
A Synthesis Method to Alleviate Over-testing of Delay Faults
Based on RTL Don’t Care Path Identification∗

Yuki Yoshikawa1, Satoshi Ohtake2 , Tomoo Inoue1 and Hideo Fujiwara2

1Graduate School of Information Sciences, Hiroshima City University
3-4-1 Ozuka-higashi, Asaminami, Hiroshima 731-3194, Japan

2Graduate School of Information Science, Nara Institute of Science and Technology
Ikoma, Nara 630-0192, Japan

E-mail:1 {yosikawa, tomoo }@hiroshima-cu.ac.jp, 2{ohtake, fujiwara}@is.naist.jp

Abstract

A register-transfer level (RTL) circuit meeting a design
specification may contain some functionally unused paths.
If functionally unused paths can be easily identified at RTL,
the information can be utilized to eliminate the correspond-
ing gate-level paths from the target of testing. Testing such
gate-level paths is considered to be futile. In this paper, we
present a method for identifying such functionally unused
paths, called RTL don’t care paths, using RTL information,
and a method of synthesis for transforming the identified
paths into untestable paths which will never do a mischief.
As a result, our approaches contribute to identification of
many untestable paths and reduction of over-testing.

1. Introduction

For high speed digital circuits, delay testing is empha-
sized to guarantee the timing correctness of circuits. Transi-
tion fault model and path delay fault (PDF) model are com-
monly used to test delay defects [1, 2]. For the transition
fault model, the number of faults in a circuit is linear in terms
of the number of gates. However, extra delay caused by the
fault is assumed to be large enough. In recent works, meth-
ods of selecting longest testable paths[3, 4] and a measure
of evaluating its ability to detect small delays, called statisti-
cal delay quality model(SDQM)[5], have been proposed. On
the other hand, the path delay faults can model accumulative
small delays along a path while the PDF model has prob-
lems: circuits have tremendous number of paths and many
paths are functionally untestable.

To make transition fault test accurate, faults should be
sensitized along testable paths. Similarly, for path delay test,
untestable paths should be eliminated to ease handling paths.
To achieve these, several methods of identifying untestable
paths have been proposed in the last decade. For combina-
tional circuits, the techniques presented in [6, 7, 8] are ap-
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proaches for identifying combinationally untestable paths.
The works for sequential circuits[9, 10] are equally impor-
tant. However, these gate-level approaches would consume
long CPU time for dealing with the large number of paths.

As an approach from higher-level of design abstraction,
a method of identifying non-robust untestable (NRU) paths
focusing on data transfers at RTL have been presented[11].
In the work, paths are dealt with at RTL, called RTL paths.
An RTL path can be considered as a bundle of gate-level
paths between two registers. The total number of RTL paths
in a circuit is much smaller than that of gate-level paths, and
therefore the path identification can be performed in a rea-
sonable amount of time. The flow of the work is shown as
processes 1[11] and 2[12] in Figure 1. In the process 1, RTL-
NRU paths are identified for RTL paths in a circuit. More-
over, in the process 2, mapping from the identified RTL-
NRU paths to their corresponding gate-level paths is estab-
lished. The information of identified paths can be utilized to
alleviate test generation effort and/or to reduce over-testing.

In this paper, we consider identification of functionally
unused RTL paths which are called RTL don’t care (RTL-
DC) paths in addition to RTL-NRU paths. During RTL
design coding, in case the outputs of an RTL module in a
datapath are incompletely specified for its input domain or
state transitions in a finite state machine are incompletely
specified, data signals in the datapath and/or control signals
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from the controller may include don’t care values Xs. If a
path from a register to another is not guaranteed to have a
data transfer at RTL, it is said that the path is unused within
the given design specification. The identification of such
paths is done in process 3. Gate-level paths corresponding
to the identified RTL-DC paths can be NRU or non-robust
testable (NRT) depending on an assignment value to each X
in logic synthesis. If such RTL-DC paths are unintentionally
transformed into NRU paths during synthesis, it is conceiv-
able that identification of the NRU paths at gate-level is in-
tractable. Therefore after the process 3, we transform RTL-
DC paths into RTL-NRU paths (Process 4). Consequently,
our approach contributes to increase in the number of iden-
tifiable NRU paths at RTL, i.e., the number of paths need to
be tested decreases.

Experimental results show that there exist a lot of RTL
don’t care paths in some re-coded ITC’99 benchmark cir-
cuits and most of the identified RTL don’t care paths are
transformed into RTL-NRU paths. Additionally, we show
over-testing reduction by eliminating path delay faults cor-
responding to the identified RTL-NRU paths from the target
of test generation.

2. RTL path classification

2.1. RTL circuit

Our path identification method is applied to RTL paths in
structural RTL designs. If a target RTL circuit is described
as a functional RTL, we can extract the structural informa-
tion during synthesis process. For example, Explorations
tool[13], which is a high-level synthesis tool, can generate a
structural RTL from its original functional RTL. An example
of a structural RTL circuit is shown in Figure 2. A structural
RTL circuit consists of a controller, represented by a finite
state machine, a datapath, represented by RTL modules such
as MUXs, operational modules and registers, and RTL signal
lines between them. For convenience, fan-out branches on
RTL signal lines are treated as RTL modules to describe RTL
paths uniquely as defined in the next subsection. State tran-
sitions are assumed to be completely specified for all pairs
of a state and an input vector.

2.2. RTL path classification

An RTL path in an RTL circuit is an ordered set of RTL
modules 〈rs,m1,m2, ..,re〉, where rs is a register or a primary
input, re is a register or a primary output. Also mi is a com-
binational RTL module and the output of mi connects with
an input of mi+1. A path 〈r1,m1,m2,Add,r5〉 in Figure 2 is
an example of RTL path.

A gate-level path p in a combinational circuit is said to
be non-robust untestable (NRU) if any transition at the start
of p is not propagated to the end of p unless any off-input
on p has delay. Note that, in case of sequential circuits,
launch and capture of transitions are controlled by the load-
enable signals of FFs, which are the start and end points of
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Figure 2. An RTL circuit CRT L.

paths. That is, a path p in a sequential circuit is non-robust
untestable if, for any cycle t, (1) the control signal for the
start FF is load-disable (or hold) at t, (2) at least one off-
input on p has controlling value at t + 1, or (3) the control
signal for the end FF is load-disable (or hold) at t +1.

Suppose an RTL circuit CRT L and a gate level circuit C
that is an implementation of the RTL circuit CRT L. In C there
exists a bundle of paths δ(p) that correspond to an RTL path
p in CRT L. In general, for an RTL circuit, there exist multiple
implementations of gate level circuits with different optimal-
ity. Further, if logic synthesis systems differ, the resultant
logic circuits may also differ independent of the objective
optimality. Therefore, letting CGL denotes a set of possible
gate level circuits implementing CRT L, we can classify RTL
paths into the followings.
Definition 1 (RTL non-robust untestable path) An RTL
path p in the RTL circuit CRT L is RTL non-robust untestable
(RTL-NRU) if all the gate-level paths in δ(p) are non-robust
untestable (NRU) for any gate-level circuit C ∈CGL. �

Definition 2 (RTL non-robust testable path) An RTL
path p in the RTL circuit CRT L is RTL non-robust testable
(RTL-NRT) if at least one gate-level path in δ(p) is non-
robust testable (NRT) for any gate-level circuit C ∈ CGL.
�

Definition 3 (RTL synthesis dependent path) An RTL
path p in the RTL circuit CRT L is RTL synthesis dependent
(RTL-SD) if there exists a gate-level circuit C ∈ CGL where
all the gate-level paths in δ(p) are NRU and also can exist
C′ ∈ CGL where at least one gate-level path in δ(p) is NRT.
�

The RTL path classification relates to RTL designers’
concern. Whether the resultant gate-level paths correspond-
ing to RTL-SD paths are NRU or NRT depends on logic
synthesis, and hence the RTL-SD paths must be don’t care
for designers. As well, RTL-NRU paths result in gate-level
paths on which the delay of transitions will not affect the
logic behavior, and accordingly the RTL-NRU paths can be
also regarded as don’t care. Consequently, if an RTL path is
RTL-NRU or RTL-SD, the path is said to be RTL don’t care
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(RTL-DC).
Since we identify gate-level NRU paths from RTL paths,

it is necessary to clarify the correspondence between RTL
path p and its corresponding gate-level path in δ(p). It can
be achieved by the method of mapping proposed in [12]. In
this paper, as one solution to completely achieve the clarifi-
cation, we consider module interface preserving-logic syn-
thesis (MIP-LS)[11]. During an MIP-LS, for an RTL cir-
cuit, optimization is performed within each module, and
each RTL signal line connecting RTL modules is just split
to single-bit signal lines, i.e., the connectivity of all the RTL
modules in the RTL circuit is guaranteed to be propagated
to a synthesized gate-level circuit through any MIP-LS. For
example, a logic synthesis tool DesignCompiler (Synopsys)
is able to run MIP-LS with default setting unless the flatten
option is set.

3. RTL-DC path identification

3.1. Control-dependent RTL-DC path

The load-enable signals of registers determine the time
when a data transfers from one register to another, and the
select signals of MUXs determine the path to transfer data.
The table in Figure 2 shows control vectors to control reg-
isters and MUXs for each state of the controller. Figure 3
shows RTL circuit at cycle t −1 and t and the original RTL
circuit is shown in Figure 2. Let p be an RTL path. Let
cr(t) be the load-enable signal of a register r at cycle t. A
value provided by r at a cycle t will be determined accord-
ing to the load-enable signal from the controller during the
previous cycle, cr(t −1). In case of cr(t −1) = L, register r
loads a value produced by the logic connected to the input of
register r, and will provide the loaded value by cycle t. Oth-
erwise (i.e., in case of cr(t −1) = H), it will keep the output
with the same as the previous one stored at cycle t − 1. Let
M(p) be a set of MUXs on a path p and let cm(t) be the
select signal of m ∈ M(p) in cycle t. A path is said to be
sensitized at cycle t if all the MUXs on p select p at cycle t,
i.e., ∀m ∈ M(p)[cm(t) = p].

Definition 4 (csd-uncontrollability) Suppose a register r,
and let P be a set of paths whose end register is r. Register r
is said to be control-signal-dependently uncontrollable (csd-
uncontrollable, for short) at cycle t, if, for any path p∈P,

• for each multiplexer m ∈ M(p) on path p, cm(t) =
cm(t −1), and

• if path p is sensitized, i.e., for each m ∈ M(p), cm(t) =
p, then the start register rs of path p satisfies crs(t−1) =
H, or rs is csd-uncontrollable at cycle t −1. �

Definition 5 (csd-unobservability) Suppose a register r,
and let P be a set of paths whose start register is r. Reg-
ister r is said to be control-signal-dependently unobservable
(csd-unobservable, for short) at cycle t, if both of the follow-
ing two conditions are satisfied.
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Figure 3. An RTL circuit CRT L at two cycles t-1

and t

• For any path p ∈ P,
– path p is not sensitized at the next cycle t +1 (i.e.,
∃m ∈ M(p)[cm(t +1) 	= p]), or

– for the end register re of p, cre(t +1) = H or re is
csd-unobservable at cycle t +1.

• If cr(t) = H, r is also csd-unobservable at cycle t +1.
Let us consider an example for Definitions 4 and 5 using
Figure 3. The state transition table with control vectors is
shown in Figure 2. Suppose the register r5 at cycle t and
the state transition from s1 to s2. The states s1 and s2 corre-
spond to cycle t −1 and t, respectively. There are four paths
whose end is r5, and the MUXs existing on the four paths
are m1 and m2. The control signals of m1 and m2 at cycle t
and t −1 are cm1(t)=cm1(t −1)=0 and cm2(t)=cm2(t −1)=0,
respectively, and thus r5 loads a value r1 + r3 at both cy-
cles t−1 and t. Additionally, for cycle t−1, the load-enable
signals of r1 and r3, which are the start register of the syn-
thesized path in cycle t, are cr1(t − 1)=H and cr3(t − 1)=H.
Therefore, the value of r5 at cycle t is the same as that at
cycle t −1, which means that r5 is uncontrollable at cycle t.

Suppose the register r4 at cycle t − 1 the state transition
from s0 to s1. The states s0 and s1 correspond to cycle t −1
and t, respectively. There are two paths whose start is r4.
For the path p=〈r4,m2,Add,r5〉, m2 blocks the propagation
of r4 because of cm2(t)=0. For the path p=〈r4,Sub,r6〉, r6
does not capture the propagated value because of cr6(t)=H,
that is, r4 is unobservable at cycle t −1.

Definition 6 (csd-unsensitizability) A path p =
〈rs,m1,m2, ...,re〉 is said to be control-signal-dependently
unsensitizable (csd-unsensitizable, for short) at a cycle t if
at least one of the following conditions is satisfied.

1. For the start register rs of p, crs(t) = H, or rs is csd-
uncontrollable at cycle t.

2. Path p is not sensitized at cycle t + 1 (i.e., ∃m ∈
M(p)[cm(t +1) 	= p]).
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3. For the end register re of p, cre(t +1) = H, or rs is csd-
unobservable at cycle t +1. �

For example, in Figure 3, suppose p=〈r2,m1,m2,Add,r5〉
and the state transition from s0 to s1, and they correspond
to cycle t − 1 and t, respectively. The load-enable signal
cr2(t − 1) is H, and thus no transition is launched on the
path at cycle t. For the same path, let us consider the state
transition from s1 to s2. A transition is launched at cycle
t because of cr2(t − 1)=L, but it is blocked at m1 because
cm1(t)=0. Next, let us suppose the state transition from s2
to s0. A transition at r2 may be propagated to r5 at cycle t
because of cr2(t − 1)=L, cm1(t)=1 cm2(t)=X, but the propa-
gated value is not captured into r5 because of cr5(t)=H. The
path p=〈r2,m1,m2,Add,r5〉 is unsensitizable at any cycle
so that there is no cycle where a transition at the start point
r2 is captured into the end register r5. Generalizing that, we
can have the following theorem for a sufficient condition of
RTL-NRU path.
Theorem 1 A path is RTL-NRU if the path is csd-
unsensitizable at any cycle. �

As mentioned in Sect. 2, an RTL design includes some
paths on which data transfers are not taken account by its de-
signers. The control signals for the modules on such paths
must not be specified in its description, and are generally
denoted by X (don’t care). We can define such paths as fol-
lows.
Definition 7 A control vector for a path p =
〈rs,m1,m2, ...,re〉 is said to be sensitization-unspecified
at a cycle t if at least one of the following conditions is
satisfied.

1. For the start register rs of p, crs(t) = X.
2. There exists at least one MUX m ∈ M(p) on p such that

cm(t +1) = X.
3. For the end register re of p, crs(t +1) = X.

Such a path p is called a sensitization-unspecified path (su-
path) with cycle t. �

Lemma 1 For an su-path p with a cycle t, there exists an
assignment to the unspecified control signal so as to make
path p csd-unsensitizable at cycle t. �

Lemma 1 implies that an RTL-SD path can be RTL-NRU by
a logic assignment. Therefore, there exists a logic synthesis
to generate a gate-level circuit where all the gate-level paths
corresponding to an RTL-SD path are NRU.

In Figure 3, consider path p=〈r2,m1,m2,Add,Sub,r6〉
and the state transition from s2 to s0. The states s2 and s0
correspond to cycle t −1 and t, respectively. The path is su-
path at cycle t − 1 because of cr2(t − 1) = X, cm1(t) = X,
cm2(t) = X and cr6(t) = X. If we assign a logic value such
as cr2(t −1) = H or cm1(t) = 0 or cm2(t) = 1 or cr6(t) = H,
then the su-path can be csd-unsensitizable, and consequently
p becomes RTL-NRU.

From Theorem 1 and Lemma 1, we can have the follow-
ing theorem.
Theorem 2 A path is RTL-DC if the path is csd-
unsensitizable or sensitization-unspecified at any cycle. �

4. RTL-DC path transformation

This section presents a heuristic algorithm to maximizing
the number of RTL-NRU paths transformed from RTL-DC
paths while keeping the number of logic value assignments
to Xs as small as possible.

4.1. Heuristic approach

Consider a control vectors including Xs for all the states
of a controller as shown in Figure 2. When a logic value
is assigned to each X, the number of combinations of the
assignments is 2|X |, where |X | is the total number of Xs
on control vectors. Searching all the possibility is a hard
problem if |X | is large. Therefore, we use some heuris-
tics. First we consider logic value assignment to each X that
maximizes the number of RTL-NRU paths transformed from
RTL-DC paths. This task can be reduced to the problem
called Maximum-Satisfiability (MAX-SAT). Some approxi-
mation algorithms for solving the MAX-SAT problem have
been proposed[14] and we can use one of the algorithms.
After that, we minimize the number of Xs to which a logical
value is assigned because Xs can be used for area and per-
formance optimization of a circuit during logic synthesis.
Reduction to the MAX-SAT problem

Given a set of m clauses C1 . . .Cm in conjunctive normal
form over n logical variables, the MAX-SAT problem is to
find a truth assignment for the logical variables that satisfies
a maximum number of clauses. Here we show how to for-
mulate as the MAX-SAT problem using a circuit in Figure 2
as an example.

Suppose a path p=〈r2,m1,m2,Add,Sub,r6〉 in Figure
2. The path p is RTL-DC because of cr2(t − 1) = X,
cm1(t) = X, cm2(t) = X and cr6(t) = X. To transform p
into RTL-NRU, we need to assign a logic value such as
cr2(t − 1) = H or cm1(t) = 0 or cm2(t) = 1 or cr6(t) = H.
If we assign variables X1,X2,X3,X4 to each control signal
cr2(t − 1),cm1(t),cm2(t) and cr6(t), respectively, then the
equation X1 ∨ X2 ∨ X3 ∨ X4 = 1 is obtained. Similarly,
path p=〈r1,m1,m2,Add,Sub,r6〉 is also RTL-DC because
of cr1(t − 1) = X, cm1(t) = X, cm2(t) = X and cr6(t) = X.
If we assign variable X5 to cr1(t − 1), then the equation
X5 ∨X2 ∨X3 ∨X4 = 1 is obtained. For each RTL-DC path
in a circuit, one clause can be formulated like the following
equations.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = X1 ∨X2 ∨X3 ∨X4

C2 = X5 ∨X2 ∨X3 ∨X4
...

Cn = (Xp ∨Xq ∨Xr)∧ (Xu ∨Xt)

If the total number of RTL-DC paths is n, a set of clauses
is C = {C1,C2, . . . ,Cn}. Under an assignment satisfying
Ck = 1, the corresponding RTL path becomes RTL-NRU.
The objective of the MAX-SAT problem is to find an assign-
ment T for maximizing ∑n

k=1 Ck. The assignment T maxi-
mizes the number of RTL-NRU paths.
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Minimization of logic value assignments
To minimize the number of Xs where logic values are

assigned, for the assignment T , we replace each assigned
logic value with X unless the number of RTL-NRU paths
decreases by the substitution. In particular, we can replace
the assigned values that have no contribution to the trans-
formation into RTL-NRU with Xs, and also replace some of
assigned values in clauses where T does not satisfy true.

5. Experimental results

This section presents the effectiveness of RTL-DC paths
identification and transformation from the identified RTL-
DC paths into RTL-NRU. We applied the identification and
transformation to ITC’99 benchmarks using a SunFire V490
workstation. Original VHDL codes of ITC’99 benchmarks
are written in functional RTL, accordingly control signals
for registers and MUXs from a controller at each state are
not clear. To clarify control signals for registers and MUXs
at each state, we have re-coded B07, B14, B20, B21 and
B22 such that each circuit is composed of a controller and
a datapath separated from each other. Each re-coded circuit
has its original circuit function. We used Design Compiler
and Prime Time (Synopsys) as a logic synthesis tool and a
timing analysis tool, respectively.
RTL-DC path identification

Table 1 reports the number of identified RTL-DC and
RTL-NRU paths. The first column shows each re-coded cir-
cuit name with ” s”. The second column shows the number
of RTL paths starting at datapath register (DR). The third
column shows the number of identified RTL-DC paths. The
identified RTL-DC paths include RTL-NRU paths that can
be identified by the sufficient condition of Theorem 1. For
B14 s, our method identified 338 of 349 (96%) RTL paths
as RTL-DC. For B20 s, B21 s and B22 s, the ratios of iden-
tified RTL-DC paths are almost the same as that of B14 s.
This is because B20, B21 and B22 are composed of B14s
and/or a modified version of B14s as components. Anal-
ysis for another circuit having a different structure such as
B15 is also interesting. The CPU time required for identify-
ing RTL-DC paths for each B14 s, B20 s, B21 s and B22 s
was a few seconds. The fourth column shows the number
of RTL-NRU paths that are identified by Theorem 1. More
than half of the RTL paths starting at DR in B14 s, B20 s,
B21 s and B22 s were identified as RTL-NRU.

Columns under ”SR-ff:Rise” and ”SR-ff:Fall” show re-
sults for RTL paths starting at SR-ffs with rising transitions
and RTL paths starting at SR-ffs with falling transitions,
respectively. The SR (state register) in each controller of
B14 s, B20 s, B21 s and B22 s consists of one flip-flop be-
cause it has two states. The fetch state and the execution
state correspond to logic ’0’ and ’1’, respectively. Rising
transitions at SR-ffs are launched at the execution state and
the transitions tend not to be captured at the ending registers
because many registers hold their values at the next fetch
state. Therefore, there are many RTL-NRU paths for B14 s,

B20 s, B21 s and B22 s. In contrast, falling transitions at
the fetch state tend to be unspecified whether they are cap-
tured or not. For both transitions, our proposed method can
identify many RTL paths as RTL-DC.
Transformation from RTL-DC path to RTL-NRU path

In this experiments, for each benchmark circuit, all the
identified RTL-DC paths were transformed into RTL-NRU
paths by a logic value assignment to Xs of load-enable sig-
nals. Accordingly, the number of RTL-NRU paths in each
circuit after a logic value assignment is the same as column
#RTL-DC. We evaluate the area overhead during logic syn-
thesis due to the logic value assignment. For B14 s, the area
is 24,072 compared to the original area 23,990 (one NOT-
gate corresponds to 1), that is, the increasing ratio is less
than 1%. By logic value assignment, the area of a con-
troller part increases, however that is much smaller than
that of a datapath part. Table 2 reports the number of
gate-level paths that correspond to RTL-DC and RTL-NRU
paths. For b07 s, we extract all the gate-level paths in the
circuit. For b14 s,b20 s,b21 s,b22 s, We extracted 10,000
gate-level paths from the longest paths, which has larger
propagation delay, by using Prime Time (Synopsys). In the
results, all the gate-level paths corresponding to the RTL-
DC paths are NRU because all the identified RTL-DC paths
were transformed into RTL-NRU. For b14 s, 3,816 paths
are newly identified as NRU by finding RTL-SD paths, and
totally 8,550 of 10,000 paths are identified as NRU. For
b20 s,b21 s,b22 s, about 6,000 of 10,000 paths are identi-
fied as NRU.
Over-testing reduction by RTL-DC path identification

While design-for-testability (DFT) techniques are gener-
ally used in order to reduce test generation complexity, they
induce over-testing problems. In general, DFT techniques
make a large number of untestable faults testable. However
the delay faults that become testable do not affect circuit
performance because the faults was originally untestable.
Therefore we consider testing such path to be over-testing. If
the path delay faults (PDFs) on the identified NRU paths are
excluded from the target of test generation, the over-testing
must be reduced. Table 3 shows results of over-tested PDFs
for b14 s with the fully-enhanced scan DFT technique and
its reduction by using the identified NRU path information.
We target 9,580 of 10,000 PDFs due to some constraints of
TetraMax ATPG. When a test generation is done for 9,580
faults, 5,938 faults are detected with 668 test patterns. On
the other hand, if 5,218 faults, which subtracts the identified
NRU PDFs (4,734) from the all PDFs (9,580), are targeted,
3,772 faults are detected with 396 patterns. For the last case,
if 1,426 faults , which subtracts 8,550 from 9,580, are tar-
geted, 814 faults are detected with 90 patterns. Now let us
consider fault simulation using the generated test patterns. If
we apply the generated 668 patterns to all the 9,580 faults,
5,938 faults are detected, that is there is no over-testing re-
duction. Next, if we apply the generated 396 patterns to the
9,580 faults, 4,106 faults are detected, so that over-testing
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Table 1. Number of identified RTL-DC and RTL-NRU paths.
DR SR-ff: Rise SR-ff: Fall

Circuit #RTL path #RTL-DC #RTL-NRU #RTL path #RTL-DC #RTL-NRU #RTL path #RTL-DC #RTL-NRU
B07 s 21 8 5 63 21 10 63 28 4
B14 s 349 338 190 233 219 219 233 211 0
B20 s 710 676 380 469 438 438 469 422 0
B21 s 710 676 380 469 438 438 469 422 0
B22 s 1059 1020 576 702 657 657 702 633 0

Table 2. Number of gate-level paths corresp. to RTL-DC and RTL-NRU paths.
Circuit # GL path #GL path(RTL-DC) #GL path(RTL-NRU)
B07 s 1,980 376 108
B14 s 10,000 8,550 4,734
B20 s 10,000 5,773 5,374
B21 s 10,000 6,291 5,123
B22 s 10,000 5,604 4,110

Table 3. Reduction of over-tested path delay faults (b14 s).
Test generation (TG) Fault simulation (FS)

Target faults #Faults #DTT G #ATPG UT Effic.(%) #Test pat. TG time(sec.) #Faults #DTFS #OT reduc.
All faults Fall 9,580 5,938 3,642 100 668 328 9,580 5,938 -

Fall - FNRU be f . 5,218 3,772 1,446 100 396 128 9,580 4,106 1,832
Fall - FNRU a f t. 1,426 814 612 100 90 83 9,580 1,612 4,326

of 1,832 faults are reduced. For the last case, if the gener-
ated 90 patterns are applied to the 9,580 faults, only 1,612
faults are detected, and thus we succeed in over-testing re-
duction for 4,326 faults. As another advantage of excluding
NRU PDFs, test generation time becomes about a quarter
compared to no PDFs exclusion.

6. Conclusion

In our previous work[11], we have introduced a concept
of register-transfer level non-robust untestable (RTL-NRU)
path and have shown that gate-level paths corresponding to
RTL-NRU paths are NRU. In this paper, we have presented
a concept of RTL synthesis dependent (RTL-SD) path. An
RTL-SD path can become either RTL-NRU or RTL testable
depending on logic value assignment to unspecified coordi-
nates of output vectors of a controller. If such RTL-SD paths
are unintentionally transformed into NRU paths during syn-
thesis, these paths should be identified or tested at gate-level.
However, handling paths at gate level is intractable. Thus,
we have proposed a method for identifying RTL don’t care
(RTL-DC) paths, which include RTL-SD and RTL-NRU
paths, and transforming the identified RTL-DC paths into
RTL-NRU paths. Our approaches can contribute to identi-
fication of many gate-level NRU paths within a reasonable
amount of time compared to gate-level path identification
approaches, and also reduction of over-testing induced by
DFT techniques.
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