

Untestable Fault Identification in Sequential Circuits Using Model-Checking

Jaan Raik1 Hideo Fujiwara2 Raimund Ubar1 Anna Krivenko1

1Department of Computer Engineering,
Tallinn University of Technology,
Raja 15, 12618 Tallinn, Estonia
{jaan | raiub | anna}@pld.ttu.ee

2Graduate School of Information Science,
Nara Institute of Science and Technology,

Kansai Science City, Nara, Japan
fujiwara@is.naist.jp

Abstract
 Similar to test pattern generation, the problem of
identifying untestable faults in sequential synchronous
circuits remains unsolved. The previously published
works in untestability identification operate at the
logic-level and, thus, they do not scale with the
increasing complexity of modern designs. Current
paper proposes applying model-checking for detecting
untestable stuck-at faults at the register-transfer level.
In particular, we present a method of generating PSL
language assertions for proving untestable register
stuck-on faults. Experiments show that the faults
identified by the method form in fact a large subset of
all the untested stuck-at faults. An additional
application of the method is in high-level test synthesis,
where testability of sequential designs can be improved
simultaneously with minimization of the circuit area.
Furthermore, identification of untestable gate-level
faults from RT-level can contribute to avoiding over
testing and to reducing yield loss.

1. Introduction

 Test generation for sequential synchronous designs
is a time-consuming task. Automated Test Pattern
Generation (ATPG) tools spend a lot of effort not only
for deriving test vectors for testable faults but also for
proving that there exist no tests for the untestable
faults. Because of this reason, the identification of
untestable faults has been an important aspect in
speeding up the sequential ATPG. The methods
proposed previously are based on performing static and
dynamic implications at the logic-level. Current paper
presents an approach that takes the problem of
identifying untestable faults one step further: to the
higher abstraction levels. We show that it is possible to
very quickly find a large subset of all untestable faults
before handing the untestability identification over to
classical, logic-level methods.

 A number of works have been proposed in order to
tackle the problem of untestability identification. The
first methods [1] were fault-oriented and based on
applying combinational ATPG to the expanded time-
frame model of the sequential circuit. However, such
approach does not scale because of the size-explosion
of the unrolled sequential models. Thus, the fault
independent method was introduced by Iyer et al. in
[2]. The new algorithm was called FIRES and it
implemented illegal state information to complement
redundancy analysis. This was followed by a number
of fault independent methods including MUST [3],
FUNI [4], FILL [4] and others. Liang [5] proposed a
simulation based approach for sequential untestable
fault identification. However, it was shown in [4] that
this method may result in ‘false positives’, i.e. a fault
may be declared untestable when there actually exists a
test for it. The common limitation of the above
methods is that they operate at the logic-level
representation of the design. Thus a considerable
amount of effort is put on the implication process
carried out at the level of logic netlists.
 In their previous work [6], the authors introduced a
new subclass of untestable faults, called register
enable stuck-on faults. However, the paper did not
propose any formal method for identifying untestable
register faults. In this paper we present a new method
that is capable of identifying such type of untestable
faults. We propose using model-checking for detecting
untestable stuck-at faults at the Register-Transfer
Level (RTL). In particular, we present a method for
formally generating PSL language assertions for
proving untestable stuck-at faults in sequential
synchronous designs.
 The paper is organized as follows. Section 2 gives
the general motivation for targeting register enable
stuck-on faults. Section 3 defines the RTL architecture.
In Section 4, sufficient conditions for proving
untestable registers are introduced. Section 5 presents

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.22

21

17th Asian Test Symposium

1081-7735/08 $25.00 © 2008 IEEE

DOI 10.1109/ATS.2008.22

21

the implementation of the untestability identification
method based on Cadence IFV model-checker. Finally,
experimental results and conclusions are provided.

2. Motivation for targeting register faults

 A special case of datapaths where register enable
signals are redundant is a pipeline. In pipelines data is
transported during each clock-cycle and therefore the
registers should be constantly enabled. Enable signals
in pipelines are normally omitted and the registers are
replaced by buffers consisting of D-flipflops.
 However, there are other cases than pure pipelines,
where the redundancy of enable signals is much more
difficult to identify. Consider for example the
Extended Finite State Machine (EFSM) representation
of the Differential Equation (diffeq) benchmark shown
in Fig. 1. In this kind of EFSM description, the nodes
represent control states and the arrows represent
transitions between the states. Shown on the transitions
are the enabling functions (on top of the line), i.e.
conditions that enable the state transition, and the
update functions (below the line) that correspond to
datapath register assignments.

Figure 1. EFSM of the Diffeq benchmark

 Let us focus on register ADG (marked bold in Fig.
1). It can be seen that this register reads during
transitions s1→s2, s2→s3, s3→s4. It can also be seen
that ADG is in turn an input for two other registers:
BCF and Y (shown by grey background). The latter
read ADG only during transitions s2→s3, s3→s4,
s4→s5. Now let us assume that the enable signal of
register ADG is permanently stuck on. In that case,
ADG may read faulty values except between the state

transitions s1...s4 when it is also enabled in the fault-
free circuit. Note however that ADG is read always
one transition later, i.e. between s2...s5. Thus, only
fault-free values can be read from ADG and the stuck-
on fault of its enable signal is untestable. On the other
hand, as an opposite example, enable in register DZ is
testable because DZ is read at s1→s2 but DZ reads no
value during one of the preceeding transitions: s5→s1.
 The goal of current paper is to introduce a formal
technique for identifying such kind of untestable stuck-
at faults from the RT-level. The method presented in
this paper not only allows untestable fault
identification but it can also be implemented in high-
level test synthesis [7-9]. Experiments show that by
removing the redundant enable signals around 2 to 6
per cent of the circuit area is minimized. Furthermore,
identification of untestable gate-level faults from RT-
level can contribute to reducing the yield loss.
 In the following, conditions that are sufficient for
identifying untestable faults in register enables are
introduced. Later on we implement the untestable fault
analysis relying on standard model-checking tools.
Finally, we carry out experiments on RTL benchmarks
in order to assess the relevance of register enable faults
among the untestable faults in sequential designs and
evaluate the efficiency of the proposed method in
untestability identification.

3. Register-transfer level architecture

 Let us first consider the general architecture of
register-transfer level (RTL) circuits. In RTL
descriptions the design is partitioned into a control part
(FSM) and a datapath part. The latter consists of
registers R, multiplexers M and functional units (FUs)
F. The former includes a state register for preserving
the control state sj from the set of states S. The set of
control signals C enter from the control part into the
datapath and are partitioned to register enable signals E
and multiplexer address selects A. The control signals
C=E∪A are determined by the current control state
sj∈S. The status bits B enter from the datapath into the
control part FSM. These signals represent the results of
comparison FUs and they facilitate the selection of
state transitions in the FSM.
 When a behavioral or behavioral RTL circuit is
synthesized into RTL then the following two main
steps are carried out by the high-level synthesis tool: 1)
allocation of time-steps for operations, 2) binding of
operations and variables into hardware resources: FUs,
registers and multiplexers. Depending on the
constraints given to the synthesis tool it may try to
bind several operations into the same FU or a number
of variables into the same register. At different time-

S2

S3 S4

S5

RESET = 1
―

S0

S1

―
UE=in5, DZ=in2,

Z=in4, PASA=in1,
Y=in3

―
ADG=UE*DZ,

BCF=3*Z,
Z=Z+DZ

Z >=PASA
― Z<PASA

―

―
ADG=3*Y,

BCF=BCF*ADG

―
ADG=UE*DZ,
BCF=DZ*ADG,

UE=UE-BCF

―
UE=UE-BCF,
Y=Y+ADG

2222

steps registers obtain values from different sources
(other registers, FUs or primary inputs). Thus,
multiplexers to be controlled by the control part are
created to select the correct source at each moment.

The general case for RTL datapaths is thus, a mux-
operation-mux-register form (See example in Fig. 2).
In other words, when moving from one register rsrc∈R
to register rdst we may pass through an FU f∈F whose
inputs may be selected by multiplexers Min⊂M and we
may also need an additional multiplexer mout∈M to
allow the target register rdst read from different
sources. Reading new data into registers ri∈R is
controlled by the control part FSM via register enable
signals ei∈E. Enable signals ei are activated (i.e. ei=1)
only when the corresponding registers ri perform a new
read operation, otherwise the enable is deactivated
(ei=0). Register may also include a global reset input.
 Selecting between different sources is controlled by
the multiplexers mk∈M whose address signals ak∈A
enter from the control part. During these states when
register reads new data its multiplexer address value is
specified to select the correct source. At any other state
the value of the mux address is normally unspecified
and this fact makes the untestability analysis of gate-
level stuck-at faults from the RT-level difficult and
pessimistic. However, in the following Section we
propose a property, which allows identification of a
large number of untestable faults without knowing the
exact logic implementation of the control part.

Figure 2. RTL datapath fragment

4. Identifying untestable registers

 In this Section, we present a property for proving
untestable register stuck-on faults implementing a
commercial model-checking engine. The analysis is
carried out at the register transfer level, and the
testability of control signals is formally calculated.

 Let us introduce some preliminary definitions.
Definition 1: For any datapath register r the registers ri
whose inputs are reachable from r through
combinational logic (multiplexers and FUs) are refered
to as the guarding registers of register r. For example,
the guarding registers of register r in Figure 2 are r3
and r4. Note, that with the presence of feedback loops
register r itself may belong to its guarding registers ri.
 Definition 2: If the address signals ak of
multiplexers mk are set to values that activate a path
between two datapath registers r1 and r2 we say that the
path activation condition between r1 and r2 holds and
denote it by αr1,r2=1. Otherwise, αr1,r2=0.
 For example, in Figure 2 the path between registers
r and r3 is selected only if the mux address signals
am1=0 and am2=1. Thus, αr,r3=am1·am2.
 Definition 3: Let us refer to the set of states from
where a control state sj∈S can be reached within one
clock-cycle as immediately preceding states of sj. Let
us denote immediately preceding states of sj by
prev(sj).
 Throughout this paper we use the superscript
notation to show at which state the signal values will
be considered. For example, the value of a datapath
signal v at the state sj is denoted by vsj.
 Theorem 1: Let e be an enable signal controling a
datapath register r, let sj, j=1,...,n, n=|S| be the set of
control states and ri, i=1,...,m be the set of guarding
registers for r.

If)(
,

...1...1

jj

i

j sprevs
rr

s
i

minj
ee →⋅∀∀

==
α then the register

enable signal e stuck-at-1 fault is untestable.

In other words, the sufficient condition for
untestability of the fault e stuck-at-1 is that for all the
states sj where a guarding register ri (enabled by ei) is
reading from r (enabled by e) all the immediatly
preceding states of sj write values to r.

Proof: If a faulty value from register r is to be
propagated to any observable output then it has to be
transported via one of the guarding registers ri. Any
guarding register ri can read the fault value only at

those states sj where js
ie = 1. Thus, at the states where

js
ie = 0 the faulty value of r can not propagate.

Furthermore, if the enable signal ei of ri is activated
then exactly one activation condition αr*,ri , where r* is
r or any other register that can be read by ri, must be
equal to 1 (See Section 3 for the definition of RTL
architecture!). It is clear that if r* is not r then the
faulty value will not propagate to ri at the current state
sj. Thus, the prerequisite for fault propagation to a
guarding register ri at the state sj is ei·αr,ri=1.

e

r

e1

r1

am1

m1 f(r,r2)/
f(r1,r2)

...

...

=0

=1

e2

r2 ...

am2

m2

=0

=1

am3

m3

=0

=1

e3

r3

e4

r4

...

...
...

...

2323

 However, if this prerequisite is fulfilled but the
register r is enabled at all the states prev(sj) then it will
contain only the fault-free value at prev(sj). Thus, the
fault e stuck-at-one can not be tested. ■

 Note, that the property for register untestability
identification introduced in Theorem 1 is only a
sufficient condition for the register to be untestable.
There may exist untestable register enables that do not
match this condition and therefore the property is
somewhat pessimistic. However, its main advantage
lies in the ease of computation by formal algorithms.
Experimental analysis presented in Section 6 shows
that in practice the method is well capable of proving
untestability in different sequential benchmarks. It is
also important to stress that all register enables
identified by Theorem 1 are always stuck-at untestable
at the logic-level.

5. Reducing untestability identification to
model-checking

 This Section will discuss the technical
implementation of the RTL untestable fault
identification method in VHDL and PSL using
Cadence IFV 05.50 model-checker. We forwarded the
condition from Theorem 1 to the model-checker. If the
model-checker formally proves that the condition
always holds for a register r then it can be concluded
that the stuck-at-1 fault of its enable signal e is
untestable.
 The following VHDL code with embedded PSL
constructs was generated and included to the VHDL
architecture description of the Design Under Test
(DUT) for untestability identification of register r:

PROPERTIES: if (ABV_ON) generate
begin

 write_event_<r> <= <ei·αr,ri> ;

read_event_buffer:
 process
 begin
 wait until clock'event and clock = '1' ;

 read_event_<r> <= <e> ;
 end process read_event_buffer ;

-- psl ASSERT_PSL_CHECK_<r> :
-- assert always write_event_<r> -> read_event_<r>
-- abort(reset);K

end generate PROPERTIES;

 The VHDL signal write_event_<r> was
introduced. The signal will be equal to one when some
guarding register reads from r. A dedicated VHDL
process read_event_buffer was introduced to detect

the time-steps when fault-free values are read to r
during the previous clock-cycle. Note, that the value of
read_event_<r> is equal to e but there is a one cycle
delay betweeb them. It has been introduced in order to
simplify the PSL assertion ASSERT_PSL_CHECK_<r> by
allowing a combinational property (implication) to be
checked.
 There are special cases of registers, which are
guarded not only by other datapath registers and thus,
the signal write_event_<r> must be treated
differently. For registers that are inputs for FUs that
generate status bits B the signal write_event_<r> is
assigned to value one during those states when B is
read by the control part for selecting between
alternative state transitions. Moreover, for registers
connected to the primary outputs of DUT
write_event_<r> must be constantly tied to one.

6. Impact of register faults at the gate-level

 Let us consider the impact of an untestable register
enable stuck-on fault at the gate-level. Fig. 3 presents a
typical gate-level implementation of a single bit in a
datapath register. The arrows mark the untestable
stuck-at faults in the register r whose enable signal e is
untestable. As it can be seen, an untestable register
enable causes four additional stuck-at signals to be
untestable in a register implementing and-or
multiplexers. Thus a total number of untestable lines in
a register with untestable enable signal is 4n + 1 (Four
faults per bit plus the fanout stem of the enable e). In
the case of 32-bit register the number of untestable
stuck-at faults caused by a register stuck-on fault is as
high as 129. Experimental results presented in the
following Section show that a large subset of all the
stuck-at faults not covered by the sequential ATPG
belong in fact into this particular class of faults.

Fig. 3. Gate-level impact of untestable e ≡ 1

e

rin

rout

≡1

≡1

≡0,≡1
DFF

2424

Table 1. Experimental results on identification of untestable faults

design # faults # tested # untest. # remain. F.C., % F.E., % CPU time
gcd 1662 1564 65 33 94.10 98.01 2 min 56 s
sosq 1996 1514 130 352 75.85 82.36 4 min 09 s
mult8x8 2093 1417 130 546 67.70 73.91 3 min 29 s
diffeq 10098 9853 130 115 97.57 98.86 11 min 38 s

7. Experimental results

 In Table 1, untestable fault identification
experiments on four sequential designs are presented.
The benchmarks were chosen from the HLSynth92 and
HLSynth95 families and they were synthesized to RT-
level from behavioral VHDL descriptions using the
high-level synthesis tool SYNT from Synthesia.
Subsequently, the RTL descriptions were synthesized
to logic-level by Synopsys Design Compiler. The same
tool was applied for estimating the circuit area
minimization by removal of untestable register
enables.
 Untestable fault identification was carried out with
Cadence IFV model-checker on a SUN Sun-blade 100
Workstation with single 500 MHz UltraSPARC-IIe
processor, 500 MB RAM, Solaris 2.9 OS. The circuits
were tested by two sequential ATPG tools: a
simulation based ATPG SBGEN [10] and a
hierarchical ATPG DECIDER [11].
 The union of the faults covered by the two test
generators was chosen as the number of detected faults
(column ‘# tested’) in Table 1. Column ‘# faults’
shows the total number of stuck-at faults in the
circuits. Column ‘# untest.’ shows the number of
untestable register enable faults identified by the
method proposed in this paper. Column “# remain.”
shows the number of faults that were neither tested nor
identified untestable. Columns ‘F.C.’ and ‘F.E.’
present the achieved fault coverage and fault efficiency
(i.e. test coverage), respectively. Finally, column ‘CPU
time’ gives the CPU run times for the untestability
identification.
 As it can be seen from Table 1, a large number of
untestable faults has been identified by the method in a
relatively short run time. This fact is also supported by
the statistics presented in Table 2, which shows that
roughly 20-60 per cent (in average 41 %) of the faults
not tested in the given benchmark circuits fall into the
category of untestable register enable faults. An
additional benefit of the approach is the increase in
fault efficiency. Identification of untestable faults
allows raising the confidence in the test coverage and
in the efficiency of the ATPG.

Table 2. Core benefits of the method

 gcd sosq mult diffeq average
% untestable
from all not
tested faults

66.3 27.0 19.2 53.1 41.4

Increase in
fault efficiency,

%
3.91 6.51 6.21 1.29 4.48

Circuit area
minimization,

%
4.70 6.51 6.31 2.12 4.91

 Last but not least, untestable fault identification
may also be implemented in high-level test synthesis.
The last row in Table 2 shows that by removing the
redundant enable signals around 2 - 6 per cent of the
circuit area is minimized. Furthermore, as mentioned
before, identification of untestable gate-level faults can
contribute to reducing yield loss.

8. Conclusions

 The paper proposed a new method for identification
of untestable logic-level stuck-at faults from the
register transfer level. The novelty of the approach lies
in using an existing commercial model-checking tool
for the untestability analysis. In particular, a technique
for formally generating PSL language assertions for
proving untestable stuck-at faults in sequential
synchronous designs was developed. Experiments on
well-known sequential benchmarks showed that as
much as 20-60 per cent of faults not detected by
sequential ATPG were identified untestable in a short
run time by the approach.
 The proposed untestable fault identification may
also be implemented in high-level test synthesis. It was
shown that by removing the redundant enable signals
in average 5 per cent of the circuit area could be saved.
An additional effect of the identification of untestable
register enable faults lies in reducing yield loss.

2525

Acknowledgements

The research has been supported partly by EC FP 6
research project VERTIGO, Enterprise Estonia funded
ELIKO Development Center, Estonian SF grant 7068,
7483, Estonian Center of Excellence program, EC
REGPOT program and by Japan Society for the
Promotion of Science (JSPS) under Grants-in-Aid for
Scientific Research (B) (No. 20300018).

References
[1] V. D. Agrawal and S. T. Chakradhar, “Combinational ATPG

theorems for identifying untestable faults in sequential
circuits,” IEEE Trans Comput.-Aided Des. Integr. Circuits
Syst., vol. 14, no. 9, pp. 1155–1160, Sep. 1995.

[2] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying
sequential redundancies without search,” in Proc. 33rd Annu.
Conf. DAC, LasVegas, NV, Jun. 1996, pp. 457–462.

[3] Q. Peng, M. Abramovici, and J. Savir, “MUST:Multiple
stem analysis for identifying sequential untestable faults,” in
Proc. Int. Test Conf., Atlantic City, NJ, Oct. 2000, pp. 839–
846.

[4] D. E. Long, M. A. Iyer, and M. Abramovici, “FILL and
FUNI: Algorithms to identify illegal states and sequentially
untestable faults,” ACM Transact. Des. Automat. Electron.
Syst., vol. 5, no. 3, pp. 631–657, Jul. 2000.

[5] H.-C. Liang, C. L. Lee, and E. J. Chen, “Identifying
untestable faults in sequential circuits,” IEEE Des. Test.
Comput., vol. 12, no. 3, pp. 14–23, Sep. 1995.

[6] J. Raik, A. Krivenko, R. Ubar, M. Kruus. Hierarchical
Identification of Untestable Faults in Sequential Circuits.
IEEE Euromicro DSD, 2007.

[7] Michiko Inoue, Takeshi Higashimura, Kenji Noda,
Toshimitsu Masuzawa, Hideo Fujiwara: A High-Level
Synthesis Method for Weakly Testable Data Paths. Asian
Test Symposium 1998: 40-45

[8] Marie-Lise Flottes, R. Pires, Bruno Rouzeyre: Alleviating
DFT Cost Using Testability Driven HLS. Asian Test
Symposium 1998: 46-51

[9] M.L. Flottes, R. Pires, and B. Rouzeyre, “Analyzing
Testability from Behavioral to RT Level”, in Proc. European
Design & Test Conf., 1997, pp. 159–165.

[10] Turbo Tester test tools, URL: http://www.pld.ttu.ee/tt/
[11] J. Raik, R. Ubar, T. Viilukas, M. Jenihhin. Mixed

Hierarchical-Functional Fault Models for Targeting
Sequential Cores. J. of Systems Architecture, Elsevier,
2008

2626

