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Abstract — In this paper, we consider the problem of test 

environment generation for functional register-transfer level 

(RTL) circuits using an assignment decision diagram (ADD).  

For the test environment generation method using ADDs, 

Ghosh et al. [10] and Zhang et al. [11] previously proposed 

symbolic processing based algorithms which utilize a set of 

nine-valued and ten-valued algebras, respectively, to perform 

symbolic justification and propagation of test environment 

objectives.  However, it is known that there are many cases 

that their methods fail to generate a test environment even if it 

exists.  This paper presents a new method for test 

environment generation with enhanced symbolic processing 

(justification and propagation) rules in order to generate 

more test environments than previous methods. 
Keywords — Test environment, RTL test generation, 

high-level testing, assignment decision diagrams  

 

1. Introduction 
The problem of test generation is a basic, essential issue in the 

area of testing [1][2]. In the combinational test generation 

problem, efficient algorithms have been developed where 

high fault efficiency can be achieved even for large 

combinational circuits. However, large sequential circuits 

require long test generation time and achieving high fault 

efficiency is quite difficult. To improve the fault efficiency, 

researchers started to propose the test generation methods for 

targeting the design at higher level [3] – [11]. 

     Ghosh et al. proposed a test generation method for 

functional RTL circuits which was described in a 

cycle-accurate behavior [10]. In their work, test environments 

are generated for each functional module of a given 

functional RTL circuit described in an assignment decision 

diagram (ADD) using the justification/propagation rules 

comprising nine symbols of nine-valued algebra [12]. A test 

sequence is then formed by substituting the corresponding 

test patterns for the test environment. However, regardless of 

the existence of some test environments, the proposed 

nine-valued algebra cannot always generate the test 

environments. To overcome this drawback, Zhang et al. 

upgraded the nine-valued algebra to a ten-valued algebra by 

taking the signal line value range into consideration. This 

algebra can generate much more test environments [11]. 

Nevertheless, there are still many test environments that 

could not be generated by this method.  

     This paper extends the method proposed by Zhang. We 
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propose a test environment generation method which can 

generate any test environment that can be produced by 

Ghosh’s and Zhang’s methods, as well as many test 

environments which cannot be produced by the previous two 

methods.  

     The outline of the paper is as follows. Section 2 

describes the terminology to be used in this paper. Section 3 

defines the test environment problem. This is followed by the 

section that describes the justification/propagation rules 

introduced by Ghosh and Zhang. Section 5 explains an 

experiment conducted on a set of benchmark circuits and 

shows the result of comparing our justification/propagation 

rules and those from previous works. Finally, Section 6 

concludes the paper.  

 

2. Preliminaries 
2.1 ADD 

ADD is an acyclic graph that consists of a set of nodes that 

can be categorized into four types: read node, write node, 

operation node and assignment decision node (ADN), and a 

set of edges which contain the connectivity information 

between two nodes (Fig. 1). A read node represents a primary 

input port, a storage unit or a constant while a write node 

represents a primary output port or a storage unit. An 

operation node expresses an arithmetic operation unit or a 

logic operation unit while an ADN selects a value from a set 

of values that are provided to it based on the conditions 

computed by the logic operation units. If one of the condition 

inputs becomes true, the value of the corresponding data 

input will be selected. Although ADD was essentially 

introduced as an internal representation in the high-level 

synthesis process, it can be used to describe a functional RTL 

circuit, the controller part and the data path part of which are 

homogeneously represented. 

 

Fig. 1  ADD (Assignment Decision Diagram) 
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2.2 Test Environment 

When a node N is under test, the testability of the node is 

guaranteed if (a) any value can propagate from a read node 

corresponding to a primary input port to the input of N, and 

(b) the value at the output of N can propagate to a write node 

corresponding to a primary output port. The paths which 

allow (a) and (b) to occur are called justification path and 

propagation path, respectively. Justification and propagation 

can be done through symbolic processing that utilizes 

nine-valued algebra. The series of symbols obtained from the 

symbolic processing that activates justification and 

propagation paths is known as the test environment for the 

node under test.  

     For a given node under test, its test sequence is 

generated by first extracting a test pattern from the test set 

library and by substituting the test pattern for the test 

environment. The test set library is obtained beforehand by 

first simply taking a gate-level circuit whose functionality is 

the same as that of the node under test, then generating the 

test patterns for all faults in the circuit using a combinational 

ATPG algorithm. In the case where the node is synthesized 

into a circuit which is different, fault simulation must be 

performed to check the fault efficiency of the test patterns. 

 
2.3 Methods of Ghosh et. al and Zhang et. al 

The nine symbols of Ghosh’s nine-valued algebra, each of 

which can be assigned true or false, are as follows: 

• Cg(v): variable v can be set to any value. 

• C0(v): variable v can be set to 0. 

• C1(v): variable v can be set to 1. 

• Ca1(v): all bits of variable v can be set to 1’s. 

• Cq(v): variable v can be set to a constant. 

• Cz(v): variable v can be set to high impedance Z. 

• Cs(v): state variable v can be set to a specific state. 

• O(v): any fault effect at variable v can be observed. 

• O’(v): fault effect of D’ can be observed for a single bit 

variable v. 

 

     To generate a test environment, first an objective like 

the one shown in Fig. 2 has to be set. In order to achieve the 

test environment objective, the test sequence for each ADD 

can be generated through the following two phases using the 

justification/ propagation rules shown in Figs 3 and 4: 

   Phase 1: Generate the test environment of the node under 

test. 

   Phase 2: Generate the test sequence of the node under 

test by substituting the test patterns of the gate-level circuit 

corresponding to the node under test for the test environment. 

 

     The procedure to generate the test environment in 

Phase 1 is as follows: 

   Step 1: Find the propagation path from the node under 

test to a primary output using a single path sensitization 

method. If the path does not exist or all the paths have been 

traversed, terminate the procedure. 

   Step 2: Propagate the output response of the node under 

test (propagation symbol O) to the primary output by 

assigning the symbols on the side inputs of the propagation 

path that follows the propagation rules. 

   Step 3: Assign Cg to the input of the node under test.  

 

Fig. 2  Test Environment Objectives 

 

Fig. 3  Justification Rules for Addition and Comparison 

Nodes 

 

Fig. 4  Propagation Rules  

 

   Step 4: Perform implication to detect any conflicts earlier. 

   Step 5: All the test environment objectives are justified 

using the branch and bound method.  

   Step 6: If all the test environment objectives have been 

justified, the test environment is produced and the procedure 

is completed. If we cannot achieve all the objectives and there 

are still propagation paths which are not yet searched, go 

back to Step 1.  

 

     Ghosh et. al’s procedure does not allow the justification 

of two arbitrary values by just one variable. Zhang et. al [11] 

resolves the problem by considering signal line value range 

where symbol Cp is added to the algebra. 

 

3. Test Environment Generation Problem 
To efficiently generate a test sequence that provides a high 

fault efficiency, it is important to be able to generate test 

environments for as many nodes as possible. This section 

redefines the test environment generation problem. 

Furthermore, the completeness of the test environment 

algorithm and the justification/ propagation rules of the test 

environment are discussed.  

 

Definition 1 (Test environment generation problem) 

Input: An ADD, a test environment objective, and a set of 

justification/propagation rules 

Output: (a) Decision (yes/no) on whether there exists any 

test environment that satisfies the test environment 



 

objective and the set of justification/propagation 

rules; (b) Test environment if one exists.  

 

     The rules of Ghosh and Zhang (referred to as Rule G 

and Rule Z, respectively in the following text) cannot 

generate test environments in many cases even if they exist. 

The next section describes the extension of the 

justification/propagation rules that can generate as many as 

possible test environments including those which cannot be 

generated by Rule G and Rule Z.  

 

4. Enhancement of Justification/Propagation Rules 
4.1 Rule M (Multiple-Path Sensitization) 

Rule G and Rule Z use the propagation rules that are based 

on the single-path sensitization concept. Let’s consider the 

ADD of Case [a] in Fig. 5. The addition node at the lower 

part of the figure receives the fault effect O at both of its 

inputs due to the reconvergent path. Rule G and Rule Z 

cannot propagate the fault effect to the output of the addition 

node since they did not consider multiple-path sensitization.  
     Therefore, we extend the justification/ propagation 

rules such that the fault effects from different paths can be 

propagated to a primary output. Let’s consider Case [a] again. 

The symbolic processing of O+Cq and 2O+Cq can be 

produced by applying the operation of the node. By 

introducing this new symbolic processing, the fault effects 

propagating from two different paths can reach the primary 

output.  

     In this paper, we will refer to this new 

justification/propagation rules based on multiple-sensitization 

as Rule M.  Its justification rules are the same as that of Rule 

Z whereas its propagation rules are extended to include the 

new symbols of kC1, kO, k1O+k2C1, kO+Cq, where k, k1 and 

k2 are constants. The new propagation rules for an addition 

node are demonstrated in Fig. 6. Similar new propagation 

rules can be derived for the subtraction node and the logic 

operation node. Different from the previous rules, symbol O 

in Rule M represents the same fault effect.   

 

4.2 Coverage Relation between Rules G, Z and M  

Let TG, TZ, and TM denote the sets of test environments 

generated by Rule G, Rule Z and Rule M, respectively for a 

given ADD.  The examples in Fig. 5 and Fig. 7 illustrate 

cases where no test environment exists under Rule G and Z 

but a test environment can be generated by Rule M.  We 

have the following theorem. 

 

Theorem 1: For any node N of an ADD, sets of test 

environments TG, TZ, and TM which are generated by Rule G, 

Rule Z and Rule M, respectively, have the coverage relation 

of TG ⊂ TZ ⊂ TM. 

  

Fig. 5  Case [a] 

 

 

 

Fig. 6  Propagation Rules of Rule M 

 

 

Fig. 7  Case [b] 

 

4.3 Rule E (Essential Justification/Propagation) 

Rule M can neither justify the control symbol Cg nor 

propagate the observing symbol of O for modulo operation 

node. Cg cannot be justified because the output of the modulo 

operation node cannot be set to all of the possible 2
n
 values at 

the input of modulo operation node under the assumption of 

the input and the output having the same bit width. 

Furthermore, symbol O cannot be propagated because there 

is a possibility of a fault at the input of modulo operation 

node being masked. 

 

     However, even though variable v cannot be set to all of 

the possible 2
n
 values, it is sufficient if variable v can be 

justified to any value which is essentially justifiable for a 

targeted ADD. This set of possible values is called range of 

values. Based on this new finding, we derive two new 

symbols Cg* and O* from Cg and O for test environment 

generation. 

 

• Cg*(v): Variable v can be set to any value which is 

essentially possible. 

• O*(v, p): Error at variable v which is essentially  

observable can be observed through path p. 

  



 

     By adding these new symbols to Rule M, we derive a 

new justification/propagation rules called Rule E (E is the first 

letter of term ‘Essentially’). The following shows the 

relationship between symbols Cg and O with symbols Cg* 

and O*. 

Cg(v) ⇒ Cg*(v) 

O(v) ⇒ ∃p, O*(v, p) 

 

     It is sufficient to consider the justification of Cg*(v) 

only as the control symbol of a test environment objective 

during the test environment generation since Cg(v)⇒Cg*(v). 

On the other hand, instead of the symbol O(v), the 

propagation of O*(v, p) for any possible propagation path p 

should be considered since the contraposition of O(v) ⇒ ∃p, 

O*(v, p) holds. Fig. 8 depicts an example of a test 

environment objective. 

 

Fig. 8  Test Environment Objectives 

 
     Figs 9-11 show justification/propagation rules for 

addition nodes, modulo operation nodes and single-input 

nodes, respectively.  A single-input node represents either a 

node that originally has a single input, or a 2-input node with 

a constant assigned to one of its input.  Examples of the 

latter include addition nodes with one of its inputs assigned 

with one, modulo operation node that calculates mod 128, 

etc.  

 
Fig. 9 (a)  Justification Rules of Addition Node  

 

 
Fig. 9 (b)  Propagation Rules of Addition Node  

 

Fig. 10   Justification/Propagation Rules of Modulo 

Operation Node 

 

 
Fig. 11  Justification/Propagation of Single Input Node 

 

  
Fig. 12  Case [c] 

  
Fig. 13  Single Input Node by Composition 

 

     Justification rules of Cg* for addition nodes and 

multiplication nodes are similarly defined based on the 

justification rules of Cg. For modulo operations, justification 

of Cg* is possible though Cg is not justifiable. For 

single-input nodes, justifiability of Cg depends on the types of 

operation after realization of the single-input node while the 

justification of Cg* is always possible. 

     As shown in Figures 9-11, the propagation rules of 

observing symbol O are similar to that in Rule M while the 

propagation rules for observing O* are based on single-path 

sensitization concept.  This is to guarantee the completeness 

of the newly defined Rule E. In other words, by limiting the 

propagation of O* using single-path sensitization concept, the 

test environments generated include the propagation 

sequence that can observe any errors which are essentially 

observable. 

 

4.4 Coverage Relation between Rule M and Rule E. 

It is obvious that test environments generated by Rule M can 

also be generated by Rule E. Moreover, Case [c] in Fig. 12 

illustrates an example where no test environment exists under 

Rule M but one exists under Rule E. Therefore, we have the 



 

following theorem. 

 

Theorem 2: For any node N in an ADD, the relationship 

between TM and TE, which are the sets of test environments 

generated by Rules M and E respectively, can be defined as 

TM ⊂ TE.  

 
4.5 Single-Input Node by Composition 

When two controlling symbols Cg set at the inputs of the 

addition node in Fig. 13 are being justified, the junction at the 

input side has two Cgs which conflict with each other and 

thus the test environment generation fails. For such a situation, 

we should regard all the nodes in the part marked by the 

dotted line as being merged into one single-input node 

considered as a node under test. By setting Cg at the input 

and O at the output as the test environment objectives, the test 

environment can be generated. At the input of the addition 

node, any values which are essentially justifiable can be 

controlled by the test environment that satisfies these test 

environment objectives. 

     Furthermore, let’s consider the propagation of 

observing symbol O from the left input of the example circuit 

in Fig. 13. In this case, observing symbol O* is needed to 

allow propagation through modulo operation nodes but it is 

constrained by the concept of single-path sensitization and 

thus propagation operation fails at the addition node. 

However, observing symbol O* can propagate to the output 

of the node if a single-input by composition is considered. 

     By introducing the concept of single-input node by 

composition, much more test environments can be generated 

using Rule E. 

 

5. Case Study 
To compare the effectiveness of Rule G, Rule Z, Rule M and 

Rule E, test environment generation algorithms based on 

each rule have been applied on two ADDs shown in Figures 

14 and 15 and comparisons have been done. Test 

environment coverage, which is used as an evaluation 

measure in the case study, is defined as follows. Let TEC(Ni) 

denote Test Environment Coverage for node Ni. Let TEC 

denote Test Environment Coverage. 
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     Tables 1 and 2 show the results for Circuits Ex.1 and 

Ex.2. In each table, columns from left indicate the test 

generation methods, test environment coverage, fault 

coverage, test sequence length, test generation time, fault 

simulation time, and total computation time, respectively. The 

test generation methods in the first column include RTL test 

generation methods using Rule G, Rule Z, Rule M and Rule 

E, respectively, as well as gate-level test generation methods 

that have the time limits of 1 second per fault and 100 

seconds per fault. We used Synopsys’ TetraMax for 

gate-level ATPG, running on SunFire X4100 (CPU 3.0GHz, 

Memory 16GB).  

     For all of the circuits, Rule M has better test 

environment coverage than that of Rule G and Rule Z. 

Among all the rules, Rule E shows the highest test 

environment coverage. The third column shows the fault 

coverage obtained from the fault simulation of the 

synthesized circuits using the generated test sequence. The 

correlation between fault coverage and test environment 

coverage is high. Rule M shows better fault coverage 

compared to Rule G and Rule Z. In addition, Rule E has the 

highest fault coverage among all the rules. Compared to Rule 

G and Rule Z, Rule E generates much more test 

environments and test sequences that provide much higher 

fault coverage. For the performance comparison between 

RTL ATPG and gate-level ATPG, RTL ATPG with Rule E 

achieves higher fault coverage compared to gate-level ATPG 

with limit of 1 second per fault.  Furthermore, the total 

computation time of RTL ATPG with Rule E is 1/887 and 

1/131 of the gate-level ATPG with limit of 1 second per fault 

for Circuit Ex.1 and Circuit Ex.2, respectively.  When the 

abortion time is extended to 100 seconds for gate-level ATPG, 

higher fault coverage can be achieved. However, the CPU 

time rose to more than 10,000 seconds. From the above case 

study, we can summarize that RTL ATPG with Rule E is able 

to generate the test sequences whose fault coverage is equal 

to or higher than gate-level ATPG with much shorter 

processing time.   

 

6. Conclusion  
This paper studied the test environment generation problem 

for each module in a functional RTL circuit represented in 

ADD. Ghosh et. al [10] and Zhang et. al [11] introduced the 

test environment generation methods using nine-valued 

algebra and ten-valued algebra symbolic processing, 

respectively. This paper proposed an effective and efficient 

test environment generation method by extending the existing 

symbolic processing rules (justification/propagation). Our 

proposed method can generate more test environments in 

addition to the test environments generated by the previous 

methods. The set of test environments generated by our 

proposed rules covers the set of test environments generated 

by the previous rules. Moreover, the test environment 

coverage obtained in the case study showed the effectiveness 

of the proposed rule, Rule E. Compared to gate-level ATPG, 

our RTL ATPG with Rule E can drastically reduce the test 

generation time without sacrifice of fault coverage. 
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            Table 1.  Circuit Ex.1 

 

Table 2.  Circuit Ex.2 

 

 
                          Fig. 14  Circuit Ex.1                              Fig. 15  Circuit Ex. 2

 

Method TEC 

 (%) 

Fault Coverage 

(%) 

Test Length 

(cycles) 

Test Generation 

Time (sec) 

Fault Simulation 

Time (sec) 
Total Time  

(sec) 

RTL ATPG  (Rule G) 39.51 77.18 254 0.066 0.18 0.246  

RTL ATPG  (Rule Z) 39.51 77.18 254 0.066 0.18 0.246 

RTL ATPG  (Rule M) 83.95 90.09 804 0.119 0.54 0.659 

RTL ATPG  (Rule E) 96.30 90.14 846 0.174 0.55 0.724 

GL ATPG  (1sec/fault) --- 82.75 398 --- --- 617.72 

GL ATPG  (100sec/fault) --- 91.47 597 --- --- 13951.41 

Method TEC 

 (%) 

Fault Coverage 

(%) 

Test Length 

(cycles) 

Test Generation 

Time (sec) 

Fault Simulation 

Time (sec) 

Total Time  

(sec) 

RTL ATPG  (Rule G) 28.57 53.99 35 0.003 0.01 0.013  

RTL ATPG  (Rule Z) 28.57 53.99 35 0.003 0.01 0.013 

RTL ATPG  (Rule M) 28.57 53.99 35 0.003 0.01 0.013 

RTL ATPG  (Rule E) 90.48 88.80 210 0.008 0.01 0.018 

GL ATPG  (1sec/fault) --- 88.65 56 --- --- 2.24 

GL ATPG  (100sec/fault) --- 88.65 56 --- --- 137.66 


