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Abstract 
In sequential Automated Test Pattern Generation 
(ATPG) based on a three-valued algebra (0,1,X) a fault 
is said to be hard-detected if a fault effect (0/1 or 1/0) 
appears at a primary output. However, not all the faults 
can be tested by such hard-detection model. Many 
faults belonging to the class of initialization faults are 
known to be covered only by resorting to potential 
detection (effect 0/X or 1/X). Existing high-level fault 
models assume hard-detection and therefore are not 
capable of handling the initialization faults. The goal of 
current paper is to propose high-level identification of 
such potentially testable initialization faults. 
Experiments presented in the paper show that potentially 
detectable initialization faults form a large subset of all 
the faults not testable by hard-detection. As a result of 
the proposed approach, both, the speed as well as the 
confidence level of RTL ATPG can be increased. 
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1. Introduction 
 
While the problem of test pattern generation for 
combinational circuits is considered to be solved there 
still exists no satisfactory solution for sequential ATPG. 
It is by now commonly accepted that deterministic gate-
level algorithms [1, 2] can not cope with the underlying 
complexity of sequential designs. Several high-level [3-
5] and simulation-based [6-9] methods have been 
developed but the achieved fault efficiency is still far 
from 100 per cent.  

A common industry practice is therefore to resort to 
full- or partial-scan design, where scan paths are 
inserted into circuit flip-flops converting a sequential 
design into a pseudo-combinational one. Full-scan 
design is easy to accomplish and it allows application of 
the combinational ATPG resulting in a near-100-

percent fault efficiency. However, the scan path 
approach has a number of drawbacks including 
performance and routing overhead, difficulty to achieve 
at-speed testing, excessive amount of test data, and last 
but not least, yield loss because of over-testing. 

Taking into account the limitations of the scan 
approach there is a need for efficient test generation 
methods targeting sequential circuits. On the other 
hand, as it was mentioned above, existing sequential 
ATPG methods do not reach satisfactory fault coverage. 
Furthermore, the high-level and simulation-based 
solutions are unable to identify untestable areas of the 
circuit. Thus, the achieved fault efficiency is usually 
low and this in turn decreases the test engineer’s 
confidence in the result. This is one of the main reasons 
why sequential ATPG has not met a wide acceptance 
among the industry. 

In sequential Automated Test Pattern Generation 
(ATPG) based on a three-valued algebra (0, 1, X) a 
fault is said to be hard-detected if a fault effect (0/1 or 
1/0) appears at a primary output. However, not all the 
faults can be tested by such hard-detection model. 
Many faults belonging to the class of initialization 
faults are known to be covered only by resorting to 
potential detection (effect 0/X or 1/X). It is obvious that 
any ATPG algorithm first attempts to generate hard-
detection tests. This means wasting test generation time 
also for those faults that may only be detected 
potentially. 

In their previous works, the authors of the paper 
developed a method [10, 11] for untestable fault 
identification starting from Register-Transfer Level 
(RTL) ATPG.  As a result the fault efficiency was 
significantly increased but still remained well below 
100 per cent. Experimental analysis presented in current 
paper points out that an important subclass of faults, the 
potentially detectable initialization faults, form a large 
subset of all the faults not testable by the hard-detection 
model. This is particularly true for control-dominated 
circuits.  
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Existing high-level fault models assume hard-
detection and therefore are not capable of handling the 
initialization faults. This means that the high-level 
algorithms spend test generation time also for those 
faults that may only be detected potentially. Thus, it 
would be desirable that the high-level ATPG would 
have knowledge about the faults that cannot be tested 
by the hard-detection model.  

The goal of current paper is to propose high-level 
identification of potentially testable initialization faults. 
As a result of the proposed approach the confidence 
level of sequential ATPG can be increased. As it will be 
pointed out in this paper, the proposed potentially 
testable fault identification is applicable, both, for 
stuck-at and high-level fault models. 
 The paper is organized as follows. Section 2 
introduces the basic definitions and classification of 
fault types. Section 3 presents the experimental 
analysis which shows the ratio of potentially testable 
initialization faults in sequential designs. This is one of 
the main motivators for current work. In Section 4, a 
high-level method for hard-untestable initialization 
faults is introduced. The Section also discusses the 
relation of such untestability analysis for gate-level 
stuck-at faults. Finally, conclusions and future 
extensions to the method are given. 

 
2. Basic definitions 
  
 Sequential ATPG and fault simulation typically 
relies on the 3-valued logic algebra 0, 1, and X, where 
X is an artificial logic value to represent the unknown 
or don’t-care state.  
Definition 1: A fault f is said to be hard-testable iff for 
this fault a fault effect (0/1 or 1/0) can be propagated to 
a primary output.  
Definition 2: A fault f is only potentially testable iff it 
is not hard-testable and for this fault either 1/X (i.e., 
the fault-free value is 1 and the faulty value is 
unknown X) or 0/X can be propagated to a primary 
output. 
 Let us denote the set of all stuck-at faults by A, the 
set of hard-testable faults by D and the set of 
potentially testable faults by P. Relations between 
these three sets is presented in Fig. 1. The goal of the 
method proposed in current paper is to increase the 
fault efficiency of high-level fault models by 
identifying potentially testable faults from RTL. The 
area of faults identified by current method is depicted 
by the dashed circle in the Figure. 

 
 
 
 
 
 
 
 

Figure 1. Relations between fault classes 

 
3. Experimental analysis of fault classes 
  
 Table 1 presents the experimental analysis of four 
sequential designs. The benchmarks were chosen from 
the HLSynth92 and HLSynth95 families and they were 
synthesized to RT-level from behavioral VHDL 
descriptions using the high-level synthesis tool SYNT 
from Synthesia. Subsequently, the RTL descriptions 
were synthesized to logic-level by Synopsys Design 
Compiler. The circuits were tested by a combination of 
two sequential ATPG tools: a simulation-based ATPG 
SBGEN [12] and a hierarchical ATPG DECIDER [13].  
 
Table 1. Fault distribution in sequential designs 

Circuit GCD SOSQ MULT DIFFEQ 

Total faults 1760 2130 2242 10326 

Hard-detected 1569 1514 1417 9853 

potential-
detect. 16 181 117 14 

uncontr./unobs. 98 275 505 320 

reg. untestable 65 130 130 130 

other 12 30 73 9 
Fault 
efficiency 99.32 98.59 96.74 99.91 

 
 In the Table, the rows have the following meaning. 
Row ‘total faults’ shows the number of stuck-at faults 
in the circuit. Row ‘hard-detected’ gives the number of 
faults that were covered according to the hard-
detection model. Row ‘potential-detect.’ presents the 
number of potentially detected faults covered by the 
sequential ATPG tests. This result was obtained by 
running a sequential stuck-at fault simulator. Row 
‘uncontr./unobs.’ stands for the sum of uncontrollable 
and unobservable faults. These are faults, which are 
caused by constant inputs and unconnected gate 
outputs, respectively. This type of faults is very easy to 
identify and they are reported by most commercial and 
academic fault simulators. Row ‘reg. untestable’ stands 
for a special class of register control faults, which can 
be proved untestable from the RT-level as shown in 
[11]. Row ‘other’ includes all the remaining faults. 
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 We can make the following conclusions based on 
the fault distribution shown in Table 1. First, if we take 
into account the classes of uncontrollable/ 
unobservable, register untestable and potentially 
detected initialization faults then the calculated fault 
efficiency is high, ranging from 96.7 to nearly 100 per 
cent. However, since traditional high-level ATPG is 
not capable of identifying the untestable and the 
initialization faults the achieved confidence level in 
terms of fault efficiency is very low. In [11], the 
authors proposed a method for formally proving 
untestable faults in registers from the high-level. The 
goal of current paper is to extend RTL ATPG by 
potential detection capabilities in order to achieve 
higher fault efficiency. 
 

4. RTL detection of initialization faults 
  

Potentially detectable initialization faults can be 
divided into three main groups: reset faults, control 
part faults and loop-counter faults. High-level 
detection of faults for all these groups will be 
discussed in more detail in this Section. 
 In order to present the RT-level initialization fault 
detection method let us introduce some definitions. 
Definition 3: Registers that are either directly or 
through some combinational logic connected to 
primary outputs are refered to as the output registers of 
the design. 
Definition 4: let the control part state, which is set by 
activating the global reset signal be called reset state 
and the set of control signal assignments at this state be 
called reset state control vector. 
 Also let us assume for the sake of simplicity that 
the global reset signal is active high, i.e. reset=1 
initializes the circuit state. 
 
4.1 Reset faults 
 

First, consider the global reset signal. In order to 
potentially detect the reset stuck-at-1 (s-a-1) fault we 
propose the following condition : 
Condition 1: 

  Reset s-a-1 is potentially testable if the control 
vector at the reset state neither resets nor enables 
any of the output registers. 

We need to check the presence or absence of 
register reset at all of the output registers in order to 
make sure that the global reset s-a-1 fault does not 
belong into the fault class D (See Section 2!). The 
condition also requires that the reset state control 
vector disables all the output registers, i.e. their 
corresponding enable signals are set to the value 0.  

This blocks the possibility to initialize any output 
register by keeping the reset signal active and, thus, 
guarantees potential testtability of reset s-a-1 fault. 
 
 
 

 
 
 
 
 
 
 
 
 
a) 

 
b) 
 

Fig. 2. a) Datapath and b) reset state control vector 
 
Consider the RTL architecture of the Greatest 

Common Divisor (GCD) example shown in Figure 2. 
Fig. 2a presents the datapath, which contains only one 
output register REG_2. The first row in the state table 
in Fig 2.b shows the reset state control vector for the 
circuit. As it can be seen, REG_2 is not a resettable 
register. So, first part of Condition 1 holds. Also the 
second part holds because REG_2 is disabled in the 
reset state (Reg_2_Enable = 0). Thus, the fault Reset  
s-a-1 is potentially testable in the GCD circuit. 
 Now let us introduce the condition for identifying 
the fault Reset s-a-0 potentially testable from the 
RTL.With Reset s-a-0 fault the control state takes a 
don’t-care value X. It means that any control vector is 
valid, except the reset state one. If for each output 
register there exists such control vector, where it is 
disabled then none of these registers can be controlled 
using the 3-valued algebra and the value of output 
registers will also be X.  
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Condition 2: 

  Reset s-a-0 is potentially testable if for all the 
output registers there exists a non-reset-state 
control vector where they are disabled. 

 For example, the third control vector of the FSM 
table in Figure 2b disables the output register REG_2 
at the same time when Reset=0. Since the value of the 
state register is unknown we can conclude that the 
value of REG_2 must also be unknown. Thus, the fault 
Reset s-a-0 is only potentially testable in the GCD 
example. 
 
4.2 Control part faults 
 

Similar to initialization faults at the global reset 
there may also be potentially testable faults in the 
signals of the control part FSM. For example, a stuck-
at fault at a single bit in the state register may prevent 
initialization of the output register, etc. The RTL 
signals, where potentially testable faults have to be 
considered include: 

- control signals (FSM outputs) 
- state register bits 
- status bits (FSM inputs) 
 
Let us consider each of the three cases. 
 

Control signals. Control signals enter from the control 
part into the datapath and are partitioned to register 
enable signals and multiplexer address selects. The 
values for these signals are determined by the current 
control state and primary inputs of the design.  
 At the RT-level, it is possible to potentially detect 
s-a-0 faults at the enable signals of the datapath 
registers by checking the following trivial condition: 

Condition 3: 

  Register enable signal s-a-0 is potentially testable 
if the register is not resettable. 

In other words, enable signal s-a-0 faults at the non-
resettable registers are always (!) potentially testable. 
This is true due to the fact that disabling an output 
register by setting its enable s-a-0 does not allow 
initialization of this register and, thus, constantly holds 
the value X in it. 
 Stuck-at-1 faults at register enable signals  are 
either hard-testable or untestable (See [10, 11]). 
 
State register bits. Stuck-at fault at the bits of the 
control part state register can be identified untestable if 
the coding of the control part FSM is known. In that 
case, a fault at a state register bit converts the fault-free 
FSM into a faulty one. In the case it will introduce 

illegal states (i.e. state values not present in the fault-
free FSM) the fault cannot be detectable at the RTL. 
This is due to the fact that control vectors for illegal 
states are unknown at the RT-level while they have 
determined values at the logic-level. For checking the 
potential testability of a state register bit s-a fault the 
following condition can be applied: 

Condition 4: 

  A state register bit s-a fault is potentially testable 
if its corresponding faulty FSM does neither 
include legal states loading the output registers 
nor any illegal states. 

Consider the example FSM shown in Fig. 3a. Bold 
circle denotes the reset state, during two of the state 

transitions (000→001 and 011→100), its output 
register is loaded (i.e. out_enable=1). Now let us see 
the case when the least significant bit of the state 
register has the fault s-a-1. In that case a faulty FSM 
presented in Fig. 3b will result. This FSM contains 
only such legal states where the output register is not 
loaded (out_enable=0). Thus, the state register bit fault 
is only potentially testable. However, if the second bit 
of the state is s-a-1 (See Fig. 3c) then the faulty FSM 
will include a faulty state „110” and we cannot prove 
potential testability of this fault from the RT-level. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. a) A fault-free FSM, b) faulty FSM containing 
only legal states, c) faulty FSM with an illegal state 
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Status bits. The status bits enter from the datapath into 
the control part FSM. These signals represent the 
results of comparison operations and they control the 
selection of state transitions in the FSM. For example, 
the result of the comparison ‘reg < step’ is a status bit 
for the FSM in Fig. 3a. 
 Similar to state register bit faults, in case of stuck-
at faults at status bits a faulty FSM will result where 
some of the branches will be excluded. Also, some of 
the legal states may become unreachable. However, 
illegal states can not result because of status bits faults. 
With the latter exception the condition for potential 
testability of status bit faults is identical to Condition 
4. 
 
4.3 Loop-counter faults 
 
Loop-counters are blocks in RTL designs whose role is 
to implement fixed-length loops of the algorithm 
realized by the circuit. Output of a loop counter is a 
status bit (output of a comparison operator) signalling 
whether the loop has finished or not.  Thus, 
identification of which loop-counters contain 
potentially testable faults is exactly identical to proving 
the potential testability for status bits.  
  In the experiments shown in Table 1, only the 
SOSQ and MULT benchmarks contain loop counters. 
However, loop-counter faults contribute to vast 
majority of potentially detectable faults found by the 
analysis. The main challenge however is to show from 
the potentially detectable status bits which logic-level 
faults inside the corresponding counters are also 
potentially detectable. The topic of such hierarchical 
fault mapping will be addressed by the future work. 

 
5. Future work 
 
 As a future work we plan to implement the potential 
fault detection method and include the capabilities to 
an RTL test pattern generator. We also consider using 
the method in a hierarchical ATPG setup, where 
potentially detected faults from the high-level are 
mapped to the logic level.  
 

6. Conclusions 
 
 The paper presented a new method for high-level 
identification of potentially testable initialization 
faults. Existing high-level fault models assume hard-
detection and therefore are not capable of handling 
such initialization faults. Furthermore, three important 
classes of initialization faults were identified in the 
paper: reset faults, control part faults and loop-counter 

faults. High-level methods for potential detection of 
faults of the respective classes were proposed. 
 Experiments presented in the paper show that 
potentially detectable initialization faults form a large 
subset of all the faults not testable by hard-detection. 
As a result of the proposed approach, both, the speed 
as well as the confidence level of sequential ATPG in 
terms of higher fault efficiency can be increased. 
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