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Abstract

Recently, several testing schemes such as one’s
count testing, transition count testinq and edqe
count testing have been proposed to compress the
test response data with simple test equipments.
Although these schemes succeed in logarithmic compres-
sion of the response data, they require in the worst
case twice the number of tests required for conven-
tional testing, and thus the total length of the
test data is not compressed in general. In this
paper we present testing schemes which provide log-
arithmic compression of test response data without
increasing the number of tests. We also present
some simple testing schemes which provide consider-
able compression of test response data such that the
response data can be reduced to two bits independ-
ently of the number of tests by adding only two tests.
Test data compression for multiple output circuits
is also considered and relatively effective testing
schemes are presented.

I. Introduction

In most conventional methods, in order to test
any logic circuit, an input sequence is applied and
the resulting output response is compared with the
correct response sequence. Recently, several test-
ing schemes such as one’s count testing, transition
count testing, edge count testing and modified tran-
sition count testing have been proposed to compress
the response data with very simple test equipments.
These schemes may be classified as either determinis-
tic [1]-[4] or probabilistic [5]-[6] in the methods
for test pattern generation. In deterministic meth-
ods, all these schemes provide logarithmic compres-
sion of the response data. However, in the worst
case, the length of input sequences for one’s count
testing [2] is approximately n2, and for both tran-
sition count testing [11 and edge count Eesting [4]
their length is approximately 2n where n is the
number of tests. Therefore, the compression of
overall test data is not achieved in general. Only
modified transition count testing [3] has succeeded
in the response data compression without increasing
the length of the input sequence.

In this paper we restrict our discussion to
deterministic testing and present the following test-
ing schemes: 1) testing schemes which provide loga-
rithmic compression of test response data without
increasing the number of tests, and 2) testing
schemes which provide considerable compression of
test response data such that the response data can
be reduced to two bits independently of the number
of tests by adding only two tests. Test data compres-
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sion for multiple output circuits is also considered
and relatively effective testing schemes are presented.
Section II, III and IV consider single-output combina-
tional circuits, and then multiple-output combinational
circuits are considered in Section V.

II. Testing Schemes and Count Functions

All the schemes considered in this paper can be
represented by the functional block of Figure 1. A
sequence of tests is applied to the circuit under test.
The response of the circuit is transformed by some data
compression function and then compared against a pre-
viously obtained reference value. The circuit under
test is certified to be fault-free if and only if the
two values are identical.

We consider the following data compression func-
tions which are used in the data compression box of
Figure 1.

Definition 1:
‘et R = ‘lr2”””rm be

sequence. The following seven functions
functions.

m
Cl(R) = ~ ri

i=l

C2(R) = ~ ri_l@ r
ii=2

C3(R) = ~ ri_l@ ri
i=2
m

C4(R) = ~ ;i_,
i=2

C5(R) =~r.
1-.i=2

c6(r0,R) = c
2

-r
i

—
.r.
1

roR)

any binary

are count

c7(r0,R) = c3(roR)

Let T be any multiple fault test set for a single-
output combinational circuit. Let TO(T1) be all tests

in T producing output O (l), and let n=lTl, no=lTol

and nl=lT1\ where IAI is the cardinality of the set A.

Then we define three type of test input sequences us-
ing the test set T as follows.

Definition 2: A test sequence denoted by aT is

8th IEEE Int. Symp. on Fault Tolerant Computing, pp. 108-113, June 1978.



Reference Value

*

Circuit
Data

Test Sequence- Under
Compressor > Comparator > Faulty / Good

Test
6

Figure 1. General testing schemes.

a sequence of length p satisfying the following condi- general.
tions:

1) aT ~ncludes every member of T, Theorem 2 (Hayes[l]): Let T be any single fault
2) aT 1s an alternating sequence of tests from test set for a single-output combinational circuit.

TO and T , and Then the circuit is testable by the count function C2
3) p ~ 2 ma+ {nO,nl} ~ 2n-2. and test sequence UT for single faults. The reference

value of C2 is at most 2n-3.
Definition 3: A test sequence denoted by E3Tis

a seauence It is not known if Theorem 2 also holds for multi-

‘Olt02-..tOnotllt12.‘-tlnl
ple faults. The following theorems hold for multiple
faults.

where TO= {t ,t t
01 02’--.’ On.} and Tl= {t11,t12,....t1n}.

1 Theorem 3 (Seth[3]): Let T be any multiple fault

Definition 4: A test sequence denoted by yT is
a sequence

‘Olt02--.tOnotOl ‘llt12-..tln1tll .

In the schemes proposed in this paper, one or
more count functions will be used to implement the
data compressor box of Figure 1. In general, we assume
that an m-tuple

c= (Ci ,Ci ,...rci), _m>l
12 m

of count functions is being used for testing.

Definition 5: For a given class of faults, a
circuit under test will be called testable by a count
function C and a test sequence S if for every fault
in the class, the value of C is different from the
reference value.

III. Fault Detection

Both the test input sequence and the correct
response sequence can be considered as the test data.
Hence an overalldata compression should be the compres-
sion of total test data, that is, the test input se-
quence plus the response data. Most of the testing
schemes reported previously have not achieved the
overall data compression as Theorems 1-4 shown below.

The simplest count function c1 is used in one’s
count testing [21, and the following theorem is report-
ed.

Theorem 1 (Hayes[2]): Let T be any multiple
fault test set for a single-output combinational
circuit. Let S be a sequence of (n-no)(no+l)+no
tests from T with the following properties:

1) S contains one copy of every test in To, and
2) S contains n +1 copies of every test in T1.

Then tie circuit is ?estable by the count function c1
and S for multiple faults. The reference value of c

The length of S is at most n2-n+l.
1

is nl(no+l).

In this one’s count testing, the number of bits
required to represent c (R) is at most rlog2n21,where
[xl denotes the smalles& integer greater than or equal
to x. However the length of the test sequence is
approximately n2 in the worst case. Therefore, the
compression of overall test data is not achieved in

test set for a single-output combinational circuit.
Then the circuit is testable by the count function C6
and the test sequence UT for multiple faults. The ref-
erence value of c

6
is a~ most 2n-2.

Theorem 4 (Reddy[4]): Let T be any multiple fault
test set for a single-output combinational circuit, and
let aT be a teSt sequence of even length. Then the
circuit is testable by the count function C4 and the
test sequence aT for multiple faults. The reference
value of C4 is max{no,n~}.

Theorems 2,3 and 4 show that the number of bits
required to represent the reference values of count
functions C2,C6 and C4 is at most rlog22nl, and that
all these testing schemes provide logarithmic compres-
sion of the response data. However, the length of the
testing sequence is approximately 2n in the worst case.
Therefore the test data is not totally compressed at
all.

Theorem 5 (Seth[31): Let T be any multiple fault
test set for a single-output combinational circuit.
Further assume that the constant ro of C6 iS zero.
Then the circuit is testable by the pair of count func-
tions (cl,c6) and the test sequence 6T for multiple
faults. The reference values of c1 and c6 are nl and
1, respectively.

Since the length of the test sequence 6T is n,
Theorem 5 proves Mat every multiple fault in a single-
output combinational circuit is detectable by the pair
of count functions (cl,c6) using the same number of
tests required for conventional testing. Moreover, the
number of bits required to store the reference value
is compressed into rlog2nll and thUS the test data is
totally compressed.

Next, we show that the results similar to Theorem
5 are possible for such pairs of count fucntions as
(C1,C5) and (cl,c7).

Theorem 6: Let T be any multiple fault test set
for a single-output combinational circuit. Further
assume that the constant r. of C7 is Zero. Then the
circuit is testable by the test sequence 6T and either
pair of count functions of (cl,c5) or (c~rc7) for
multiple faults. fie reference values of cl, C5 and
C7 are nl,O and n-1, respectively.

Proof:
1) Case of (cl,c5).
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The fault-free response R has the form On%nl

where nO>O, nl>O and n=n +no 1. Then, obviously,

C1(R)=nl and C5(R)=0. Assume that another sequence
S, distinct from R, also has cl(S)=nl and C5(S)=0.
NOW, C5(S) can be O only if S has the form oplq
where p~O, ~0 and p+q=n. Since cl(S)=nl z n, we
have p>O and q=nl. Therefore, p=no and q=l, so
R and S must be identical, which contradicts the
assumption +~at they are distinct.

2) Case of (cl,c7). no nl
The fault-free response R has the form O 1 ,

where nO~O, nl~O and n=n@~. Then, with ro=O we
have c7(r0,R)=c3(OR)=n-1. Assume that another se-
quence S, distinct from R, also has cl(S)=nl and
c7(0,S)=c3(OS)=n-1. Since c3(OS)=n-1, the sequence
OS includes exactly one transition. Hence, the se-

p q where p~o, q>o and
quence OS has the form O 1
p+q=n+l. Moreover, cl(S)=nl implies q=nl, and so
p=n+l-nl=no+l. Therefore, R and S must be identical,
which contradicts the assumption that they are dis-
tinct. Q.E.D.

IV. Testing with Fixed Reference Values

In the previous section, we have presented test-
ing schemes which provide logarithmic compression of
test response data. However, these testing schemes
need a rlog2nl-bitbinary counter which depends on
the number of tests. !lhus,when the number of tests
increases, the size of the counter must be increased
or the test sequence must be partitioned into sub-
sequences suitable to the counter. However, it is
required additional cost to change the size of the
counter or to perform multiple experiments with
partitioned sequence. To overcome this, we present
testing schemes which provide considerable compres-
sion of test response data such that the response
data can be compressed into two bits independently
of the number of tests.

‘IMeorem i’: Let T be any multiple fault test
set for a single-output combinational circuit.
Further assume that the constant ro of C7 is one.
Then the circuit is testable by the count function
C7 and the test sequence aT fOr multiple faults.
The reference value of C7 is O.

Proof: The fault-free response R for the test
sequence aT has the form:

{

(01)t if the length is even.
R=

(01)‘o if the length is odd.
Obviously, with ro=l we have C7(1,R)=C3(1R)=0.
Assume that another sequence S, distinct from R, also
has C7(1,S)=C3(1S)=0. Then, S has the form either

(01)1 or (O1)LO for some positive integer Q. There–
fore R and S is identical, which contradicts the
assumption that they are distinct. Q.E.D.

Theorem 7 shows that the reference value of
count function C7 is O, and thus the number of bits
required to represent the reference value is only
one. Such testing scheme requires only an l-bit
binary counter and thus is very simple. However, the
testing sequence is aT and so its length is approxi-
mately 2n in the worst case. The same compression
of test response data as Theorem 7 is possible by
adding only two tests.

Lemma 1: The following conditions are equi-
valent.

1) R=Oplq for some p>O and q>O.

2) c (R)=l and c5(R)=0.
3) c~(R)=l and c4(R)=0.
4) C2(R)=1 and C5(R)=0.
5) C2(R)=1 and c6(0,R)=1.
6) C4(R)=1 and C6(0,R)=1.

Proof: It is obvious that Condition 1 implies
Conditions 2-6.

Assume that Condition 2 holds, that is, c4(R)=1
and C5(R)=0. Then c (R)=O implies that R has the
fom oP1q wherep~~ andq>O. Moreover, c4(R)=1
implies both p and q are Po;itive. Therefore we have
Condition 2 implies Condition 1. From the definitions
of count functions C2,C4 and C5 we have C2(R)=C4(R)+
c5(R). Hence it is obvious that Conditions 2,3 and
4 are all equivalent.

Assume that C6(0,R)=C2(OR)=1. Then the sequence
OR has exactly one transition since c2(OR)=l. Hence
the sequence OR has the form Oplq, and so c5(R)=0.
Therefore, we have that Condition 5 implies Condition
4, and that Condition 6 implies Condition 2.

Q.E.D.
Theorem 8: Let T be any multiple fault test set

for a single-output combinational circuit. Further
assume that the constant r. of c6 is zero. Then the
ClrCUit iS teStSble by the teSt sequence YT and any Of
the following pairs of count functions: 1) (c4,c5)r
2) (c2,c4), 3) (C2,C5), 4) (c2,c6) and 5) (C4,C6).
The reference values of C2,C4,C5 and C6 are 1,1,0 and
1, respectively.

Proof: Let T={TO,T1}, To={to1,to2,....tOnol and

Tl={t11t12,....t~nl}. The test sequence YT has the

form
t

tolto2...‘OnOtOltllt12.”. lnltll
and the fault-free response R is

no+l nl+l
01.

Let (cifcj) be any of the pairs of count functions
presented in Theorem 8, and let ei and ej be reference
values Of Ci and cj, respectively. Then from Lemma 1,

no+llnl+l
R=O implies ci(R)=ei and cj(R)=e..

1

Conversely, assume that another sequence S also
has ci(S)=ei and cj(S)=ej. Then from Lemma 1, S has

the form Oplq where p>O , q~O and p+q=n+2. If both
sequences S and R are distinct, then either no+l > p
or no+l < p. In the case of no+l > p, the output value
of test tol in S must be 1. Thus the left-most value
of S is also 1, and this contradicts that S has the
form Oplq for p>O and q>O. In the case of no+l ~ p,
the output value of test t in S must be O, and similar-
ly we have the contradictik~.

Hence, R and S must be identical. This implies
that any ~e~~se S satisfying ci(S)=ei and cj(S)=ej

o ~nl+l
is only O

Q.E.D.
using the test sequence yT of length n+2, the

testing schemes suggested in Theorem 8 require storing
only two bits of response since the reference values
Of Count functions are constants O and 1. Thus such
testing schemes have the following important properties.

1) Considerable compression of test response data
is achieved.

2) Very simple test equipment is required where
the reference values are independent of the
circuit under test.

3) Complete fault detection is provided.
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Hence we have that Condition 2 implies Condition 1.
v. Multiple Output Circuits

When a logic circuit has more than one output,
the problem of compressing test data is not straight-
forward generalization of the single output case
because all the outputs are assumed to be monitored
simultaneously. ‘l%us,ordering of tests to suit
individual outputs is no longer possible. According-
1~, we regard a k-output cotiinational circuit as a
2 -valued output combinational circuit, and consider
generalized count functions for multi-valued sequence
as follows.

Definition 6: Let R = r1r2...rm be any q-valued
sequence. The following three functions are count
functions for multi-valued sequences.

m
C8(R) = ~ P( ri-l< ri)

i=2
m

C9(R) = > P( ri_l> ri)
i=2

CIO(R)= ~p( ri_l# ri)
i=2

where

{

1 if the predicate is
P( predicate ) = true.

o otherwise.

In the binary case, these COUnt functions c%, c9
and Clo coincide with count functions c4,c5 and c2,
respectively, and so are the generalizations of c41
C5 and c2.

Let T ={TO,T1,...,Tq_l] be any fault test set
for a q-valued output circuit, where Ti = {til,ti*/

.-.’tini} be all tests in T producing output value i.

Let n=\Tl and ni=lTil for all i. AssUme that ni>O
for all O<i<q-1..—

a
Definition 7: A test sequence denoted by 6T is

sequence

t
‘Olt02... OnOtOl ‘llt12...tln~tll

........

..............tq_l.ltq_l.~...
‘q-l,nq-ltq-l,l

The fault-free response R fOr 6T has the form
no+l n~+l nq–1+1

~=o 1 ....(q-1) .
In the case of q=2, the test sequence ~T coincides
with the test sequence yT and so is the generaliza-
tion of yT.

Lemma 2: The following conditions are equiva-
lent.

1) For some positive integers ko,kl,....kl.l,
zko~~klm ~ kq-1 ~

R= 00...011...1.....(q-l)(q-1)...(1)l)

2) c8(R)=q-1 and C9(R)=0.
3) c8(R)=q-1 aan~ clo(R)=q-l.
4) C9 (R)=O clo(R)=q-l.

Proof: It is obvious that Condition 1 implies
Conditions 2-4.

Assume that C8(R)-a-l and C9(R)=0. Since c8(R)
=q-1, the sequence R contains exactly q-1 ascending
subsequences ri-lri such that ri_l< ri, and no
descending subsequences ri_lri such that ri-l> ri.
Therefore, all the values from O to q-1 appears in
the sequence R, and for some positive inte9ers ko,kl,

.-”-’kq-l’
ko kl kq-l

R=O 1 .......(q-1) .

Since C10(R)=C8(R)+C9(R), it is shown that Condi-
tions 2,3 and 4 are equivalent. Q.E.D.

Lemma 3: If the response R for the test sequence
6T has the form

R=IJ ‘o ~kl
...(q-l)kq-l

where ko,kl,...’,kq_lare positive integers, then for
each i ( O<i<q–1 ) all the output values correspond-——
ing to t. ,ti2,...rt. are the same.

11 lni

Proof: The teSt sequence 6T COntainS the follow-
ing subsequence composed of all tests in Ti

t. t t.
11 i2””.. lnitil.

Let Ri be the response of such subsequence. Since R
has the form

‘o ‘1
o 1 ...(q-l)kq-l

for some ~sitive integers ko,kl,....kl.l, we have
C9(R)=0 and so c9(Ri)=0.

Assume that not all of the output values in Ri are
the same. Then obviously, we have c9(Ri)#0, that ie.,
Ri contains at least a descending subsequence. This
contradicts c9(Ri)=0. Q.E.D.

Theorem 9: Let T be any multiple fault test set
for a q-valued output combinational circuit. Then the
circuit is testable by the test sequence 6T and anY
of the following pairs of count functions: (cs,cg),
(c8,c10) and (c9f%3). The reference values of c8,c9
and CIO are q-1,0 and q-l, respectively.

Proof: Let T=[TO,Tl,...,Tq_l], and let Ti= {till

ti2v...,tini} for all O<i<q-1. me test sequence 6T——
is

‘Olt02”...tOn~tOl ‘llt12-..‘ln~
.........

.“”.”.tq-l,ltq-1,2...‘q-l,nq_~tq-l,l

and the fault-free response R is

n +1
Ono+l ~ 1 .......(q-l)n@+l .

Let (ck,c~) be any of the pairs of co~t functions
presented in Theorem 9, and let ek and et be reference
values of Ck and Ck, respectively. Then from Lemma 2,

no+l n +1
R= O 11

....(q-l)nq-~+l implies ck(R)=ek and
ci(R)=e~.

conversely, assume that another sequence S of
length n+q also has ck(s)=ek and cL(S)=eL. Then from
Lemma 2, S has the form

k. ~kl kq-l
o .....(q-l)

where ko,kl,....k - are positive integers ans ko+kl+
....+k B? +emma 3, all the output values forq_l=n+q.
the subsequence ti1ti2---tin,ti1 of ~T are the same.

Moreover, S contains all the’values from O to q-1.
Hence, we have ki=ni+l for all 05i5q-1, that is, R and
S must be identical. This implies that any sequence
s satisfying ck(S)=ek and c~(S)=eL is onlY

n~+llnl+? “- nq_l+l
0 ....(q-l) Q.E.D.

Testing schemes presented in Theorem 9 have the
following properties. Any p.airS Of COUnt fUnCtions C!31

C9 and Clo require (logzq)-bit binary counters and
(log2q)-bit comparators. This size log2q depends only
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on the nu~er of outputs but is independent of the
the number of tests. Conventional testing requires
storing n(log2q) bits of response while the method
suggested in the theorem requires only log2q bits
where n = IT1. Thus the compression ratio

n(log2q)
. n

lo9.2q

is obtained. The length of the test sequence 6T is
ntq, and thus extra q tests are required. However
this augmentation may be ignored by taking n suffi-
ciently large, and in this case the data compression
ratio becomes large.

In the above arguments we have assumed that
ni > 0 for all o~i~q-1, that is, all the output
values 0,1,...rl-l appear in the test response.
When this assumption does not hold, we can extend
the result of Theorem 9. However in this case we
cannot achieve such a good data compression as
Theorem 9.

Let T = {TI, T2,....Tk} be any fault test set
for a q-valued output circuit, where Ti = {til,ti2,
....tin} be all tests in T producing output value

1
Vi. Let VT = {vl,v2,...,vk1 andvT= {0,1,....1}l}

- VT. The output values are ascending, that is,
o<vl<vz<...<vk~l-l. Since not all the output values—
O,lr...fq-l appear in the test response, we have
k<q. For this test set T we define a test sequence
similar to the test sequence 6T as follows.

Definition 8: A test sequence denoted by cT is
a sequence

‘llt12.”.tln~tll ‘21t22..-t2n2t21.....

“....%\tknktklktkl .

The fault-free response of the test sequence CT
has the form

n2+l ~ nk+l~nl+ll - ~
7

v~vl..”V1 V2V2...”.”.v2””....vkvk.“...vk

The count function for the test sequence ET is defin-
ed as follows.

Definition 9: Let R = r1r2...rm be any q-valued
sequence. The count function c1l is defined as

C1l(R,V) ‘,,~p( rie V )
i=l

Note that if R is the fault-free response of the
test sequence’8T, that is, all the output_values
0,1,...,1-1 ~pear in the response, then VT = @ and

‘bus Cll
(R, vT) = O.

Theorem 10: Let T = {T~,T2,....Tk} be any multi-
ple fault test set for a q-valued output combina-
tional circuit. Fuzther assume that V Of Cll iS VT.
Then the circuit is testable by the test sequence
&T and any of the fOllOWing count functions: (C8,C9,
Cll)j (c8!c10~c11) and (C9JC101C11). The reference
values of c8,c9,c~0 and c1l are k-1, O, k-1 and O,
respectively.

Proof: Let T = {Tl,T2,....Tk}. VT = {t?~,v2,...
....Vk} and Ti = {til,ti2r...,tini} fOr all l~i~k.

Let R be the fault-free response of the test sequence
ET. ~_en, obviously c8(R)=c10(R)=k-1 and c9(R)=
C1l(R,VT)=O.

conversely, assume that another sequence s o~
length n+k also has c8(S)=k-1, C9(S)=0 and C1l(S,VT)

=0. Then, from c8(S)=k-1 and C9(S)=0, we can show
that S has the form

~nl+l, /#’2+1, ~nk+l>

‘l”l...u1u2u2....~uk.......~uk ....\

where u. < u, for i < j.
1 3

Since cll(S,~T)=O, we have Ui e VT for all lci<k.
ThiS implieS that Ui= vi fOr all l<i<k, that is, R and

.—

S must be identical.
——

For the cases of (cs,c~o,cll) and (c9,c1o,C11),
the theorem can also be proved similarly, since

Clo(R) = c8(R) + c9(R). Q.E.D.

There are two ways to represent the set VT: (a) to
store separately each value vi (l~i~k); and (b) to
represent the set VT by q binary var~ables bo,bl,...,bq-l
such that bi=l if i@7T and bi=O if i$?!VTfor all O~i~q-1.
In the case of (a), the number of bits to represent the
set VT is k(log2q), and thus the testing schemes sug-
gested in Theorem 10 requires storing

log2k + k(log2q)

bits. Conventional testing requires storing n(log2q)
bits. Thus the compression ratio is

n(log2q)
> n

log2k+ k(log2q) k+l

In the case of (b), the number of bits to represent
the set VT is q, and thus the testing schemes suggest-
ed in

bits.

These

Theorem 10 requires storing

log2k + q

Hence, the compression ratio is

n(log2q)

log2k + q

data compression ratios are not so good as that
of Theorem 9. However, when n is sufficiently larger
than k or q, substantial data compression is achieved.

VI . Conclusion

In this paper, we have considered test data com-
pression in logic testing. For single output circuits
we presented such testing schemes that provide logari-
thmic compression of test response data without increas–
ing the number of tests. We also presented some simple
testing schemes which provide considerable compression
of test response data such that the response data can
be compressed into a constant value ( two bits ) in-
dependently of the number of tests by adding only two
tests. For multiple output circuits, we have showed
that test data comperssion can be achieved by using
generalized count functions. The results presented
here are applicable only to combinational circuits.
Further research is needed to find effective compression
functions in logic testing for sequential circuits.
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