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Abstract

The problem of test generation for logic circuits is known
to be NP-hard, and E:nct it is very hard to speed up the
test generation process due to its backtracking mechanism,
This paper presents an approach to parallel processing of
test generation for logic circuits in a loozely-coupled
distributed network of general purpose computers, and
analyze the effects of the allocation of subproblems to

, the grain size of subproblems and the speedup
ratio of the multiple-processor system to a single processor
system, in order to see the performance of the multiple-
Processor system.

1. Introduction

Test géneration process usvally includes both test-
pattern generation and fault simulation. For test-pattern
generation, several efficient algorithms such as
PODEM][1], FAN[2], and SOCRATES[3] have been
reported. However, the problem of test-pattern generation
for logic circuits is known to be NP-hard [4,5], and hence
the computational requirements grow exponentially in
general as the circuit size increases. For simulating very
large faulted circuits, deductive and concurrent fault
simulation are known to be efficient. The computational
complexity of these fault simulation is less than O(G?) and
seems to behave as an O(G2) algorithm [6,7,8]. These
facts imply that a test generation system implemented on a
single general purpose computer takes a prohibitive
amount of computing time for very large circuits.

Handling the increased logic complexity of VLSI
circuits is severely limited by the slowness of conventional
CAD tools on a general purpose computer. To alleviate
this, several kinds of special purpose hardware
accelerators have been reported, e.g. IBM's Yorktown
Simulation Engine (YSE) [9], NEC's Hardware
Accelerator (HAL) [10], Zyead, Silicon Solutions, Daisy,
etc. [11,12]. There are atempts to accelerate fault
simulation [13] and test-pattern generation [14] using
hardware logic simulators. Kramer's approach [15] is to
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use the MIT Connection Machine as a tesi-pattern
generation engine. Until now, the results of [14,15] were
that speed-up advantage can be gained only for small
circuits because of the exponential nature of the proposed
algorithms in which all input combinations are wastefully
analyzed. El-ziq et al. [16] surveyed the state-of-the-art
logic verification and fault simulation machines and
presented their view such that a successful test generation
system should be built as an expert system or a
knowledge-based system using a special purpose engine,
though no concrete configuration of the test-pattern
generation engine was presented,

Although these special purpose hardware engines
certainly provide the fastest simulation, their hardware
cost is very expensive and their special purpose
architecture is inflexible to other applications such as test
generation. An alternative to special purpose hardware
engines is the use of a loosely-coupled distributed network
of general purpose computers which are less expensive
and much more flexible than special purpose hardware
engines. There is a report of a distributed fault simulator
implemented on a loosely-coupled network of general
purpose computers in which a close to linear speedup is
achieved [17]. For test generation, there is a report of
parallel test generation on a loosely-coupled distributed
system which predicted the performance of parallel
processing by dealing ‘with multiple heuristic schemes
[20].

In Motohara et al. [18] and Fujiwara [19], two
approaches were presented to parallel processing for test
generation using a multiple processor system called
LINKS-1; (1) parallelism to deal with a large number of
faults simultaneously and (2) parallelism to search a large
number of nodes in a decision tree simultancously. In
this paper, we shall extend the first approach and apply it
to a loosely-coupled distributed network of general
purpose computers, where a cluster of faults will be
allocated to each processor instead of allocating one fault
each time. We shall analyze the effect of granularity of
computation (the number of faults allocated to a
each time) to find the optimal granularity and the speedup
ratio of the multiple-processor system to a single processor
system, in order to see the performance of the multiple-
processor system,
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2. Archilecture of the Distributed System

The architeciure of our loosely-coupled multiple-
processor system is illustrated in Figure 1. The client and
servers are connected via a communication bus. In this
network, a client processor requesis a remote server

r to exccute a task and to return the results to the
client. When a server finishes its assigned task, it sends

the result to the client and requests a new task. The client -

saves the result and provides a new task for the server.
Client service discipline is first come first served. In this
distributed processing, the original problem is partitioned
into subproblems or tasks {task partitioning), and each task
is allocated to the servers {task allocarion).

Since our problem is test generation, our goal is to
generate test-patterns for all faults. The problem domain is
a set of faults. Here, we shall consider to distribute a
cluster of faults (called rarger faulis) 1o seTvers o generate
test-patterns for them. Therefore, a subproblem or a task
allocated to a server is a test generation problem for a
cluster of faults. For a given cluster of faulis, each server
can perform test-pattern generation and fault simulation.
The result is a set of faults which are detected by a set of
gencrated test-patterns, a set of redundant faults, and a set
of aborted faults due to the exceeded backtrackings. This
information is sent to t.e client and the fault table is
updated by the client. The client then extracts a new
cluster of faults which have not yet processed by any
server and sends it to the server. The server then executes
test generation for the cluster of faults. This process
continues until all faults in the fault table are processed.

If we decrease the granularity of computation (the
number of faults given to a server) in order to exploit better
parallelism, then servers complete the tasks more rapidly,
and hence send requests to the client more frequently.
This increases the communication overhead and in turn
slows down processors. Since the interaction among
various performance factors is very complex, it is very
difficult to predict the exact granularity size which will
yield the best performance for a given problem and
distributed system.

Client
| | 1
Server Server Server
1 2 )

Figure 1. Architeciure of the distribuled system

3, Formulation of ths Problem

We shall consider a distributed network consisting of
a client and N servers as shown in Figure 1. Let M be the
total number of faulis of a given circuit. A process of test-
pattern generation for a fault f; is called a process for fault

fi. The result of a process for a fault is whether 1) the
fault is detected by a test-pattern, or 2) the fault is
redundant, or 3) the process is aborted due to the exceeded
backtracking. Let 1; be the processing time of server j for
fault f;, i.e., the compiiation time of server j to complete
test-pattern generation process for fault fj.

Let §;; be the probability that process for fault fj is
allocated to server j. LetAjj be the probability that server j

communicates to the client after process for fault fj. Lettg
be the mean communication time which includes waiting
time due to conlention and data transfer time between the
client and a server. Then, the average time necessary to
complete all processes allocated to server jis

BA
Tj=§5-.;{1i;+ M o

The average time nec:ssa:%lu complete all processes is.
defined by the maximum of T

T=max [ Tj ) (2}

The problem is thus to find a task allocation schedule
which minimizes T. However, this is a hard problem in
general, and so we shall consider a uniform and
homogeneous problem where all the servers are uniform
and the same computalion and communication patterns are
repeated during each process.

4. Homogeneous Problem with Static Task
Allocation

4.1 Optimal Granularity

We shall consider static task allocation of faults
where the same number of target faults will be ransferred
from client to a server at each communication. Further we
assume homogeneous case where the same computation
and communication patterns are repeated during each
process for all faults; i.e., 1jj=1, 19- =}, and Tj =T for
all faults f; and servers j, the expressions mentioned above
are simplified as follows.

Let m be the number of target faults transferred from

the client to a server at each communication. Then A=1/m.

Case 1 (without fault simulation)

First, suppose that test-pattern generation without
fault simulation is performed for each fault . Then, the
probability that process for fault fj is allocated 1o srver j is
8jj = I/N. By substituting these expressions lo
expressions (1) and (2), we have
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T=e(t+lt)=— (14=)
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Since this expression is a monotone decreasing
funetion of m and | £ m = M/N, the minimum of T is
obtained when m=M/N,

.

(4)
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The above expression means that for the
homogeneous case, where the processing and
communication time are all the same for all faults, and test-
pattern generation process without fault simulation is
performed for each fault, the best performance is obtained
when each server receives all target faults only once from
the client. However, it may often occur that a test-pattern
generated for a fault can also be a test-pattern for other
faults. Hence, if we apply fault simulation process after
lest-pattern generation process. then all faults have not 1o
be processed,

Case II (with fault simulation)

Suppose that the client requests to a server to process
m target faults. The server generates a test-pattern for one
of m faults, and finds out all detected faults by the test-
pattern. It repeats test-pattern generation and fault
simulation until all target faults are processed. Suppose
that after this test generation process for m target faults
completes, pm faults are newly found to be either
detectable or redundant. The term "newly" means that
those faults were known to be neither detectable nor
redundant but have been newly found to be either
detectable or redundant. Let us call those faults newdy
processed faults,

Let us define the ratio of newly processed faults to
target faults by

number of newly processed faults per server
P -
number of target fauts per server

(3)

where p 2 1. Note that this ratio will decrease as the
number of processed faults increases. Therefore, it is
expressed as pj, the ratio for i-th processed fault f}.

During each iteration of server process, m target
faults are test-generated and pm faults are found. to be
detectable through fault simulation. Therefore, the
probability that test-generation process for i-th fault f; is
allocated to server j is

1
Ei.j! EL=__

Np, (6)

The total amount of processing and communication
time T is obtained from expression (3) by substituting (6)
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andtj=1, Ajj=d= lm, and Tj=T.

T=i ' [1+%)

i=1 N p;
Communication time: 1,

7N

We assume that (1) the size of data transferred
between the client and a server is constant and hence the
data transfer time during communication between the client
and servers is constant, and that (2) the number of requests
from servers to the client is proportional to the toral
number of servers, N, and hence the waiting time during

communication between the client and servers is
proportional o N,

Hence we have

Te=tg+t;N (8)

where t  and t | are constants.

Ratio of newly processed faults
to target faults: p

Figure 2 gives the typical curve of the number of
newly processed faults for the ISCAS'85 benchmark
circuits [24]. The axis of ordinates shows the number of
faults which are newly found to be detectable by fault
simulation after test-pattern generation for a targer fault,
and the axis of abscissas shows the number of processes.
From this figure we can see that the number of newly
processed faults will quickly decrease as the number of
processed faults increases. Hence we assume that the ratio

# of Newly Processed Fauliy

h

Figure 2, Mumber of newly processed faulis for 7552
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of newly processed faults to target faults, p(x), is

pix) =

fg*Nx

(9)

where x is the number of processed faults and rg and r; are
CONStants,

The ratio p(x) will also decrease monotonously as
the number of target faults increases. After receiving the
list of detected faults and redundant faulis from a server,
the client renews the fault table by flagging the newly
detected faults and redundant faults. Since many servers
are working simultaneously, some servers may find the
same faulis detected. These overlapped processcs for the

~ fauls that are simulianeously detected by different servers

fre wasteful. The number of newly processed faults per
fault will decrease as the number of target faults per server
and the number of servers increases. Therefore, we can
assume :

1
P{“].rn'l‘ X+ r;iﬂ] (10)

where r; is constant. In the above expression, the factor
rymN accounts for the decrease ratio of newly processed

faults due to overlapped processing.
Without loss of generality, we can assume that the

index i of a fault fj corresponds 1o the order of processing,
i.e., the number of processed faults is i when fault fj is
processed. Therefore, the above expression (10) can be
given by
o 1
Pi To+ Iyl + rymi
(11)

Summarizing the above expressions (7), (8) and

M
g+ 4N
T-Z%{ru+r|i+r;nlﬂit+——-—vu — ]

i=l
tg+ 4N

-%‘(rn+r|¥+rgnﬂlt+ -

M K3 .

(12)
where
B = (rn+ r—z'{MHl}r + N + r;t,l*'l2
B, =raNt
and
Py=(rg+ l-El{l'u{ﬂl]('c.nﬁ t;N)
(13)
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Differentiating T by m, we have

dT M ‘M3
am N

(14)
Then, we have the minimum of T
Tmin'}._r:{"w"'z Bably
(13)
when
m= A ]
K :
(16)

Figure 3 presents the total amount of processing and
communication time as a function of the number of target
faults per server for three cases of different parameters; (a)
tg="1; = 0.1 and ry = 0.00001, (b) tg =t, = 0.01 and rp =
0.00001, and (c) tg =1t; =0.1 and r; = 0.000001. From
the curves of (a) and (b), we can see that as the
communication time decreases, both the optimal
granularity and the total processing time decrease. From
the curves of (a) and (c), we can see that as the ry.
decreases, the total processing time decreases, This is
because the factor rymN which accounts for the decrease
ratio of newly processed faults due. to overlapped

processing decrezses.
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Figure 3. Computation Lime versus number of target faults



4.2 Speedup of multiple-processor system

The speedup - of a multiple-processor system is
defined as the ratio of the time required to complete test
generation for all faults on a single processor to the time
required to execute the same process on an N-processor
system. Therefore, we have

[ Tll:l'l!h

. Tuni
(17)

The computation time required to complete test
generation for all faults on a single processor is given by

T;in;lu' 2 fro+ riife

-H(fu+r|M;I}1

(18)

From expressions (15), (17), and (18), we have the
maximum speedup 5., as follows:

& Tli‘rlll:
T

fjlrﬂ + TIH—;]I 'f

Hy+ 2V gy

o N
| H'\/[ - 1
M+1

ru+r1T

< N

s

t“'l'tiN
: 4

)

(19)

The above expression indicates that gz approaches
o N if

ramN <<rg+ r%
(20)
and
tottaN <<
m (21)

In other words, if the decrease ratio of newly processed
faults doe to overlapped processing is much smaller than
the ratio of newly processed faults and if the data transfer
time per fault and the waiting time per communication are
much smaller than the processing time per fault, then Smax

approaches to N,
Figure 4 shows the maximum speedup ratio as a
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function of the number of servers for two cases of
different parameters of ty = t; = 0.1 and 0.01.
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Figure 4. Maximum specdup ratio vs number of servers

3. Conclusion

In this paper, we have presented an approach to
parallel processing of test generation for logic circuits in a
loosely-coupled distributed network of general purpose
computers, and analyzed the effects of the allocation of
subproblems to processors, the grain size of subproblems
and the speedup ratio of the multiple-processor system to a
single processor system, in order to see the performance of
the multiple- processor system,

For the homogeneous case where the processing and
communication time are assumed to be the same for all
faults, if test-pattern generation process is applied to each
fault, the total processing and communication time T
becomes a monotone decreasing function of the number of
target faults m, and hence the best performance is obtained
when each server receives all target faults only once from
the client, i.e., when m=M/N. However, it may often
occur that a test-pattern generated for a fault can also be a
test-pattern for other faults, Hence, if we apply fault
simulation process after test-pattern generation process,
then all faults have not to be processed. To analyze this
case, we have introduced a ratio of newly processed faults
to target faults. For this model, the function T has its
minimum between 1 <m < M/N.

We have also derived an expression of the speedup
of a multiple-processor system in the homogeneous case.
The analysis indicates that the speedup Smax approaches
10 N if the data transfer time per fault and the waiting time
per communication are much smaller than the processing
time per fault and if the decrease ratio of newly processed
faults due to overlapped processing is much smaller than
the ratio of newly processed faults, From this, we can see



that the task allocation which minimizes the factor of

overlapped processing in the ratio p will yield the best
performance for a multiple-processor system, provided
that the parameters associated with the hardware are given.
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