

RT-Level Identification of Potentially Testable Initialization Faults

Jaan Raik1 Hideo Fujiwara2 Anna Krivenko1

1Department of Computer Engineering,
Tallinn University of Technology,
Raja 15, 12618 Tallinn, Estonia

jaan@pld.ttu.ee

2Graduate School of Information Science,
Nara Institute of Science and Technology,

Kansai Science City, Nara, Japan
fujiwara@is.naist.jp

Abstract
In sequential Automated Test Pattern Generation
(ATPG) based on a three-valued algebra (0,1,X) a fault
is said to be hard-detected if a fault effect (0/1 or 1/0)
appears at a primary output. However, not all the faults
can be tested by such hard-detection model. Many
faults belonging to the class of initialization faults are
known to be covered only by resorting to potential
detection (effect 0/X or 1/X). Existing high-level fault
models assume hard-detection and therefore are not
capable of handling the initialization faults. The goal of
current paper is to propose high-level identification of
such potentially testable initialization faults.
Experiments presented in the paper show that potentially
detectable initialization faults form a large subset of all
the faults not testable by hard-detection. As a result of
the proposed approach, both, the speed as well as the
confidence level of RTL ATPG can be increased.

Keywords:
Register-transfer level, ATPG, potential fault detection.

1. Introduction

While the problem of test pattern generation for
combinational circuits is considered to be solved there
still exists no satisfactory solution for sequential ATPG.
It is by now commonly accepted that deterministic gate-
level algorithms [1, 2] can not cope with the underlying
complexity of sequential designs. Several high-level [3-
5] and simulation-based [6-9] methods have been
developed but the achieved fault efficiency is still far
from 100 per cent.

A common industry practice is therefore to resort to
full- or partial-scan design, where scan paths are
inserted into circuit flip-flops converting a sequential
design into a pseudo-combinational one. Full-scan
design is easy to accomplish and it allows application of
the combinational ATPG resulting in a near-100-

percent fault efficiency. However, the scan path
approach has a number of drawbacks including
performance and routing overhead, difficulty to achieve
at-speed testing, excessive amount of test data, and last
but not least, yield loss because of over-testing.

Taking into account the limitations of the scan
approach there is a need for efficient test generation
methods targeting sequential circuits. On the other
hand, as it was mentioned above, existing sequential
ATPG methods do not reach satisfactory fault coverage.
Furthermore, the high-level and simulation-based
solutions are unable to identify untestable areas of the
circuit. Thus, the achieved fault efficiency is usually
low and this in turn decreases the test engineer’s
confidence in the result. This is one of the main reasons
why sequential ATPG has not met a wide acceptance
among the industry.

In sequential Automated Test Pattern Generation
(ATPG) based on a three-valued algebra (0, 1, X) a
fault is said to be hard-detected if a fault effect (0/1 or
1/0) appears at a primary output. However, not all the
faults can be tested by such hard-detection model.
Many faults belonging to the class of initialization
faults are known to be covered only by resorting to
potential detection (effect 0/X or 1/X). It is obvious that
any ATPG algorithm first attempts to generate hard-
detection tests. This means wasting test generation time
also for those faults that may only be detected
potentially.

In their previous works, the authors of the paper
developed a method [10, 11] for untestable fault
identification starting from Register-Transfer Level
(RTL) ATPG. As a result the fault efficiency was
significantly increased but still remained well below
100 per cent. Experimental analysis presented in current
paper points out that an important subclass of faults, the
potentially detectable initialization faults, form a large
subset of all the faults not testable by the hard-detection
model. This is particularly true for control-dominated
circuits.

9th IEEE Workshop on RTL and High Level Testing (WRTLT'08), pp.57-62, Nov. 2008.

Existing high-level fault models assume hard-
detection and therefore are not capable of handling the
initialization faults. This means that the high-level
algorithms spend test generation time also for those
faults that may only be detected potentially. Thus, it
would be desirable that the high-level ATPG would
have knowledge about the faults that cannot be tested
by the hard-detection model.

The goal of current paper is to propose high-level
identification of potentially testable initialization faults.
As a result of the proposed approach the confidence
level of sequential ATPG can be increased. As it will be
pointed out in this paper, the proposed potentially
testable fault identification is applicable, both, for
stuck-at and high-level fault models.
 The paper is organized as follows. Section 2
introduces the basic definitions and classification of
fault types. Section 3 presents the experimental
analysis which shows the ratio of potentially testable
initialization faults in sequential designs. This is one of
the main motivators for current work. In Section 4, a
high-level method for hard-untestable initialization
faults is introduced. The Section also discusses the
relation of such untestability analysis for gate-level
stuck-at faults. Finally, conclusions and future
extensions to the method are given.

2. Basic definitions

 Sequential ATPG and fault simulation typically
relies on the 3-valued logic algebra 0, 1, and X, where
X is an artificial logic value to represent the unknown
or don’t-care state.
Definition 1: A fault f is said to be hard-testable iff for
this fault a fault effect (0/1 or 1/0) can be propagated to
a primary output.
Definition 2: A fault f is only potentially testable iff it
is not hard-testable and for this fault either 1/X (i.e.,
the fault-free value is 1 and the faulty value is
unknown X) or 0/X can be propagated to a primary
output.
 Let us denote the set of all stuck-at faults by A, the
set of hard-testable faults by D and the set of
potentially testable faults by P. Relations between
these three sets is presented in Fig. 1. The goal of the
method proposed in current paper is to increase the
fault efficiency of high-level fault models by
identifying potentially testable faults from RTL. The
area of faults identified by current method is depicted
by the dashed circle in the Figure.

Figure 1. Relations between fault classes

3. Experimental analysis of fault classes

 Table 1 presents the experimental analysis of four
sequential designs. The benchmarks were chosen from
the HLSynth92 and HLSynth95 families and they were
synthesized to RT-level from behavioral VHDL
descriptions using the high-level synthesis tool SYNT
from Synthesia. Subsequently, the RTL descriptions
were synthesized to logic-level by Synopsys Design
Compiler. The circuits were tested by a combination of
two sequential ATPG tools: a simulation-based ATPG
SBGEN [12] and a hierarchical ATPG DECIDER [13].

Table 1. Fault distribution in sequential designs

Circuit GCD SOSQ MULT DIFFEQ

Total faults 1760 2130 2242 10326

Hard-detected 1569 1514 1417 9853

potential-
detect. 16 181 117 14

uncontr./unobs. 98 275 505 320

reg. untestable 65 130 130 130

other 12 30 73 9
Fault
efficiency 99.32 98.59 96.74 99.91

 In the Table, the rows have the following meaning.
Row ‘total faults’ shows the number of stuck-at faults
in the circuit. Row ‘hard-detected’ gives the number of
faults that were covered according to the hard-
detection model. Row ‘potential-detect.’ presents the
number of potentially detected faults covered by the
sequential ATPG tests. This result was obtained by
running a sequential stuck-at fault simulator. Row
‘uncontr./unobs.’ stands for the sum of uncontrollable
and unobservable faults. These are faults, which are
caused by constant inputs and unconnected gate
outputs, respectively. This type of faults is very easy to
identify and they are reported by most commercial and
academic fault simulators. Row ‘reg. untestable’ stands
for a special class of register control faults, which can
be proved untestable from the RT-level as shown in
[11]. Row ‘other’ includes all the remaining faults.

D

A

P

 We can make the following conclusions based on
the fault distribution shown in Table 1. First, if we take
into account the classes of uncontrollable/
unobservable, register untestable and potentially
detected initialization faults then the calculated fault
efficiency is high, ranging from 96.7 to nearly 100 per
cent. However, since traditional high-level ATPG is
not capable of identifying the untestable and the
initialization faults the achieved confidence level in
terms of fault efficiency is very low. In [11], the
authors proposed a method for formally proving
untestable faults in registers from the high-level. The
goal of current paper is to extend RTL ATPG by
potential detection capabilities in order to achieve
higher fault efficiency.

4. RTL detection of initialization faults

Potentially detectable initialization faults can be
divided into three main groups: reset faults, control
part faults and loop-counter faults. High-level
detection of faults for all these groups will be
discussed in more detail in this Section.
 In order to present the RT-level initialization fault
detection method let us introduce some definitions.
Definition 3: Registers that are either directly or
through some combinational logic connected to
primary outputs are refered to as the output registers of
the design.
Definition 4: let the control part state, which is set by
activating the global reset signal be called reset state
and the set of control signal assignments at this state be
called reset state control vector.
 Also let us assume for the sake of simplicity that
the global reset signal is active high, i.e. reset=1
initializes the circuit state.

4.1 Reset faults

First, consider the global reset signal. In order to
potentially detect the reset stuck-at-1 (s-a-1) fault we
propose the following condition :
Condition 1:

 Reset s-a-1 is potentially testable if the control
vector at the reset state neither resets nor enables
any of the output registers.

We need to check the presence or absence of
register reset at all of the output registers in order to
make sure that the global reset s-a-1 fault does not
belong into the fault class D (See Section 2!). The
condition also requires that the reset state control
vector disables all the output registers, i.e. their
corresponding enable signals are set to the value 0.

This blocks the possibility to initialize any output
register by keeping the reset signal active and, thus,
guarantees potential testtability of reset s-a-1 fault.

a)

b)

Fig. 2. a) Datapath and b) reset state control vector

Consider the RTL architecture of the Greatest

Common Divisor (GCD) example shown in Figure 2.
Fig. 2a presents the datapath, which contains only one
output register REG_2. The first row in the state table
in Fig 2.b shows the reset state control vector for the
circuit. As it can be seen, REG_2 is not a resettable
register. So, first part of Condition 1 holds. Also the
second part holds because REG_2 is disabled in the
reset state (Reg_2_Enable = 0). Thus, the fault Reset
s-a-1 is potentially testable in the GCD circuit.
 Now let us introduce the condition for identifying
the fault Reset s-a-0 potentially testable from the
RTL.With Reset s-a-0 fault the control state takes a
don’t-care value X. It means that any control vector is
valid, except the reset state one. If for each output
register there exists such control vector, where it is
disabled then none of these registers can be controlled
using the 3-valued algebra and the value of output
registers will also be X.

R
E

S
E

T

E
Q

_
1

_
O

U
T

P
U

T

L
T

_
1

_
O

U
T

P
U

T

P
re

se
n

t
S

ta
te

N
ex

t
S

ta
te

M
u

x
_

1
2

_
A

d
d
re

s
s

M
u

x
_

3
4

_
A

d
d
re

s
s

R
eg

_
1

_
E

n
ab

le

R
eg

_
2

_
E

n
ab

le

R
eg

_
3

_
E

n
ab

le

1 x x X S0 x x 0 0 0
0 x x S0 S1 x 0 1 1 0
0 0 x S1 S2 x x 0 0 0
...

To control
part

IN_X

IN_Y

SUBTR_1

MUX2_4

MUX2_1

MUX2_2

REG_1

REG_2

MUX2_3

REG_3

EQ_1

U_LT_1 LT_1_OUT

EQ_1_OUT

RESULT

1

1

Condition 2:

 Reset s-a-0 is potentially testable if for all the
output registers there exists a non-reset-state
control vector where they are disabled.

 For example, the third control vector of the FSM
table in Figure 2b disables the output register REG_2
at the same time when Reset=0. Since the value of the
state register is unknown we can conclude that the
value of REG_2 must also be unknown. Thus, the fault
Reset s-a-0 is only potentially testable in the GCD
example.

4.2 Control part faults

Similar to initialization faults at the global reset
there may also be potentially testable faults in the
signals of the control part FSM. For example, a stuck-
at fault at a single bit in the state register may prevent
initialization of the output register, etc. The RTL
signals, where potentially testable faults have to be
considered include:

- control signals (FSM outputs)
- state register bits
- status bits (FSM inputs)

Let us consider each of the three cases.

Control signals. Control signals enter from the control
part into the datapath and are partitioned to register
enable signals and multiplexer address selects. The
values for these signals are determined by the current
control state and primary inputs of the design.
 At the RT-level, it is possible to potentially detect
s-a-0 faults at the enable signals of the datapath
registers by checking the following trivial condition:

Condition 3:

 Register enable signal s-a-0 is potentially testable
if the register is not resettable.

In other words, enable signal s-a-0 faults at the non-
resettable registers are always (!) potentially testable.
This is true due to the fact that disabling an output
register by setting its enable s-a-0 does not allow
initialization of this register and, thus, constantly holds
the value X in it.
 Stuck-at-1 faults at register enable signals are
either hard-testable or untestable (See [10, 11]).

State register bits. Stuck-at fault at the bits of the
control part state register can be identified untestable if
the coding of the control part FSM is known. In that
case, a fault at a state register bit converts the fault-free
FSM into a faulty one. In the case it will introduce

illegal states (i.e. state values not present in the fault-
free FSM) the fault cannot be detectable at the RTL.
This is due to the fact that control vectors for illegal
states are unknown at the RT-level while they have
determined values at the logic-level. For checking the
potential testability of a state register bit s-a fault the
following condition can be applied:

Condition 4:

 A state register bit s-a fault is potentially testable
if its corresponding faulty FSM does neither
include legal states loading the output registers
nor any illegal states.

Consider the example FSM shown in Fig. 3a. Bold
circle denotes the reset state, during two of the state

transitions (000→001 and 011→100), its output
register is loaded (i.e. out_enable=1). Now let us see
the case when the least significant bit of the state
register has the fault s-a-1. In that case a faulty FSM
presented in Fig. 3b will result. This FSM contains
only such legal states where the output register is not
loaded (out_enable=0). Thus, the state register bit fault
is only potentially testable. However, if the second bit
of the state is s-a-1 (See Fig. 3c) then the faulty FSM
will include a faulty state „110” and we cannot prove
potential testability of this fault from the RT-level.

Fig. 3. a) A fault-free FSM, b) faulty FSM containing
only legal states, c) faulty FSM with an illegal state

010

011 100

101

000

001

- /
out_enable=1

011 101

001

a)

b)

c)

011 110 010 X

reg < step /
 -

reg ≥ step /
 -

- /
out_enable=1

Status bits. The status bits enter from the datapath into
the control part FSM. These signals represent the
results of comparison operations and they control the
selection of state transitions in the FSM. For example,
the result of the comparison ‘reg < step’ is a status bit
for the FSM in Fig. 3a.
 Similar to state register bit faults, in case of stuck-
at faults at status bits a faulty FSM will result where
some of the branches will be excluded. Also, some of
the legal states may become unreachable. However,
illegal states can not result because of status bits faults.
With the latter exception the condition for potential
testability of status bit faults is identical to Condition
4.

4.3 Loop-counter faults

Loop-counters are blocks in RTL designs whose role is
to implement fixed-length loops of the algorithm
realized by the circuit. Output of a loop counter is a
status bit (output of a comparison operator) signalling
whether the loop has finished or not. Thus,
identification of which loop-counters contain
potentially testable faults is exactly identical to proving
the potential testability for status bits.
 In the experiments shown in Table 1, only the
SOSQ and MULT benchmarks contain loop counters.
However, loop-counter faults contribute to vast
majority of potentially detectable faults found by the
analysis. The main challenge however is to show from
the potentially detectable status bits which logic-level
faults inside the corresponding counters are also
potentially detectable. The topic of such hierarchical
fault mapping will be addressed by the future work.

5. Future work

 As a future work we plan to implement the potential
fault detection method and include the capabilities to
an RTL test pattern generator. We also consider using
the method in a hierarchical ATPG setup, where
potentially detected faults from the high-level are
mapped to the logic level.

6. Conclusions

 The paper presented a new method for high-level
identification of potentially testable initialization
faults. Existing high-level fault models assume hard-
detection and therefore are not capable of handling
such initialization faults. Furthermore, three important
classes of initialization faults were identified in the
paper: reset faults, control part faults and loop-counter

faults. High-level methods for potential detection of
faults of the respective classes were proposed.
 Experiments presented in the paper show that
potentially detectable initialization faults form a large
subset of all the faults not testable by hard-detection.
As a result of the proposed approach, both, the speed
as well as the confidence level of sequential ATPG in
terms of higher fault efficiency can be increased.

Acknowledgements
The research has been supported partly by EC FP 6
research project VERTIGO, Enterprise Estonia funded
ELIKO Development Center, Estonian SF grant 7068,
Estonian Center of Excellence program, EC REGPOT
program and by Japan Society for the Promotion of
Science (JSPS) under Grants-in-Aid for Scientific
Research (B) (No. 20300018).

References

[1] H.-K.T Ma, S. Devadas, A.R. Newton, A. Sangiovanni-
Vincentelli, “Test generation for sequential circuits”, IEEE
Trans. on CAD, Vol. 7, No. 10 pp. 1081-1093, Oct. 1988.

[2] T. M. Niermann, J. H. Patel, "HITEC: A test generation
package for sequential circuits", Proc. European Conf.
Design Automation (EDAC), pp.214-218, 1991.

[3] D. Brahme, J. A. Abraham, "Functional Testing of Micro-
processors", IEEE Trans. Comput., vol. C-33, 1984.

[4] A. Gupta, J. R. Armstrong, "Functional fault modeling", 30th
ACM/IEEE DAC, pp. 720-726, 1985.

[5] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Generation
for Behavioral VHDL Models,” Int. Test Conf., pp. 587-596,
1998.

[6] E. M. Rudnick, et al. "Sequential circuit test generation in a
genetic algorithm framework", Proc. DAC, 1994.

[7] F. Corno, P. Prinetto, et al., "GATTO: A genetic algorithm
for automatic test pattern generation for large synchronous
sequential circuits", IEEE Trans. CAD, Aug. 1996.

[8] M. S. Hiao, E. M. Rudnick, J. H. Patel, "Sequential circuit
test generation using dynamic state traversal", Proc.
European Design and Test Conf., pp. 22-28, 1997.

[9] A. Giani, et al., “Efficient Spectral Techniques for Sequential
ATPG,” Proc. IEEE DATE Conf., March 2001, pp. 204-208.

[10] J. Raik, A. Krivenko, R. Ubar, M. Kruus. Hierarchical
Identification of Untestable Faults in Sequential Circuits.
IEEE Euromicro DSD, 2007.

[11] Jaan Raik Hideo Fujiwara Raimund Ubar Anna
Krivenko, "Untestable Fault Identification in Sequential
Circuits Using Model-Checking", IEEE 17th Asian Test
Symposium, 2008.

[12] Turbo Tester test tools, URL: http://www.pld.ttu.ee/tt/

[13] J. Raik, R. Ubar, T. Viilukas, M. Jenihhin. Mixed
Hierarchical-Functional Fault Models for Targeting
Sequential Cores. J. of Systems Architecture, Elsevier,
2008.

