

Enhancement of Test Environment Generation

for Assignment Decision Diagrams

Hideo Fujiwara
1
,

 Chia Yee Ooi
2
,

 and Yuki Shimizu

1
� � � � � � � � � � � �

1
Graduate School of Information Science

Nara Institute of Science and Technology

Kansai Science City, Nara, 630-0192 Japan

{fujiwara, yuki-s}@is.naist.jp

Abstract — In this paper, we consider the problem of test

environment generation for functional register-transfer level

(RTL) circuits using an assignment decision diagram (ADD).

For the test environment generation method using ADDs,

Ghosh et al. [10] and Zhang et al. [11] previously proposed

symbolic processing based algorithms which utilize a set of

nine-valued and ten-valued algebras, respectively, to perform

symbolic justification and propagation of test environment

objectives. However, it is known that there are many cases

that their methods fail to generate a test environment even if it

exists. This paper presents a new method for test

environment generation with enhanced symbolic processing

(justification and propagation) rules in order to generate

more test environments than previous methods.
Keywords — Test environment, RTL test generation,

high-level testing, assignment decision diagrams

1. Introduction
The problem of test generation is a basic, essential issue in the

area of testing [1][2]. In the combinational test generation

problem, efficient algorithms have been developed where

high fault efficiency can be achieved even for large

combinational circuits. However, large sequential circuits

require long test generation time and achieving high fault

efficiency is quite difficult. To improve the fault efficiency,

researchers started to propose the test generation methods for

targeting the design at higher level [3] – [11].

 Ghosh et al. proposed a test generation method for

functional RTL circuits which was described in a

cycle-accurate behavior [10]. In their work, test environments

are generated for each functional module of a given

functional RTL circuit described in an assignment decision

diagram (ADD) using the justification/propagation rules

comprising nine symbols of nine-valued algebra [12]. A test

sequence is then formed by substituting the corresponding

test patterns for the test environment. However, regardless of

the existence of some test environments, the proposed

nine-valued algebra cannot always generate the test

environments. To overcome this drawback, Zhang et al.

upgraded the nine-valued algebra to a ten-valued algebra by

taking the signal line value range into consideration. This

algebra can generate much more test environments [11].

Nevertheless, there are still many test environments that

could not be generated by this method.

 This paper extends the method proposed by Zhang. We

2
Faculty of Electrical Engineering

University of Technology Malaysia

Skudai Johor, 81300 Malaysia

ooichiayee@fke.utm.my

propose a test environment generation method which can

generate any test environment that can be produced by

Ghosh’s and Zhang’s methods, as well as many test

environments which cannot be produced by the previous two

methods.

 The outline of the paper is as follows. Section 2

describes the terminology to be used in this paper. Section 3

defines the test environment problem. This is followed by the

section that describes the justification/propagation rules

introduced by Ghosh and Zhang. Section 5 explains an

experiment conducted on a set of benchmark circuits and

shows the result of comparing our justification/propagation

rules and those from previous works. Finally, Section 6

concludes the paper.

2. Preliminaries
2.1 ADD

ADD is an acyclic graph that consists of a set of nodes that

can be categorized into four types: read node, write node,

operation node and assignment decision node (ADN), and a

set of edges which contain the connectivity information

between two nodes (Fig. 1). A read node represents a primary

input port, a storage unit or a constant while a write node

represents a primary output port or a storage unit. An

operation node expresses an arithmetic operation unit or a

logic operation unit while an ADN selects a value from a set

of values that are provided to it based on the conditions

computed by the logic operation units. If one of the condition

inputs becomes true, the value of the corresponding data

input will be selected. Although ADD was essentially

introduced as an internal representation in the high-level

synthesis process, it can be used to describe a functional RTL

circuit, the controller part and the data path part of which are

homogeneously represented.

Fig. 1 ADD (Assignment Decision Diagram)

9th IEEE Workshop on RTL and High Level Testing (WRTLT'08), pp.45-50, Nov. 2008.

2.2 Test Environment

When a node N is under test, the testability of the node is

guaranteed if (a) any value can propagate from a read node

corresponding to a primary input port to the input of N, and

(b) the value at the output of N can propagate to a write node

corresponding to a primary output port. The paths which

allow (a) and (b) to occur are called justification path and

propagation path, respectively. Justification and propagation

can be done through symbolic processing that utilizes

nine-valued algebra. The series of symbols obtained from the

symbolic processing that activates justification and

propagation paths is known as the test environment for the

node under test.

 For a given node under test, its test sequence is

generated by first extracting a test pattern from the test set

library and by substituting the test pattern for the test

environment. The test set library is obtained beforehand by

first simply taking a gate-level circuit whose functionality is

the same as that of the node under test, then generating the

test patterns for all faults in the circuit using a combinational

ATPG algorithm. In the case where the node is synthesized

into a circuit which is different, fault simulation must be

performed to check the fault efficiency of the test patterns.

2.3 Methods of Ghosh et. al and Zhang et. al

The nine symbols of Ghosh’s nine-valued algebra, each of

which can be assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.

• C0(v): variable v can be set to 0.

• C1(v): variable v can be set to 1.

• Ca1(v): all bits of variable v can be set to 1’s.

• Cq(v): variable v can be set to a constant.

• Cz(v): variable v can be set to high impedance Z.

• Cs(v): state variable v can be set to a specific state.

• O(v): any fault effect at variable v can be observed.

• O’(v): fault effect of D’ can be observed for a single bit

variable v.

 To generate a test environment, first an objective like

the one shown in Fig. 2 has to be set. In order to achieve the

test environment objective, the test sequence for each ADD

can be generated through the following two phases using the

justification/ propagation rules shown in Figs 3 and 4:

 Phase 1: Generate the test environment of the node under

test.

 Phase 2: Generate the test sequence of the node under

test by substituting the test patterns of the gate-level circuit

corresponding to the node under test for the test environment.

 The procedure to generate the test environment in

Phase 1 is as follows:

 Step 1: Find the propagation path from the node under

test to a primary output using a single path sensitization

method. If the path does not exist or all the paths have been

traversed, terminate the procedure.

 Step 2: Propagate the output response of the node under

test (propagation symbol O) to the primary output by

assigning the symbols on the side inputs of the propagation

path that follows the propagation rules.

 Step 3: Assign Cg to the input of the node under test.

Fig. 2 Test Environment Objectives

Fig. 3 Justification Rules for Addition and Comparison

Nodes

Fig. 4 Propagation Rules

 Step 4: Perform implication to detect any conflicts earlier.

 Step 5: All the test environment objectives are justified

using the branch and bound method.

 Step 6: If all the test environment objectives have been

justified, the test environment is produced and the procedure

is completed. If we cannot achieve all the objectives and there

are still propagation paths which are not yet searched, go

back to Step 1.

 Ghosh et. al’s procedure does not allow the justification

of two arbitrary values by just one variable. Zhang et. al [11]

resolves the problem by considering signal line value range

where symbol Cp is added to the algebra.

3. Test Environment Generation Problem
To efficiently generate a test sequence that provides a high

fault efficiency, it is important to be able to generate test

environments for as many nodes as possible. This section

redefines the test environment generation problem.

Furthermore, the completeness of the test environment

algorithm and the justification/ propagation rules of the test

environment are discussed.

Definition 1 (Test environment generation problem)

Input: An ADD, a test environment objective, and a set of

justification/propagation rules

Output: (a) Decision (yes/no) on whether there exists any

test environment that satisfies the test environment

objective and the set of justification/propagation

rules; (b) Test environment if one exists.

 The rules of Ghosh and Zhang (referred to as Rule G

and Rule Z, respectively in the following text) cannot

generate test environments in many cases even if they exist.

The next section describes the extension of the

justification/propagation rules that can generate as many as

possible test environments including those which cannot be

generated by Rule G and Rule Z.

4. Enhancement of Justification/Propagation Rules
4.1 Rule M (Multiple-Path Sensitization)

Rule G and Rule Z use the propagation rules that are based

on the single-path sensitization concept. Let’s consider the

ADD of Case [a] in Fig. 5. The addition node at the lower

part of the figure receives the fault effect O at both of its

inputs due to the reconvergent path. Rule G and Rule Z

cannot propagate the fault effect to the output of the addition

node since they did not consider multiple-path sensitization.
 Therefore, we extend the justification/ propagation

rules such that the fault effects from different paths can be

propagated to a primary output. Let’s consider Case [a] again.

The symbolic processing of O+Cq and 2O+Cq can be

produced by applying the operation of the node. By

introducing this new symbolic processing, the fault effects

propagating from two different paths can reach the primary

output.

 In this paper, we will refer to this new

justification/propagation rules based on multiple-sensitization

as Rule M. Its justification rules are the same as that of Rule

Z whereas its propagation rules are extended to include the

new symbols of kC1, kO, k1O+k2C1, kO+Cq, where k, k1 and

k2 are constants. The new propagation rules for an addition

node are demonstrated in Fig. 6. Similar new propagation

rules can be derived for the subtraction node and the logic

operation node. Different from the previous rules, symbol O

in Rule M represents the same fault effect.

4.2 Coverage Relation between Rules G, Z and M

Let TG, TZ, and TM denote the sets of test environments

generated by Rule G, Rule Z and Rule M, respectively for a

given ADD. The examples in Fig. 5 and Fig. 7 illustrate

cases where no test environment exists under Rule G and Z

but a test environment can be generated by Rule M. We

have the following theorem.

Theorem 1: For any node N of an ADD, sets of test

environments TG, TZ, and TM which are generated by Rule G,

Rule Z and Rule M, respectively, have the coverage relation

of TG ⊂ TZ ⊂ TM.

Fig. 5 Case [a]

Fig. 6 Propagation Rules of Rule M

Fig. 7 Case [b]

4.3 Rule E (Essential Justification/Propagation)

Rule M can neither justify the control symbol Cg nor

propagate the observing symbol of O for modulo operation

node. Cg cannot be justified because the output of the modulo

operation node cannot be set to all of the possible 2
n
 values at

the input of modulo operation node under the assumption of

the input and the output having the same bit width.

Furthermore, symbol O cannot be propagated because there

is a possibility of a fault at the input of modulo operation

node being masked.

 However, even though variable v cannot be set to all of

the possible 2
n
 values, it is sufficient if variable v can be

justified to any value which is essentially justifiable for a

targeted ADD. This set of possible values is called range of

values. Based on this new finding, we derive two new

symbols Cg* and O* from Cg and O for test environment

generation.

• Cg*(v): Variable v can be set to any value which is

essentially possible.

• O*(v, p): Error at variable v which is essentially

observable can be observed through path p.

 By adding these new symbols to Rule M, we derive a

new justification/propagation rules called Rule E (E is the first

letter of term ‘Essentially’). The following shows the

relationship between symbols Cg and O with symbols Cg*

and O*.

Cg(v) ⇒ Cg*(v)

O(v) ⇒ ∃p, O*(v, p)

 It is sufficient to consider the justification of Cg*(v)

only as the control symbol of a test environment objective

during the test environment generation since Cg(v)⇒Cg*(v).

On the other hand, instead of the symbol O(v), the

propagation of O*(v, p) for any possible propagation path p

should be considered since the contraposition of O(v) ⇒ ∃p,

O*(v, p) holds. Fig. 8 depicts an example of a test

environment objective.

Fig. 8 Test Environment Objectives

 Figs 9-11 show justification/propagation rules for

addition nodes, modulo operation nodes and single-input

nodes, respectively. A single-input node represents either a

node that originally has a single input, or a 2-input node with

a constant assigned to one of its input. Examples of the

latter include addition nodes with one of its inputs assigned

with one, modulo operation node that calculates mod 128,

etc.

Fig. 9 (a) Justification Rules of Addition Node

Fig. 9 (b) Propagation Rules of Addition Node

Fig. 10 Justification/Propagation Rules of Modulo

Operation Node

Fig. 11 Justification/Propagation of Single Input Node

Fig. 12 Case [c]

Fig. 13 Single Input Node by Composition

 Justification rules of Cg* for addition nodes and

multiplication nodes are similarly defined based on the

justification rules of Cg. For modulo operations, justification

of Cg* is possible though Cg is not justifiable. For

single-input nodes, justifiability of Cg depends on the types of

operation after realization of the single-input node while the

justification of Cg* is always possible.

 As shown in Figures 9-11, the propagation rules of

observing symbol O are similar to that in Rule M while the

propagation rules for observing O* are based on single-path

sensitization concept. This is to guarantee the completeness

of the newly defined Rule E. In other words, by limiting the

propagation of O* using single-path sensitization concept, the

test environments generated include the propagation

sequence that can observe any errors which are essentially

observable.

4.4 Coverage Relation between Rule M and Rule E.

It is obvious that test environments generated by Rule M can

also be generated by Rule E. Moreover, Case [c] in Fig. 12

illustrates an example where no test environment exists under

Rule M but one exists under Rule E. Therefore, we have the

following theorem.

Theorem 2: For any node N in an ADD, the relationship

between TM and TE, which are the sets of test environments

generated by Rules M and E respectively, can be defined as

TM ⊂ TE.

4.5 Single-Input Node by Composition

When two controlling symbols Cg set at the inputs of the

addition node in Fig. 13 are being justified, the junction at the

input side has two Cgs which conflict with each other and

thus the test environment generation fails. For such a situation,

we should regard all the nodes in the part marked by the

dotted line as being merged into one single-input node

considered as a node under test. By setting Cg at the input

and O at the output as the test environment objectives, the test

environment can be generated. At the input of the addition

node, any values which are essentially justifiable can be

controlled by the test environment that satisfies these test

environment objectives.

 Furthermore, let’s consider the propagation of

observing symbol O from the left input of the example circuit

in Fig. 13. In this case, observing symbol O* is needed to

allow propagation through modulo operation nodes but it is

constrained by the concept of single-path sensitization and

thus propagation operation fails at the addition node.

However, observing symbol O* can propagate to the output

of the node if a single-input by composition is considered.

 By introducing the concept of single-input node by

composition, much more test environments can be generated

using Rule E.

5. Case Study
To compare the effectiveness of Rule G, Rule Z, Rule M and

Rule E, test environment generation algorithms based on

each rule have been applied on two ADDs shown in Figures

14 and 15 and comparisons have been done. Test

environment coverage, which is used as an evaluation

measure in the case study, is defined as follows. Let TEC(Ni)

denote Test Environment Coverage for node Ni. Let TEC

denote Test Environment Coverage.

i

i

i
NforpatternstestofNumber

tenvironmentestgeneratedtorespectwith

NforpatternstesteffectiveofNumber

NTEC =)(

nodesofnumberTotal

NallforNTECofSum
TEC ii)(

=

 Tables 1 and 2 show the results for Circuits Ex.1 and

Ex.2. In each table, columns from left indicate the test

generation methods, test environment coverage, fault

coverage, test sequence length, test generation time, fault

simulation time, and total computation time, respectively. The

test generation methods in the first column include RTL test

generation methods using Rule G, Rule Z, Rule M and Rule

E, respectively, as well as gate-level test generation methods

that have the time limits of 1 second per fault and 100

seconds per fault. We used Synopsys’ TetraMax for

gate-level ATPG, running on SunFire X4100 (CPU 3.0GHz,

Memory 16GB).

 For all of the circuits, Rule M has better test

environment coverage than that of Rule G and Rule Z.

Among all the rules, Rule E shows the highest test

environment coverage. The third column shows the fault

coverage obtained from the fault simulation of the

synthesized circuits using the generated test sequence. The

correlation between fault coverage and test environment

coverage is high. Rule M shows better fault coverage

compared to Rule G and Rule Z. In addition, Rule E has the

highest fault coverage among all the rules. Compared to Rule

G and Rule Z, Rule E generates much more test

environments and test sequences that provide much higher

fault coverage. For the performance comparison between

RTL ATPG and gate-level ATPG, RTL ATPG with Rule E

achieves higher fault coverage compared to gate-level ATPG

with limit of 1 second per fault. Furthermore, the total

computation time of RTL ATPG with Rule E is 1/887 and

1/131 of the gate-level ATPG with limit of 1 second per fault

for Circuit Ex.1 and Circuit Ex.2, respectively. When the

abortion time is extended to 100 seconds for gate-level ATPG,

higher fault coverage can be achieved. However, the CPU

time rose to more than 10,000 seconds. From the above case

study, we can summarize that RTL ATPG with Rule E is able

to generate the test sequences whose fault coverage is equal

to or higher than gate-level ATPG with much shorter

processing time.

6. Conclusion
This paper studied the test environment generation problem

for each module in a functional RTL circuit represented in

ADD. Ghosh et. al [10] and Zhang et. al [11] introduced the

test environment generation methods using nine-valued

algebra and ten-valued algebra symbolic processing,

respectively. This paper proposed an effective and efficient

test environment generation method by extending the existing

symbolic processing rules (justification/propagation). Our

proposed method can generate more test environments in

addition to the test environments generated by the previous

methods. The set of test environments generated by our

proposed rules covers the set of test environments generated

by the previous rules. Moreover, the test environment

coverage obtained in the case study showed the effectiveness

of the proposed rule, Rule E. Compared to gate-level ATPG,

our RTL ATPG with Rule E can drastically reduce the test

generation time without sacrifice of fault coverage.

Acknowledgements This work was supported in part by

Japan Society for the Promotion of Science (JSPS) under

Grants-in-Aid for Scientific Research (B) (No. 20300018).

References

[1] H. Fujiwara, Logic Testing and Design for Testability, MIT Press,

1985.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital

Systems Testing and Testable Design, IEEE Press, 1990.

[3] B. T. Murray and J. P. Hayes, “Hierarchical test generation using

precomputed tests for modules,” IEEE Trans. Computer-Aided

Design, vol. 9, pp. 594–603, June 1990.

[4] K. Roy and J. A. Abraham, “High-level test generation using data

flow descriptions,” in Proc. Eur. Conf. Design Automation,

Mar. 1990, pp. 480–484.

[5] J. Lee and J. H. Patel, “An architectural level test generator for a

hierarchical design environment,” in Int. Symp. Fault-Tolerant

Computers, June 1991, pp. 44–51.

[6] C. H. Cho and J. R. Armstron, “B-algorithm: A behavioral test

generation algorithm,” in Proc. Int. Test Conf., Oct. 1994, pp.

968–979.

[7] F. Corno, P. Prinetto, and M. S. Reorda, “Testability analysis and

ATPG on behavioral RT-level VHDL,” in Proc. Int. Test Conf.,

Oct. 1997, pp. 753–759.

[8] S. Bhatia and N. K. Jha, “Integration of hierarchical test

generation with behavioral synthesis of controller and data path

circuits,” IEEE Trans. VLSI Syst., vol. 6, pp. 608–619, Dec.

1998.

[9] S. Chuisano, F. Corno, and P. Prinetto, “RT-level TPG exploiting

highlevel synthesis information,” in Proc. VLSI Test Symp.,

Apr. 1999, pp. 341–346.

[10] I. Ghosh, and M. Fujita, “Automatic test pattern generation for

functional register-transfer level circuits using assignment

decision diagrams,” IEEE Trans. Computer-Aided Design, Vol.

20, No. 3, pp. 402-415, March 2001.

[11] L. Zhang, I. Ghosh, and M. Hsiao, “Efficient sequential ATPG

for functional RTL circuits,” in Proc. International Test

Conference, pp. 290-298, September 2003.

[12] V. Chaiyakul, D. D. Gajski, and L. Ramachandran,

“High-level transformations for minimizing syntactic

variances,” in Proc. Design Automation Conference, pp.

413-418, June 1993.

 Table 1. Circuit Ex.1

Table 2. Circuit Ex.2

 Fig. 14 Circuit Ex.1 Fig. 15 Circuit Ex. 2

Method TEC

 (%)

Fault Coverage

(%)

Test Length

(cycles)

Test Generation

Time (sec)

Fault Simulation

Time (sec)
Total Time

(sec)

RTL ATPG (Rule G) 39.51 77.18 254 0.066 0.18 0.246

RTL ATPG (Rule Z) 39.51 77.18 254 0.066 0.18 0.246

RTL ATPG (Rule M) 83.95 90.09 804 0.119 0.54 0.659

RTL ATPG (Rule E) 96.30 90.14 846 0.174 0.55 0.724

GL ATPG (1sec/fault) --- 82.75 398 --- --- 617.72

GL ATPG (100sec/fault) --- 91.47 597 --- --- 13951.41

Method TEC

 (%)

Fault Coverage

(%)

Test Length

(cycles)

Test Generation

Time (sec)

Fault Simulation

Time (sec)

Total Time

(sec)

RTL ATPG (Rule G) 28.57 53.99 35 0.003 0.01 0.013

RTL ATPG (Rule Z) 28.57 53.99 35 0.003 0.01 0.013

RTL ATPG (Rule M) 28.57 53.99 35 0.003 0.01 0.013

RTL ATPG (Rule E) 90.48 88.80 210 0.008 0.01 0.018

GL ATPG (1sec/fault) --- 88.65 56 --- --- 2.24

GL ATPG (100sec/fault) --- 88.65 56 --- --- 137.66

