
Fast False Path Identification Based on Functional Unsensitizability
Using RTL Information ∗

Yuki Yoshikawa1, Satoshi Ohtake2, Tomoo Inoue1 and Hideo Fujiwara2

1Graduate School of Information Science, Hiroshima City University
3-4-1 Ozuka-higashi, Asaminami, Hiroshima 731-3194, Japan

2Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City 630-0192, Japan

E-mail:1{yosikawa, tomoo}@hiroshima-cu.ac.jp, 2{ohtake, fujiwara}@is.naist.jp

Abstract

In this paper, we propose a method for identifying false
paths based on functional unsensitizability of path delay
faults. By using RTL structural information, a number of
gate level paths are bound into an RTL path and the bun-
dle of them can be identified in a reasonable amount of time.
The identified false paths are useful for over-testing reduc-
tion caused by DFT techniques, such as scan design, and
also area and performance optimization of circuits during
logic synthesis. Experimental results show that our proposed
method can identify false paths in a few seconds for several
benchmarks.

1. Introduction

In recent years, digital systems are widely used, and thus
high performance LSIs are strongly required. Delay test-
ing is significantly important to ensure that a given circuit
behaves correctly at a desired system clock. In addition,
accurate delay estimation of a circuit is also important for
decision of the circuit performance. In general, it is said
that there are a number of false paths in a circuit[1]. False
paths induce some severe problems such as over-testing of
delay faults and inaccurate estimation of a system clock pe-
riod. False path identification contributes to the alleviation
of those problems. In this paper, we propose a method of
identifying false paths using register transfer level (RTL) in-
formation while most of the previous methods were done at
gate level.

Several methods of untestable path identification have
been proposed in the last decade. As gate-level approaches,
the techniques presented in [1, 2, 3] identify untestable paths
for combinational circuits. The works for sequential cir-
cuits [4, 5] are equally important. Works in [6, 7] proposed
methods to identify multi-cycle paths at gate-level. How-
ever, gate-level approaches would consume long CPU time
for dealing with the large number of gate-level paths. As

∗This work was supported in part by Semiconductor Technology Aca-
demic Research Center under Research Project.

an approach from higher level of abstraction, the work in
[8] proposed a method for eliminating false paths at RTL
and contributed to prevention of inaccurate delay estimation.
Note that the work does not list the identified false paths at
gate-level and does not deal with shorter false paths than the
critical path.

In the work [9], a method for identifying non-robust
untestable (NRU) paths focusing on data transfer of a cir-
cuit have been proposed. In the work, paths are dealt with
at RTL, called RTL paths [10]. An RTL path is a bundle
of gate-level paths between two registers. The total num-
ber of RTL paths in a circuit is much smaller than that of
its gate-level paths, and therefore the identification for even
an industrial circuit can be done in a reasonable amount of
time. However, the identified NRU paths are useful for over-
testing reduction under single fault assumption only. This is
because the delay on an NRU path does not affect the circuit
performance unless the NRU path is affected by a delay on
another path. Note that an NRU path still includes a func-
tionally sensitizable path. Thus, if we relax the single fault
assumption, that is, if we consider more realistic environ-
ment, due to over-testing reduction, eliminating path delay
faults (PDFs) on the identified NRU paths from the target of
testing will miss defects that cause multiple PDFs.

In this paper, we will show a sufficient condition for iden-
tifying functionally unsensitizable (FU) paths focusing on
RTL structure and data transfer information. Since an RTL
path in an RTL circuit corresponds to a bundle of gate-level
paths in its synthesized circuit, we can identify bundles of
FU paths, which are false paths, by means of the sufficient
condition. The identified false paths support accurate over-
testing reduction (high quality delay testing) compared to
NRU paths identified by the method in [9]. Furthermore,
as an advantage of false path identification at RTL, the RTL
paths that are identified as false can be used for area and per-
formance optimization during logic synthesis.

2. Overview

Our path identification method is applied to structural
RTL designs. If a target RTL circuit is described as a func-

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

660

14th Asia and South Pacific Design Automation Conference (ASP-DAC 2009), pp.660-665, Jan. 2009.

0 10 1

R1

R3

s0

s1s2

s0

s1s2 add

R2 R4
CR1

CM1

PI1 PI2

M1

Controller

Status signals
Control signals

CR3

M2

PI3

cmp

R5
CR5

PO1 PO2

M3

p1 P2

Figure 1. Structural RTL circuit.

tional RTL, we can extract the structural information dur-
ing synthesis process. For example, Explorations tool[11],
which is a high-level synthesis tool, can generate a struc-
tural RTL from its original functional RTL. An example of
a structural RTL circuit is shown in Figure 1. A structural
RTL design consists of a controller represented by a finite
state machine, a datapath represented by RTL modules such
as MUXs, operational modules and registers, and RTL sig-
nal lines between them. For convenience, fan-out branches
on RTL signal lines are treated as RTL modules. The con-
troller provides control inputs to the RTL modules. On the
other hand, the status signals from the datapath are fed to the
controller to determine state transitions.

Here let us consider the difference between FU path
and NRU path identification at RTL using Figure 1 and
2. Figure 2 shows the state transition table of the con-
troller in Figure 1. Let p1=⟨R1,MUX ,ADD,R3⟩ and
p2=⟨R1,MUX ,ADD,CMP,R5⟩ be target RTL paths. Our
path identification takes interest in control signals at every
state transition. For p1, CR1 at S0 is load, CM1 at S1 is zero
(CM1 is selecting p1) and CR3 at S1 is load. This means
that there exists a state transition where a transition at R1
is launched at the first state and is propagated along p1 at the
next state and finally captured into R3. Therefore we do not
identify p1 as neither FU nor NRU paths at RTL.

On the other hand, p2 is identified as NRU because, for
the state transition S0 → S1, CR5 at S1 is Hold (not captured),
for S1 → S2, CM1 at S2 does not select p2 (not propagated)
and for S2 → S0, CR1 at S2 is Hold (not launched). This im-
plies that, for all the state transitions, there is no case where
the event at R1 is launched, propagated along p2 and cap-
tured into R5 under single fault assumption (delay exists on
the target path p2 only). It should be noted that p2 is not FU
because CR1, CM1 and CR5 can also have delay under multiple
fault assumption, and accordingly the delay on p2 is observ-
able due to the outside delays if any. Therefore p2 is not FU
and it should not be excluded from the target of testing. If
the delay on p2 is not observable regardless of the outside
delays, p2 is FU, that is false.

Since we identify false paths at RTL, it is necessary to
clarify the correspondence between RTL paths and gate-level
paths. In this paper, to achieve the clarification, we con-

PS: Present state, NS: Next state,
R : Reset, Load enable ‘1’ is Load, ‘0’ is Hold

0011S0S0S2

1100S0S2S1

1110S0S1S0

(CR1, CR3 , CR5 , CM1)R=1R=0

Output vectorNSPS

0011S0S0S2

1100S0S2S1

1110S0S1S0

(CR1, CR3 , CR5 , CM1)R=1R=0

Output vectorNSPS

Figure 2. State transition table.

sider a module interface preserving-logic synthesis (MIP-
LS). Given an RTL circuit, an MIP-LS transforms each RTL
module and each RTL signal line into its own gate-level
netlist and single-bit signal lines, respectively. During an
MIP-LS for an RTL circuit, optimization is performed within
each module, and each RTL signal line connecting RTL
modules is just split to single-bit signal lines. Therefore,
the connectivity of all the RTL modules in the RTL circuit
is guaranteed to be propagated to a synthesized gate-level
circuit through any MIP-LS. For example, a logic synthesis
tool DesignCompiler (Synopsys) is able to run MIP-LS with
default setting unless the flatten option is set. In the near fu-
ture, MIP-LS like logic synthesis may be useful if several test
approaches come to be applied at higher-level of design ab-
straction. If we suppose a logic synthesis without preserving
boundary of each RTL module, it may be hard to completely
establish the correspondence although circuit area and per-
formance can be optimized. The work for any logic synthe-
sis with no constraints is our future work.

Experimental results show that our proposed method can
identify false paths in a few seconds for several benchmark
circuits.

3. RTL-FU path identification

3.1. Gate level FU path

A path p in a combinational circuit is an ordered set of
gates (g0,gi, ...,gn) where gi (1 ≤ i ≤ n− 1) is a gate, and
g0 and gn are a primary input and a primary output, re-
spectively. The output of gi connects with an input of gi+1
(0 ≤ i ≤ n− 1). The testability of a path is classified into
four types: robustly testable, non-robustly testable, function-
ally sensitizable and functionally unsensitizable[12]. This
classification is based on the possibility of transition made
at on-inputs and off-inputs on the path under consideration
by input vector pairs. For an input of a gate gi in path p,
if the input is included as a connection (gi−1,gi) composing
the path p, the input is said to be an on-input , otherwise the
input is said to be an off-input. By the formal definition of
path delay faults (PDFs), a path is functionally unsensitiz-
able (FU) if it is none of robust testable, non-robust testable
and functionally sensitizable paths. Intuitively, a path is FU
if any transition occurring at the primary input of the path
does not affect the end of the path or the primary output even
though any unexpected delays occur at the off-inputs.

In this paper, we consider path delay faults in sequential

661

7C-1

circuits, especially single-cycle delays, i.e., even if a logic
circuit has an extra delay, the delay is at most one cycle over
and less than two cycles. Note that, in case of sequential cir-
cuits, the start and end points can be flip-flops (FFs). There-
fore, transition on a path from cycle t to t +1 in a sequential
circuit depends not only on the change of the content in the
start FF, but also on a load-enable signal applied at the previ-
ous cycle t −1 from the controller. Thus, in order to identify
FU paths in sequential circuits, it is important to consider the
control signals for FFs as well as the condition on off-inputs.

3.2. RTL-FU path

In this section, by developing the concept of gate-level
FU paths, here we discuss the functionally unsensitizabil-
ity of RTL paths. An RTL path is an ordered set of RTL
modules ⟨Rs,M1,M2, ..,Mn,Re⟩, where Rs is a register or a
primary input, Re is a register or a primary output. Also
Mi(1 ≤ i ≤ n) is a combinational RTL module and the output
of Mi connects with an input of Mi+1. We define an RTL-FU
path as follows.
Definition 1 (RTL-FU path) An RTL path p in an RTL cir-
cuit is RTL-FU if all gate-level paths corresponding to p in
its gate-level circuit are gate-level FU for any logic synthesis.
✷

An RTL path p is RTL-FU if p satisfies at least one of the
following four properties at any consecutive two cycles t and
t +1.

1. No transition is launched at the output of the start reg-
ister Rs in cycle t irrespective of the delay of the load-
enable signal applied to Rs and/or input data delivered
to Rs in the cycle t.

2. Even if a transition is launched at Rs, it never reaches
the end register Re along p in cycle t +1 irrespective of
the delay of the off-inputs, which include control sig-
nals applied to the RTL modules Mi, on p.

3. The reached value is never captured into Re in cycle
t + 1 irrespective of the delay of the load-enable signal
applied to Re.

4. The captured value of Re at cycle t + 1 never affects
any PO at the latter cycles irrespective of the delay of
the off-inputs of RTL modules on all the propagation
paths from Re to any PO.

3.3. Control-dependent FU path

In this section, we show a sufficient condition of RTL-
FU path focusing on the load-enable signals of registers and
the select signals of MUXs. An RTL-FU path identified by
the sufficient condition is said to be a control-dependent FU
(CFU) path. We distinguish RTL paths starting at the SR
from other RTL paths. By considering state assignment, we
can know the time when transitions are launched for each
bit of the SR and the directions of the transitions. Therefore
we take the information about the state assignment and the
directions of the transitions into account when identifying

RTL-FU paths starting at the SR. A register in a datapath is
referred to as a datapath register (DR).

3.3.1. RTL path starting at DR/PI

In the following discussion, we focus on start and end
registers and MUXs on RTL paths. Thus, an RTL path p
is expressed as a sequence of registers Rs, Re and MUXs
Mi(1 ≤ i ≤ n), where n is the number of MUXs on p, i.e.,
p=⟨Rs,M1,M2, ..,Mn,Re⟩. Let Ct

R be load-enable signals of
R in cycle t. If the load-enable signal of a register is ’1’, the
register loads a value, otherwise it holds its value. Note that
if a register has no hold function or the starting point of a
path p is a PI or the ending point of p is a PO, we assume
that the PI and PO are registers with no hold function, and
each of the registers has a load-enable signal and it is always
’1’. Let Ct

Mi
be the select signal of Mi in cycle t. When Mi

selects the input side on p, the value of the select signal is
denoted as pMi . For example, suppose that p is the RTL path
⟨R1,M1,ADD,R3⟩ in Figure 1. When M1 selects p at cycle
t, Ct

M1
=pM1=0.

We first consider functional uncontrollability and func-
tional unobservability of registers. If a register is function-
ally uncontrollable at cycle t, the captured value at cycle t is
the same as that at cycle t − 1 although the register loads a
value at cycle t. Thus, the register has no transition at cycle t.
If a register is functionally unobservable at cycle t, the cap-
tured value at cycle t is not propagated to any primary output
at any cycle.
Definition 2 (Functional uncontrollability of register)
Suppose a register R, and let P be a set of RTL paths whose
end register is R. Register R is functionally uncontrollable at
cycle t if for any RTL path p ∈ P,

• for each MUX Mi on p, Ct
Mi

= Ct−1
Mi

= Ct−2
Mi

(1 ≤ i ≤ n),
where n is the number of MUXs on p, and

• if for each Mi on p, Ct
Mi

= pMi(1 ≤ i ≤ n), then the
start register Rs of p satisfies Ct−1

Rs
= Ct−2

Rs
= 0, or Rs is

functionally uncontrollable at cycle t −1. ✷

Definition 3 (Functional unobservability of register)
Suppose a register R, and let P be a set of RTL paths whose
start register is R. Register R is functionally unobservable at
cycle t if both of the following two conditions are satisfied.

• For any RTL path p ∈ P,
– for each Mi on p, there exists Mi such that Ct

Mi
̸=

pMi ∧Ct+1
Mi

̸= pMi , or
– for the end register Re of p, Ct

Re = Ct+1
Re = 0 or Re

is functionally unobservable at cycle t +1.
• If for the register R, Ct+1

R = 0, then R is also functionally
unobservable at cycle t +1.

Theorem 1 An RTL path p is RTL-FU if at least one of the
following three conditions is satisfied for any state transition
from cycle t to t +1.
Condition 1: (1) For the start register Rs, Ct−1

Rs = Ct
Rs = 0 or

(2) Rs is functionally uncontrollable at cycle t.
Condition 2: For each Mi on p, there exists Mi such that

7C-1

662

0 1

+RTL path p

(H, H, *)

(*, *, *)

(*, *, *)

0 1

+

(*, L, *)

(*, 1, 1)

(*, *, *)

0 1

Re

+

(*, L, *)

(*, *, 0)

(*, H, H)

Condition 1 (1)

RsRsRs

ReRe

Condition 2 Condition 3 (1)

(*, *, *): Each control signal at time t-1, t, t+1
H: Hold, L: Load, *: H or L or 0 or 1

Figure 3. Examples of Conditions 1(1), 2, and
3(1) in Theorem 1 at some cycle t and t +1.

Ct
Mi

̸= pMi ∧Ct+1
Mi

̸= pMi .
Condition 3: (1) For the end register Re, Ct

Re = Ct+1
Re = 0 or

(2) Re is functionally unobservable at cycle t +1. ✷

The sketch of the proof of Theorem 1 is as follows. Suppose
a state transition of a controller. If Condition 1 in Theorem
1 is satisfied for the state transition, no transition is launched
at any FF that corresponds to Rs even if the load-enable sig-
nal line has delay. If Condition 2 in Theorem 1 is satisfied
for the state transition, propagation of any transition on any
gate-level path corresponding to p is prevented even if the
select signal of a MUX has delay. If Condition 3 in The-
orem 1 is satisfied for the state transition, no transition is
captured at any FF that corresponds to Re even if the load-
enable signal line has delay, or the captured value at the FF is
never observed at any PO. For any state transition, if at least
one of the three conditions in Theorem 1 is satisfied, all the
gate-level paths corresponding to p are FU. Therefore, p is
RTL-FU if Theorem 1 is satisfied.

Conditions 1(1), 2 and 3(1) in Theorem 1 show the con-
ditions of control signals for three cycle t − 1, t and t + 1.
Examples of them are shown in Figure 3. The three-tuple of
each parenthesis in Figure 3 shows control signal values of
each register or MUX at cycle t − 1, t and t + 1. For Con-
dition 1(1), Rs holds a value at cycle t − 1 and t. Thus, no
transition is launched at Rs at cycle t even if the load-enable
signal line has delay. For Condition 2, the MUX on p does
not select p at cycle t and t + 1. Thus, no transition at the
starting point of p is propagated to the ending point along p
at cycle t + 1 even if the control signal line has delay. For
Condition 3(1), Re holds a value at cycle t and t + 1. Thus,
no transition at Rs is ever captured into Re at cycle t +1 even
if the load-enable signal line has delay.

Conditions 1(2) and 3(2) are the conditions for the up-
stream and downstream of the path, respectively. Condition
1(2), concerning the uncontrollability, is that the captured
value of Rs at cycle t is the same as the previous value of Rs
even if the load-enable signal of Rs is ‘load’ at cycle t; that
is, there is no transition at Rs. Condition 3(2), concerning the
unobservability, is that the captured value of Re at cycle t +1
is not propagated to any PO even if the load-enable signal of
Re is ‘load’ at cycle t + 1. We show examples of these con-
ditions in Figures 4 and 5, which are time expansion models
of an RTL circuit.

Figure 4. Example of Condition 1(2).

Figure 5. Example of Condition 3(2).

In Figure 4, the target RTL path p is Reg2-Sub-Reg3.
Reg2 loads a new value ’A+B’ at cycle t. However, the value
is the same as the previous value that Reg2 loaded at cy-
cle t − 1 because the select signal of the MUX is the same
at cycle t, t − 1 and t − 2. Moreover, Reg1 and Reg4 hold
their values at cycle t −1 and t −2. This is one of the cases
where Condition 1(2) is satisfied. If a control signal of a
source register at cycle t − 1 is ‘load’, we will recursively
check whether the value captured into the source register is
the same as the previous one.

In Figure 5, the target RTL path p is Reg2-MUX-Add-
Reg3. The transition launched at Reg2 is captured to Reg3 at
cycle t + 1. However, the value cannot propagate to any PO
because Reg1 holds a value at cycle t +1 and t +2. If Reg1
captures the value, we will recursively check the next time
frame at cycle t + 3. For the other path from Reg3 to PO1,
since the MUX on the RTL path does not select the path at
t + 1 and t + 2, propagation of the value is prevented by the
MUX.

3.3.2. RTL paths starting at SR-ff

For RTL paths from flip-flops in the SR (SR-ff), Theorem
1 can also be applied. The SR in a controller uploads a new

663

7C-1

value every clock cycle. It means that CRs always becomes
1 (load). Therefore RTL paths from the SR-ff to DRs do
not satisfy Condition 1 (1) in Theorem 1. Here we consider
transitions from each SR-ff. The relation between states and
values of the flip-flops is determined by state assignments.
We can obtain the information on state assignments during
logic synthesis or designers can also determine state assign-
ments before logic synthesis. From the information on state
assignments and state transition, we can know the time when
a transition is launched at each flip-flop. For example, let us
consider state assignments to the controller in Figure 1. We
assume that the SR in the controller consists of two flip-flops
(FF0,FF1), and (0,0), (0,1) and (1,1) are assigned to S0,
S1 and S2, respectively. When S0 transfers to S1, FF1 has a
rising transition.

An RTL path is FU with respect to a rising (resp. falling)
transition if at least one of the three conditions in Theorem
1 is satisfied for all the time t when a rising (resp. falling)
transition is launched at the SR-ff of the starting point of the
RTL path. Moreover, if an RTL path is FU w.r.t. both rising
and falling transitions, the RTL path is FU.

4. Experimental results

In this section, we evaluate the effectiveness of identify-
ing control-dependent FU (CFU) paths for some RTL bench-
mark circuits. The circuit characteristics are shown in Ta-
ble 1. Tseng[13], Paulin[14] and 4th Jaumann Wave Filter
(JWF)[15] are widely used RTL benchmark circuits. MPEG
and RISC processor 1 are provided by industry. The first six
columns show circuit name, the numbers of PIs, POs, reg-
isters and states of the controller, and the total area of the
circuit, respectively. Logic synthesis is performed by De-
signCompiler (Synopsys) with TSMC 0.18µm compatible li-
brary provided by Oklahoma State University[16]. The last
two columns show the number of RTL paths. Column DR
shows the numbers of RTL paths that starts at a datapath reg-
ister or a PI and Column SR shows the number of RTL paths
that starts at an FF in the state register.

Table 2 shows the number of RTL paths identified as CFU
by our proposed method. The second column under DR
shows the number of RTL paths starting at DRs. The third
column shows the number of RTL paths identified as CFU
among the RTL paths in the second column. For JWF, 69
of 153 RTL paths were identified as CFU. For RISC, 707 of
10,181 RTL paths were identified as CFU. On the other hand,
MPEG has many registers with no hold function. Thus, most
starting registers launch transitions and most ending registers
capture propagated transitions in every clock cycle. There-
fore there was no RTL path identified as CFU. We suppose
MPEG has few false paths.

For each of all the benchmark circuits except for RISC,

1These circuits were provided for the Joint Research (1997-2001) with
Semiconductor Technology Academic Research Center (STARC).

Table 1. Circuit characteristics of benchmarks.
Area # RTL paths

Circuit #PIs # POs # REGs # States (INV=2) DR SR-ff
Tseng 4 3 7 5 2,975 20 42
Paulin 3 2 8 6 3,391 29 67
JWF 6 5 15 8 4,758 153 408

MPEG 7 16 241 163 77,554 651 2,152
RISC 1 3 39 10 81,086 10,181 38,122

the CPU time required for identifying CFU paths is less
than 1 second. Even for RISC that has the huge number of
paths, the CPU time is less than 10 seconds. The third col-
umn shows the number of RTL paths identified as control-
dependent non-robust untestable (CNRU)[9]. All the gate-
level paths corresponding to the CNRU paths are non-robust
untestable. The work[9] proposed a method for identifying
CNRU paths at RTL and we applied the method to this exper-
iment. The number of identified CFU paths is less than that
of identified CNRU paths because the class of CFU paths is
properly included in the class of CNRU paths. The next three
columns and the last three columns show results for RTL
paths starting at SR-ffs with rising transitions and starting at
SR-ffs with falling transitions, respectively. For each circuit
except for MPEG, a number of RTL paths were identified as
CFU. Especially, for JWF and RISC, many RTL paths were
identified as CFU.

Table 3 shows the number of gate-level paths cor-
responding to the identified CFU paths and CNRU paths
at RTL, respectively. We extracted gate-level paths using
PrimeTime (Synopsys). For Tseng, Paulin, JWF and MPEG,
we extracted all the gate-level paths in each circuit. For
RISC, we extract gate-level paths under the constraint where
PrimeTime can deal with up to two million paths between
two FFs specified by a user. The suffix B means billion.
The second, fifth and eighth columns show the numbers of
gate-level paths starting at DRs, SR-ffs and their total, re-
spectively. The third column shows the number of gate-level
paths corresponding to the identified CFU paths starting at
DR and the sixth column shows the sum of gate-level paths
corresponding to the identified CFU paths starting at SR-ffs
with rising or falling transitions. The ninth column shows
their total number and these paths are gate-level FU paths
(false paths) which were identified by our proposed method.
From the results, 142.9 billion of 281.3 billion paths (51%)
were identified as false within 10 seconds for RISC. For JWF
and Paulin, 65,774 and 24,135 paths were identified as false
with 1 second, respectively.

On the other hand, a sequential ATPG algorithm can iden-
tify FU path delay faults (PDFs) at gate-level. However,
common sequential ATPG tools do not support the fault class
of FU. To show the speedup of the proposed method, we
evaluated the run time required for identifying NRU PDFs
by using the sequential ATPG tool, TetraMax. For both JWF
and Paulin, TetraMax took about 50 hours to identify 10,000
NRU PDFs. It is conceivable that there is no large difference
between the complexity of NRU PDFs identification and that
of FU PDFs identification. Therefore, our method achieved

7C-1

664

Table 2. Number of RTL paths identified as CFU paths.
DR SR-ff: Rise SR-ff: Fall

Circuit #RTL path #CFU #CNRU #RTL path #CFU #CNRU #RTL path #CFU #CNRU
Tseng 20 2 6 42 5 13 42 6 11
Paulin 29 0 13 67 17 25 67 19 30
JWF 153 69 119 408 172 285 408 226 319

MPEG 651 0 32 2,152 0 64 2,152 0 64
RISC 10,181 707 1,233 38,122 28,217 28,411 38,122 15,176 18,968

Table 3. Number of gate-level paths corresponding to CFU paths.
DR SR-ff Total

Circuit #GL paths #GL FU #GL NRU #GL paths #GL FU #GL NRU #GL paths #GL FU #GL NRU
Tseng 13,056 534 5,910 944 139 465 14,000 673 (5%) 6,375 (46%)
Paulin 96,912 0 41,278 95,310 24,135 39,434 192,232 24,135 (13%) 80,712 (42%)
JWF 60,150 12,710 18,182 101,622 53,064 79,404 161,772 65,774 (41%) 97,586 (60%)

MPEG 833,696 0 2,048 2,602,624 0 70,624 3,436,320 0 (0%) 72,672 (2%)
RISC* 57.6 B 2.1 B 3.8 B 223.7 B 140.8 B 141.4 B 281.3 B 142.9 B (51%) 145.2 B (52%)

(* #GL paths of RISC is extracted under the constraint of PrimeTime. Unit B means Billion)

great success in reduction of the run time required for false
path identification by using RTL information.

There is another benefit of using identified false path. By
eliminating the identified false paths from the target of test-
ing, over-testing of delay faults caused by DFT is reduced.
For JWF, 65,774 paths were identified as false, on the other
hand, 97,586 paths were identified as NRU by the method
proposed in [9]. If we exclude the identified 97,586 NRU
paths from the target of testing, we will miss some delay
defects that induce multiple PDFs because some PDFs on
31,812 (97,586-65,774) paths are functionally sensitizable.
Therefore, we should exclude PDFs only on 65,774 paths to
prevent miss of such defects.

We are interested in how effective using the identified
false paths is with respect to area and performance optimiza-
tion during logic synthesis. Utilization of the identified false
paths and evaluation of this are our future works.

5. Conclusion

In this paper, we presented a method for identifying false
paths focusing on the RTL structure and the data transfer of
a circuit. Our experimental results showed that a large num-
ber of false paths were found by identifying RTL-FU paths.
The time required for the identification was less than a few
seconds for all the benchmark circuits. The information of
identified false paths is useful for over-testing reduction and
test accuracy improvement. It is conceivable that using the
information is also efficient for optimization of circuit area
and performance during logic synthesis. Evaluating the ef-
fectiveness of using the identified false paths information is
our future work.
Acknowledgment
The authors would like to thank Profs. Michiko Inoue and
Tomokazu Yoneda of Nara Institute of Science and Tech-
nology for their valuable discussion and their cooperation.
This work was supported in part by Semiconductor Tech-
nology Academic Research Center (STARC) under Research
Project, and in part by Japan Society for Scientific Research
(B) (No.20300018)

References
[1] K.T. Cheng and H.C. Chen, “Classification and identification of non-

robust untestable path delay faults,” IEEE Trans. Computer-Aided De-
sign of Integrated Circuits and Systems, vol.15, no.8, pp.854–853,
Aug. 1996.

[2] S. Kajihara, K. Kinoshita, I. Pomeranz, and S.M. Reddy, “A method
for identifying robust dependent and functionally unsensitizable
paths,” Proc. International Conf. on VLSI Design, pp.82–87, 1997.

[3] S.M. Reddy, S. Kajihara, and I. Pomeranz, “An efficient method to
identify untestable path delay faults,” Proc. 10th IEEE Asian Test
Symp., pp.233–238, 2001.

[4] A. Krstic, S.T. Chakradhar, and K.T. Cheng, “Testable path delay
fault cover for sequential circuits,” Proc. European Design Automa-
tion conf., pp.220–226, 1996.

[5] R. Tekumalla and P.R. Menon, “Identifying redundant path delay
faults in sequential circuits,” Proc. 9th International Conf. VLSI De-
sign, pp.406–411, 1996.

[6] W.C. Lai, A. Krstic, and K.T. Cheng, “On testing the path delay faults
of a microprocessor using its instruction set,” Proc. 18th VLSI Test
Symp., pp.15–20, 2000.

[7] K. Yang and K.T. Cheng, “Efficient identification of multi-cycle false
path,” Proc. 11th Asia and South Pacific Design Automation Conf.,
pp.360–365, 2006.

[8] M. Nourani and A. Papachristou, “False path exclusion in delay anal-
ysis of RTL structures,” IEEE Trans. on VLSI Systems, vol.10, no.1,
pp.30–43, Feb. 2002.

[9] Y. Yoshikawa, S. Ohtake, and H. Fujiwara, “False path identification
using RTL information and its application to over-testing reduction for
delay faults,” Proc. 14th Asian Test Symp., pp.65–68, 2007.

[10] M.A. Amin, S. Ohtake, and H. Fujiwara, “Design for hierarchical two-
pattern testability of data paths,” IEICE Trans. on Information and
Systems, vol.E85-D, no.6, pp.975–984, Jun. 2002.

[11] Y Explorations, Inc., Explorations tool,
http://www.yxi.com/index.html.

[12] A. Krstic and K.T. Cheng, Delay Fault Testing for VLSI Circuits,
Kluwer Academic Publishers, 1998.

[13] C.J. Tseng and D.P. Siewiorek, “Automated synthesis of datapaths in
digital systems,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol.5, no.3, pp.379–395, July 1986.

[14] P.G. Paulin and J.P. Knight, “Force directed scheduling for the be-
havioral synthesis of asics,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol.8, no.6, pp.661–679, June 1988.

[15] T. Takasaki, T. .Inoue, and H. Fujiwara, “A high-level synthesis ap-
proach to partial scan design,” Proc. 8th IEEE Asian Test Symp.,
pp.309–314, 1999.

[16] J.E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave, M. Prakash,
N. Iliev, and N. Jachimiec, “A framework for high-level synthesis of
system-on-chip designs,” IEEE Computer Society, International conf.
on Microelectronic Systems Education, pp.11–12, 2005.

665

7C-1

