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Abstract 
 Similar to test pattern generation, the problem of 
identifying untestable faults in sequential synchronous 
circuits remains unsolved. The previously published 
works in untestability identification operate at the 
logic-level and, thus, they do not scale with the 
increasing complexity of modern designs. Current 
paper proposes applying model-checking for detecting 
untestable stuck-at faults at the register-transfer level. 
In particular, we present a method of generating PSL 
language assertions for proving untestable register 
stuck-on faults. Experiments show that the faults 
identified by the method form in fact a large subset of 
all the untested stuck-at faults. An additional 
application of the method is in high-level test synthesis, 
where testability of sequential designs can be improved 
simultaneously with minimization of the circuit area. 
Furthermore, identification of untestable gate-level 
faults from RT-level can contribute to avoiding over 
testing and to reducing yield loss. 
 
1. Introduction 
 
 Test generation for sequential synchronous designs 
is a time-consuming task. Automated Test Pattern 
Generation (ATPG) tools spend a lot of effort not only 
for deriving test vectors for testable faults but also for 
proving that there exist no tests for the untestable 
faults. Because of this reason, the identification of 
untestable faults has been an important aspect in 
speeding up the sequential ATPG. The methods 
proposed previously are based on performing static and 
dynamic implications at the logic-level. Current paper 
presents an approach that takes the problem of 
identifying untestable faults one step further: to the 
higher abstraction levels. We show that it is possible to 
very quickly find a large subset of all untestable faults 
before handing the untestability identification over to 
classical, logic-level methods. 

 A number of works have been proposed in order to 
tackle the problem of untestability identification. The 
first methods [1] were fault-oriented and based on 
applying combinational ATPG to the expanded time-
frame model of the sequential circuit. However, such 
approach does not scale because of the size-explosion 
of the unrolled sequential models. Thus, the fault 
independent method was introduced by Iyer et al. in 
[2]. The new algorithm was called FIRES and it 
implemented illegal state information to complement 
redundancy analysis. This was followed by a number 
of fault independent methods including MUST [3], 
FUNI [4], FILL [4] and others. Liang [5] proposed a 
simulation based approach for sequential untestable 
fault identification. However, it was shown in [4] that 
this method may result in ‘false positives’, i.e. a fault 
may be declared untestable when there actually exists a 
test for it. The common limitation of the above 
methods is that they operate at the logic-level 
representation of the design. Thus a considerable 
amount of effort is put on the implication process 
carried out at the level of logic netlists.  
 In their previous work [6], the authors introduced a 
new subclass of untestable faults, called register 
enable stuck-on faults. However, the paper did not 
propose any formal method for identifying untestable 
register faults. In this paper we present a new method 
that is capable of identifying such type of untestable 
faults. We propose using model-checking for detecting 
untestable stuck-at faults at the Register-Transfer 
Level (RTL). In particular, we present a method for 
formally generating PSL language assertions for 
proving untestable stuck-at faults in sequential 
synchronous designs. 
 The paper is organized as follows. Section 2 gives 
the general motivation for targeting register enable 
stuck-on faults. Section 3 defines the RTL architecture.  
In Section 4, sufficient conditions for proving 
untestable registers are introduced. Section 5 presents 
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the implementation of the untestability identification 
method based on Cadence IFV model-checker. Finally, 
experimental results and conclusions are provided. 
 
2. Motivation for targeting register faults 
  
 A special case of datapaths where register enable 
signals are redundant is a pipeline. In pipelines data is 
transported during each clock-cycle and therefore the 
registers should be constantly enabled. Enable signals 
in pipelines are normally omitted and the registers are 
replaced by buffers consisting of D-flipflops. 
 However, there are other cases than pure pipelines, 
where the redundancy of enable signals is much more 
difficult to identify. Consider for example the 
Extended Finite State Machine (EFSM) representation 
of the Differential Equation (diffeq) benchmark shown 
in Fig. 1. In this kind of EFSM description, the nodes 
represent control states and the arrows represent 
transitions between the states. Shown on the transitions 
are the enabling functions (on top of the line), i.e. 
conditions that enable the state transition, and the 
update functions (below the line) that correspond to 
datapath register assignments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. EFSM of the Diffeq benchmark 
 
 Let us focus on register ADG (marked bold in Fig. 
1). It can be seen that this register reads during 
transitions s1→s2, s2→s3, s3→s4. It can also be seen 
that ADG is in turn an input for two other registers: 
BCF and Y (shown by grey background). The latter 
read ADG only during transitions s2→s3, s3→s4, 
s4→s5. Now let us assume that the enable signal of 
register ADG is permanently stuck on. In that case, 
ADG may read faulty values except between the state 

transitions s1...s4 when it is also enabled in the fault-
free circuit. Note however that ADG is read always 
one transition later, i.e. between s2...s5. Thus, only 
fault-free values can be read from ADG and the stuck-
on fault of its enable signal is untestable. On the other 
hand, as an opposite example, enable in register DZ is 
testable because DZ is read at s1→s2 but DZ reads no 
value during one of the preceeding transitions: s5→s1. 
 The goal of current paper is to introduce a formal 
technique for identifying such kind of untestable stuck-
at faults from the RT-level. The method presented in 
this paper not only allows untestable fault 
identification but it can also be implemented in high-
level test synthesis [7-9]. Experiments show that by 
removing the redundant enable signals around 2 to 6 
per cent of the circuit area is minimized. Furthermore, 
identification of untestable gate-level faults from RT-
level can contribute to reducing the yield loss. 
 In the following, conditions that are sufficient for 
identifying untestable faults in register enables are 
introduced. Later on we implement the untestable fault 
analysis relying on standard model-checking tools. 
Finally, we carry out experiments on RTL benchmarks 
in order to assess the relevance of register enable faults 
among the untestable faults in sequential designs and 
evaluate the efficiency of the proposed method in 
untestability identification.  
 
3. Register-transfer level architecture 

 
 Let us first consider the general architecture of 
register-transfer level (RTL) circuits. In RTL 
descriptions the design is partitioned into a control part 
(FSM) and a datapath part. The latter consists of 
registers R, multiplexers M and functional units (FUs) 
F. The former includes a state register for preserving 
the control state sj from the set of states S. The set of 
control signals C enter from the control part into the 
datapath and are partitioned to register enable signals E 
and multiplexer address selects A. The control signals 
C=E∪A are determined by the current control state 
sj∈S. The status bits B enter from the datapath into the 
control part FSM. These signals represent the results of 
comparison FUs and they facilitate the selection of 
state transitions in the FSM. 
 When a behavioral or behavioral RTL circuit is 
synthesized into RTL then the following two main 
steps are carried out by the high-level synthesis tool: 1) 
allocation of time-steps for operations, 2) binding of 
operations and variables into hardware resources: FUs, 
registers and multiplexers. Depending on the 
constraints given to the synthesis tool it may try to 
bind several operations into the same FU or a number 
of variables into the same register. At different time-
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steps registers obtain values from different sources 
(other registers, FUs or primary inputs). Thus, 
multiplexers to be controlled by the control part are 
created to select the correct source at each moment. 

The general case for RTL datapaths is thus, a mux-
operation-mux-register form (See example in Fig. 2). 
In other words, when moving from one register rsrc∈R 
to register rdst we may pass through an FU f∈F whose 
inputs may be selected by multiplexers Min⊂M and we 
may also need an additional multiplexer mout∈M to 
allow the target register rdst read from different 
sources. Reading new data into registers ri∈R is 
controlled by the control part FSM via register enable 
signals ei∈E. Enable signals ei are activated (i.e. ei=1) 
only when the corresponding registers ri perform a new 
read operation, otherwise the enable is deactivated 
(ei=0). Register may also include a global reset input.  
 Selecting between different sources is controlled by 
the multiplexers mk∈M whose address signals ak∈A 
enter from the control part. During these states when 
register reads new data its multiplexer address value is 
specified to select the correct source. At any other state 
the value of the mux address is normally unspecified 
and this fact makes the untestability analysis of gate-
level stuck-at faults from the RT-level difficult and 
pessimistic. However, in the following Section we 
propose a property, which allows identification of a 
large number of untestable faults without knowing the 
exact logic implementation of the control part. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. RTL datapath fragment 
           
4. Identifying untestable registers 
 
 In this Section, we present a property for proving 
untestable register stuck-on faults implementing a 
commercial model-checking engine. The analysis is 
carried out at the register transfer level, and the 
testability of control signals is formally calculated.  

 Let us introduce some preliminary definitions. 
Definition 1: For any datapath register r the registers ri 
whose inputs are reachable from r through 
combinational logic (multiplexers and FUs) are refered 
to as the guarding registers of register r. For example, 
the guarding registers of register r in Figure 2 are  r3 
and r4. Note, that with the presence of feedback loops 
register r itself may belong to its guarding registers ri. 
 Definition 2: If the address signals ak of 
multiplexers mk are set to values that activate a path 
between two datapath registers r1 and r2 we say that the 
path activation condition between r1 and r2 holds and 
denote it by αr1,r2=1. Otherwise, αr1,r2=0. 
 For example, in Figure 2 the path between registers 
r and r3 is selected only if the mux address signals 
am1=0 and am2=1. Thus, αr,r3=am1·am2. 
 Definition 3: Let us refer to the set of states from 
where a control state sj∈S can be reached within one 
clock-cycle as immediately preceding states of sj. Let 
us denote immediately preceding states of sj by 
prev(sj). 
 Throughout this paper we use the superscript 
notation to show at which state the signal values will 
be considered. For example, the value of a datapath 
signal v at the state sj is denoted by vsj. 
 Theorem 1: Let e be an enable signal controling a 
datapath register r, let sj, j=1,...,n, n=|S| be the set of 
control states and ri, i=1,...,m be the set of guarding 
registers for r. 
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enable signal e stuck-at-1 fault is untestable.  
 
In other words, the sufficient condition for 
untestability of the fault e stuck-at-1 is that for all the 
states sj where a guarding register ri (enabled by ei) is 
reading from r (enabled by e) all the immediatly 
preceding states of sj write values to r. 
 
Proof: If a faulty value from register r is to be 
propagated to any observable output then it has to be 
transported via one of the guarding registers ri. Any 
guarding register ri can read the fault value only at 

those states sj where js
ie = 1. Thus, at the states where 

js
ie = 0 the faulty value of r can not propagate. 

Furthermore, if the enable signal ei of ri is activated 
then exactly one activation condition αr*,ri , where r* is 
r or any other register that can be read by ri, must be 
equal to 1 (See Section 3 for the definition of RTL 
architecture!). It is clear that if r* is not r then the 
faulty value will not propagate to ri at the current state 
sj. Thus, the prerequisite for fault propagation to a 
guarding register ri at the state sj is ei·αr,ri=1. 
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 However, if this prerequisite is fulfilled but the 
register r is enabled at all the states prev(sj) then it will 
contain only the fault-free value at prev(sj). Thus, the 
fault e stuck-at-one can not be tested. ■ 
 
 Note, that the property for register untestability 
identification introduced in Theorem 1 is only a 
sufficient condition for the register to be untestable. 
There may exist untestable register enables that do not 
match this condition and therefore the property is 
somewhat pessimistic. However, its main advantage 
lies in the ease of computation by formal algorithms. 
Experimental analysis presented in Section 6 shows 
that in practice the method is well capable of proving 
untestability in different sequential benchmarks. It is 
also important to stress that all register enables 
identified by Theorem 1 are always stuck-at untestable 
at the logic-level. 
 
5. Reducing untestability identification to 
model-checking 
 
 This Section will discuss the technical 
implementation of the RTL untestable fault 
identification method in VHDL and PSL using 
Cadence IFV 05.50 model-checker. We forwarded the 
condition from Theorem 1 to the model-checker. If the 
model-checker formally proves that the condition 
always holds for a register r then it can be concluded 
that the stuck-at-1 fault of its enable signal e is 
untestable. 
 The following VHDL code with embedded PSL 
constructs was generated and included to the VHDL 
architecture description of the Design Under Test 
(DUT) for untestability identification of register r:  
 
PROPERTIES: if (ABV_ON) generate 
begin 

  write_event_<r>  <= <ei·αr,ri> ; 
 
read_event_buffer: 
   process 
   begin 
     wait until clock'event and clock = '1' ; 

       read_event_<r>  <= <e>  ; 
   end process read_event_buffer ; 
 

-- psl ASSERT_PSL_CHECK_<r> : 
-- assert always write_event_<r> -> read_event_<r> 
-- abort(reset);K  
 
end generate PROPERTIES; 

 
 The VHDL signal write_event_<r> was 
introduced. The signal will be equal to one when some 
guarding register reads from r. A dedicated VHDL 
process read_event_buffer was introduced to detect 

the time-steps when fault-free values are read to r 
during the previous clock-cycle. Note, that the value of 
read_event_<r> is equal to e but there is a one cycle 
delay betweeb them. It has been introduced in order to 
simplify the PSL assertion ASSERT_PSL_CHECK_<r> by 
allowing a combinational property (implication) to be 
checked.  
 There are special cases of registers, which are 
guarded not only by other datapath registers and thus, 
the signal write_event_<r> must be treated 
differently. For registers that are inputs for FUs that 
generate status bits B the signal write_event_<r> is 
assigned to value one during those states when B is 
read by the control part for selecting between 
alternative state transitions. Moreover, for registers 
connected to the primary outputs of DUT 
write_event_<r> must be constantly tied to one.  
 
6. Impact of register faults at the gate-level 
 
 Let us consider the impact of an untestable register 
enable stuck-on fault at the gate-level. Fig. 3 presents a 
typical gate-level implementation of a single bit in a 
datapath register. The arrows mark the untestable 
stuck-at faults in the register r whose enable signal e is 
untestable. As it can be seen, an untestable register 
enable causes four additional stuck-at signals to be 
untestable in a register implementing and-or 
multiplexers. Thus a total number of untestable lines in 
a register with untestable enable signal is 4n + 1 (Four 
faults per bit plus the fanout stem of the enable e). In 
the case of 32-bit register the number of untestable 
stuck-at faults caused by a register stuck-on fault is as 
high as 129. Experimental results presented in the 
following Section show that a large subset of all the 
stuck-at faults not covered by the sequential ATPG 
belong in fact into this particular class of  faults. 
 

 
Fig. 3. Gate-level impact of untestable e ≡ 1 
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Table 1. Experimental results on identification of untestable faults 

design # faults # tested # untest. # remain. F.C., % F.E., % CPU time 
gcd 1662 1564 65 33 94.10 98.01 2 min 56 s 
sosq 1996 1514 130 352 75.85 82.36 4 min 09 s 
mult8x8 2093 1417 130 546 67.70 73.91 3 min 29 s 
diffeq 10098 9853 130 115 97.57 98.86 11 min 38 s 

 
 
7. Experimental results 
 
 In Table 1, untestable fault identification 
experiments on four sequential designs are presented. 
The benchmarks were chosen from the HLSynth92 and 
HLSynth95 families and they were synthesized to RT-
level from behavioral VHDL descriptions using the 
high-level synthesis tool SYNT from Synthesia. 
Subsequently, the RTL descriptions were synthesized 
to logic-level by Synopsys Design Compiler. The same 
tool was applied for estimating the circuit area 
minimization by removal of untestable register 
enables. 
 Untestable fault identification was carried out with  
Cadence IFV model-checker on a SUN Sun-blade 100 
Workstation with single 500 MHz UltraSPARC-IIe 
processor, 500 MB RAM, Solaris 2.9 OS. The circuits 
were tested by two sequential ATPG tools: a 
simulation based ATPG SBGEN [10] and a 
hierarchical ATPG DECIDER [11].  
 The union of the faults covered by the two test 
generators was chosen as the number of detected faults 
(column ‘# tested’) in Table 1. Column  ‘# faults’ 
shows the total number of stuck-at faults in the 
circuits. Column ‘# untest.’ shows the number of 
untestable register enable faults identified by the 
method proposed in this paper. Column “# remain.” 
shows the number of faults that were neither tested nor 
identified untestable. Columns ‘F.C.’ and ‘F.E.’ 
present the achieved fault coverage and fault efficiency 
(i.e. test coverage), respectively. Finally, column ‘CPU 
time’ gives the CPU run times for the untestability 
identification. 
 As it can be seen from Table 1, a large number of 
untestable faults has been identified by the method in a 
relatively short run time. This fact is also supported by 
the statistics presented in Table 2, which shows that 
roughly 20-60 per cent (in average 41 %) of the faults 
not tested in the given benchmark circuits fall into the 
category of untestable register enable faults. An 
additional benefit of the approach is the increase in 
fault efficiency. Identification of untestable faults 
allows raising the confidence in the test coverage and 
in the efficiency of the ATPG.  

Table 2. Core benefits of the method 

  gcd sosq mult diffeq average 
% untestable 
from all not 
tested faults 

66.3 27.0 19.2 53.1 41.4 

Increase in 
fault efficiency, 

% 
3.91 6.51 6.21 1.29 4.48 

Circuit area 
minimization, 

% 
4.70 6.51 6.31 2.12 4.91 

 
  Last but not least, untestable fault identification 
may also be implemented in high-level test synthesis. 
The last row in Table 2 shows that by removing the 
redundant enable signals around 2 - 6 per cent of the 
circuit area is minimized. Furthermore, as mentioned 
before, identification of untestable gate-level faults can 
contribute to reducing yield loss. 
 
8. Conclusions  
 
 The paper proposed a new method for identification 
of untestable logic-level stuck-at faults from the 
register transfer level. The novelty of the approach lies 
in using an existing commercial model-checking tool 
for the untestability analysis.  In particular, a technique 
for formally generating PSL language assertions for 
proving untestable stuck-at faults in sequential 
synchronous designs was developed. Experiments on 
well-known sequential benchmarks showed that as 
much as 20-60 per cent of faults not detected by 
sequential ATPG were identified untestable in a short 
run time by the approach. 
 The proposed untestable fault identification may 
also be implemented in high-level test synthesis. It was 
shown that by removing the redundant enable signals 
in average 5 per cent of the circuit area could be saved. 
An additional effect of the identification of untestable 
register enable faults lies in reducing yield loss. 
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