA 1112067
0 1978000 NA 1978000

CPU(sec) 10 10 10

Table 3: Test time results (#cycles) for d695.
tTAM dTAM tTAM+dTAM

Cmax (14bit I/O) (32bit I/O) (46bit I/O)
∞ 50383 22124 15730

100 50383 24201 16632
25 50383 120188 29763
20 50383 191874 32955
10 50521 NA 43506
0 110567 NA 110567

CPU(sec) 600 600 600

Table 4: Test time results (#cycles) for p93791.
tTAM dTAM tTAM+dTAM

Cmax (32bit I/O) (32bit I/O) (64bit I/O)
∞ 1720245 1125190 -

100 1720245 - -
64 1720245 - -
20 1193353 NA 1223315
10 1449193 NA 1449193
0 1570566 NA 1570566

CPU(sec) 7200 7200 7200

tion within the time limit, and can prove that there is no solution
for the given Cmax, respectively.

From the results for small SoC S 1 shown in Table 2, we can
have the following four observations. First, the ILP solver can get
the optimal solution in all cases within 10 seconds. Second, the
transparent TAM design can achieve exactly the same test time as
the dedicated TAM design when Cmax = ∞. Third, when Cmax is
small, the transparent TAM design can provide much shorter test
time compared to the dedicated TAM design by reusing the ex-
isting functional interconnect effectively. Finally, we can further
reduce the test time by considering both TAM designs simulta-
neously during the optimization. For d695, we can observe the
similar trend to S 1. Especially, even though the bit-width of the
I/O ports which can be used in transparent TAM is less than half
of that in dedicated TAM, the transparent TAM can provide much
shorter test time when Cmax is 25 or below. However, we cannot
get the optimal solution in many cases for d695 and all cases for
p93791. Moreover, it cannot even find any intermediate solution
in some cases for p93791. These results motivated us to present
an effective and efficient heuristic approach based on simulated
annealing for large SoCs shown in the next section.

5 Heuristic Approach for Wrapper and
Transparent TAM Co-Optimization

5.1 Simulated Annealing
In the previous section, we observed that the proposed ILP

model cannot be solved within a reasonable time for large SoCs.
Through the experiments, however, we had the following obser-
vations: (1) the number of test sessions that gives the minimum
test time is much lower than the number of cores (i.e., serial test
schedule), and (2) the ILP model can be solved within a few sec-
onds once the session assignment for each core is done (i.e., s j,k is
decided).

1: Generate an ILP model and an initial session assignment Acur ;
2: Solve the ILP with Acur and get the test time Ccur ;
3: Set initial temperature T = Tinit;
4: while stop criteria are not met do
5: for i = 1 to Niter do
6: Generate a neighboring assignment Anei from Acur ;
7: Solve the ILP with Anei and get the test time Cnei;
8: ∆C = Cnei −Ccur /*Compute change of cost function*/;
9: if ∆C ≤ 0 then

10: Set Acur = Anei;
11: else
12: Set q = random(0, 1);
13: if q < e−∆C/T then
14: Set Acur = Anei;
15: end if
16: end if
17: end for
18: Set new temperature T = β · T ;
19: end while

Figure 3: Simulated annealing algorithm.

Based on the above observations, we present a heuristic method
for the wrapper and transparent TAM co-optimization. First, we
limit the number of test sessions to a constant value (we used “5”
sessions in our experiments). Second, we determine the session
assignment for each core outside the ILP model and solve the ILP
model with the session assignment. We use the simulated anneal-
ing (SA) technique to find the optimum session assignment. The
SA algorithm is shown in Fig. 3. The SA algorithm starts to gen-
erate an ILP model described in the previous section and solve the
ILP model with an randomly generated initial session assignment.
Then a neighboring session assignment is randomly created from
the current session assignment. If the test time of the neighboring
assignment is better than the current assignment, the neighboring
assignment is accepted. If the test time of the neighboring assign-
ment is not better than the current assignment, it can be accepted at
a certain probability which is a function of a parameter referred as
temperature. During the optimization process, the temperature is
decreased and there is a lower probability of accepting an inferior
solution. The optimization process terminates when the tempera-
ture reaches the given stop criteria.

5.2 Experimental Results for SA
We set the parameters in the proposed SA algorithm so that

the computation time for d695 and p93791 become 60 and 1800
seconds, respectively. Tables 5 and 6 show the test time results
for d695 and p93719, respectively. Columns 2, 5 and 8 (i.e.,
“10TS+ILP” in Table 5 and “32TS+ILP” in Table 6) denote the
test time given by the original ILP model proposed in Section 3.
Columns 3, 6 and 9 ,“5TS+ILP”, denote the test time given by
the ILP model where the number of test session is limited to five.
Columns 4, 7 and 10, “5TS+SA”, denote the test time given by the
SA algorithm with 5 test sessions. The number in parentheses de-
notes the relative difference from the original ILP model proposed
in Section 3.

From the results for d695 shown in Table 5, we observe that
the ILP solver can provide slightly better results by limiting the
number of test session to 5 in almost all cases. However, it still
cannot get the optimal solution for many cases within the given
time limit. On the other hand, the proposed SA based approach
can achieve approximately the same test time as “5TS+ILP” with
10 times shorter computational time.

For p93791 shown in Table 6, we can get 10 to 36% reduc-
tion in test time by limiting the number of test session from 32 to



Table 5: Test time results (#cycles) for d695 by SA.
tTAM (14bit I/O) dTAM (32bit I/O) tTAM+dTAM (46bit I/O)

Cmax 10TS+ILP 5TS+ILP 5TS+SA 10TS+ILP 5TS+ILP 5TS+SA 10TS+ILP 5TS+ILP 5TS+SA
∞ 50383 49615 49894 22124 21931 22682 15730 15162 16412

100 50383 49615 49894 24201 24201 25741 16632 15170 16405
25 50383 49615 49894 120188 120188 125246 29763 26670 27347
20 50383 49615 50383 191874 191874 214301 32955 35398 30163
10 50521 50364 50351 NA NA NA 43506 43355 43687
0 110567 110567 110567 NA NA NA 110567 110567 110567

CPU(sec) 600 600 60 600 600 60 600 600 60

Table 6: Test time results (#cycles) for p93791 by SA.
tTAM (32bit I/O) dTAM (32bit I/O) tTAM+dTAM (64bit I/O)

Cmax 32TS+ILP 5TS+ILP 5TS+SA 32TS+ILP 5TS+ILP 5TS+SA 32TS+ILP 5TS+ILP 5TS+SA
∞ 1720245 1097871 967409 1125190 978962 941802 - 548712 482867

100 1720245 1097871 967409 - 1120299 1486692 - 536387 490809
64 1720245 1097871 967409 - - 8234671 - 551590 546901
20 1193353 - 1018728 NA NA NA 1223315 - 850595
10 1449193 1073029 1023573 NA NA NA 1449193 - 997738
0 1570566 - 1246249 NA NA NA 1570566 - 1194942

CPU(sec) 7200 7200 1800 7200 7200 1800 7200 7200 1800

Table 7: Comparison of test time (#cycles) between the previous transpar-
ent TAM and proposed transparent TAM when Cmax = ∞.

SoC tTAM(serial) tTAM(co-opt) red(%)
S 1 624066 620325 -0.6

d695 66779 49615 -25.7
p93791 1223481 967409 -20.9

5. However, we cannot get the optimal solution for all the cases.
In contrast with the results for d695, the proposed SA based ap-
proach can further reduce test time compared to “5TS+ILP” with
4 times shorter computational time. This is because the interme-
diate solutions provided by “5TS+ILP” for d695 are very close to
the optimal solutions while those for p93791 are still far from the
optimal solutions. For the cases such as p93791, the proposed SA
based approach can explore the solution space effectively within
the limited time compared to the original ILP model proposed in
the previous section.

Finally, we compare the proposed wrapper and transparent
TAM co-optimization method and the previous transparent TAM
methods in Table 7. As we explained in Section 2, the previ-
ous transparent TAM methods do not consider the wrapper and
TAM co-optimization including test scheduling problem to mini-
mize test time. Therefore, only the serial test schedule is possible.
Then, we generated the serial test schedule without considering the
total increase of interconnects (i.e., Cmax = ∞). In the serial test
schedule, we assumed that each core has the maximum wrapper
width (i.e., the width of transparent TAM I/O shown in Column
4 of Table 1) for each SoC to minimize the test time. The results
for the serial test schedules are shown in Column 2 “tTAM serial”
of Table 7. Column 3 “tTAM co-opt” denotes the test time of the
proposed method where we chose the best test time among the
proposed three approaches (i.e., ILP using complete sessions, ILP
using 5 sessions and SA using 5 sessions) when Cmax = ∞. The
proposed method can achieve up to 25% reduction in test time.

6 Conclusion
We have proposed an ILP formulation and SA based heuristic

approach for wrapper and transparent TAM co-optimization. To
the best of our knowledge, the wrapper and transparent TAM co-
optimization including test scheduling problem has been discussed
for the first time in this paper. We have made experiments on three
SoCs where we showed that the proposed ILP model is effective
for small SoCs while the SA based heuristic approach can explore

the solution space effectively for large SoCs. The experiments
have also shown the effectiveness of the proposed method com-
pared to the previous transparent TAM approaches and the con-
ventional dedicated TAM approaches.
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