
Path-Based Resource Binding to Reduce Delay Fault Test Cost∗

Michiko Inoue† Satoshi Ohtake Yu-ichi Uemoto
Hideo Fujiwara

Graduate School of Information Science
Nara Institute of Science and Technology

Abstract
This paper proposes a new high level synthesis method
that reduces the number of non-false paths as well as the
number of paths during resource binding. The method
is useful to avoid over-testing as well as to alleviate test
generation in combination with false path identification
methods.
keywords: high level synthesis, resource binding, false
path identification

1 Introduction
High level synthesis transforms a behavioral description
of a circuit into an RTL circuit. It determines a basic
structure of a circuit, and hence, affects test cost. A false
path in a circuit is a path that is never activated in normal
operation mode. Such paths do not need to be tested,
or should not be tested if they have more delay than a
system clock cycle and can be activated in test mode
due to design for testability such as full scan. Therefore,
false path identification is utilized to avoid over-testing
as well as to alleviate test generation.
Several false path identification methods have been

investigated at gate level[1] and RTL[2, 3, 4, 5]. RTL
false path identification is efficient since it can treat a
bundle of gate level paths as one RTL path. False path
identification runs efficiently if the circuit has less paths
and works effectively for test generation if the circuit
has more false paths. This paper proposes a new high
level synthesis method that reduces the number of non-
false paths as well as the number of paths during re-
source binding.
The proposed method adopts a path-based assignment

strategy where resource sharing is considered based on a
data flow between variables in a behavioral description.
The path based assignment strategy was introduced by

∗This work is supported in part by Semiconductor Technology
Academic Research Center (STARC) and Japan Society for the Pro-
motion of Science (JSPS) under the Grant-in-Aid for Science Re-
search (B)No.20300018.

†contact author, e-mail:kounoe@is.naist.jp

Kim et al.[6] where it is used to reduce the interconnect
area and give no consideration into false paths or test
generation. This paper uses this strategy to reduce not
only the number of RTL paths but also the number of
RTL true paths (non-false paths). We demonstrate the
effectiveness of the proposed method by experiments for
some high level synthesis benchmarks.

2 Preliminaries
Resource Binding A circuit is represented by vari-
ables, operations and their flow in a behavioral descrip-
tion, while it is represented by registers, operational
modules and their connections in RTL description. In
high level synthesis, scheduling determines when each
operations are executed and resource binding assigns
variables and operations to registers and operational
modules, respectively. In this paper, we treat resource
binding after scheduling. We use a scheduled data flow
graph (SDFG) as a behavioral description after schedul-
ing.

Definition 1 SDFG is a directed graphG = (V, E, t, s)
where V is a set of primary inputs, primary outputs and
operations, E ⊆ V × V is a set of variables, t : V →
{op1, op2, · · · , opn} represents operation types, and s :
V → Z+0 represents control steps when operations are
executed.

In this paper, we do not assume chaining operations,
that is, we assume s(oi) < s(oj) for any variable
(oi, oj). For a variable v = (oi, oj), we say that v is
an output variable of oi and an input variable of oj , oi

generates v and oj uses v.
Resource binding assigns each operation in V to an

operational module (operational module binding), each
variable in E to a register (register binding) and also to
a port of operational module corresponding to an opera-
tion that uses the variable (interconnect binding). Figure
1(a) shows an SDFG with 9 variables and 4 add opera-
tions executed at control steps 1, 2, 3. Figure 1(b) shows
an assignment of variables a, b, d, e, f, h and add oper-
ations +1, +3. Both variables b, d are assigned to the

1

10th IEEE Workshop on RTL and High Level Testing (WRTLT'09), pp. 29-32, Nov. 2009.

!"

!#

$%" $%# $%&

$'

! " # $ %

"

#

(#

()

(* (+ (,

$%# $%+

- .

/"

&

!&

!*

$%* $%+

0

1
2

3

!"45!&

(& (6

('

("

/'

$%" $%*

7 8

0 2

/'

/'

/'

/"

/'

$'

9-:5559.:

Figure 1: Resource binding example: (a)SDFG and
(b)(a part of) RTL circuit.

same port p0 of the adder M2 and they are transferred
to the port through the multiplexorM1.
In this paper, we have the same assumption as [3] on

high level synthesis and logic synthesis as follows. (1)
Every register allocated during high level synthesis is
controlled so that it does not load any value unless its
input has a valid data. (2) For any combinational RTL
module, no logic optimization beyond its boundary is
done.
RTL paths and DFG paths An RTL path is an or-
dered set {M0,M1(p1),M2(p2), · · · ,Mn(pn)} where
M0 is a primary input or a register, Mn is a primary
output or register, Mi(0 < i < n) is an operational
module or a multiplexor, andMi(0 ≤ i < n)’s output is
connected to a port pi+1 of Mi+1. For example, an or-
dered set {M0,M1(p0),M2(p0),M3(p0)} in Fig.1(b) is
an RTL path. In general, one RTL path corresponds to a
set of paths in a synthesized gate level circuit.
In this paper, a gate level false path means a path

which is unsensitizable under the non-robust sensitiza-
tion criterion[6]. An RTL path is false if any path in
its corresponding set of gate level paths is false for any
logic synthesis, and an RTL path is true if it is not false.
A DFG path is a 3-tuple (vi, o, vo), where o is

an operation and vi and vo are input and output
variables of o. For example, (a, +1, f) in Fig.1(a)
is a DFG path and it corresponds to an RTL path
{M0,M1(p0),M2(p0),M3(p0)]} in Fig.1(b). In [3],
we showed a sufficient condition for RTL false path.
An RTL path is false if (1) there is no corresponding
DFG path in SDFG, or (2) there is a corresponding DFG
path (vi, o, vo) but vi crosses boundaries of control steps
more than once.
We define DFG true and false paths as follows. A

DFG path (vi, o, vo) is true if s(o) = s(og) + 1 holds
for an operation og that generates a variable vi. A DFG
path is false if it is not true. From the above sufficient
condition, an RTL path is false if no true DFG path

corresponds to the RTL path.

3 Proposed Method
We propose a resource binding method that generates an
RTL circuit with small number of RTL paths and small
number of RTL true paths. The proposed method first
considers a path-based resource sharing in which a set
of DFG paths are assigned to the same RTL path. This
strategy is effective to reduce the number of RTL paths.
Compatibility for DFG path blocks Though a con-
cept of path-based resource sharing was introduced by
[6], it considers only a series of the same type opera-
tions that can be assigned to the same self loop. This
strategy can simplifies and localizes interconnects be-
tween registers and operational modules and can reduce
the interconnect area.
In this paper, we generalize this concept. In the pro-

posed method, a set of DFG paths are partitioned into
blocks where each block is a set of DFG paths that share
the same RTL path. The partition is obtained by repeat-
edly merging two blocks until no blocks are compatible.
To realize this strategy, we introduce a compatibility for
two blocks. A compatibility means that two objects can
share the same resources.
First we define compatibilities for variables and oper-

ations. Two variables are compatible if their life times
do not overlap. The life time of a variable is an interval
[s(og)+1, s(ou)] where og and ou are operations which
generates and uses the variable. Two operations o1, o2

are compatible if s(o1) ̸= s(o2) and t(o1) = t(o2). A
compatibility for two blocks is more complicated. It
is required that input variables, operations, and output
variables appearing in the two blocks are mutually com-
patible, respectively. In addition, if these variables or
operations appear as both input and output variables or
appear in the other blocks, it implies resource sharing
among them and compatibilities are required among the
variables or operations that share the same resource. For
a partition of a set of DFG paths, sets of variables or
sets of operations that share the same resources are de-
termined. We call such a set of variables and a set of
operations a super variable and a super operation, re-
spectively.
Consider an example for the SDFG in Fig.1. Fig-

ure 2(a) shows a set of DFG paths and Fig.2(b)
shows compatibilities for an initial partition
{{Pa}, {Pb}, {Pc}, {Pd}, {Pe}, {Pf}, {Pg}, {Ph}}
where each block has one DFG path. For example,
two blocks {Pa}, {Pb} are not compatible since input
variables a and b are not compatible. Figure 2(c)
shows compatibilities after two blocks {Pg}, {Pf} are
merged. Since Pg = (g, +4, i) and Pf = (f, +2, g),
this merge generates a super variable {g, i, f} and a

2

!"#$%"&$'(&$)*&$$!+#$%+&$'(&$)*&$!,#$%,&$'-&$.*

!/#$%/&$'0&$1*&$!2#$%2&$'0&$1*&$!)#$%)&$'-&$.*

!.#$%.&$'3&$4*&$$!1#$%1&$'3&$4*

%"*

!"

!1 !+

!"

!1 !+

!2

!. !)

!,!/

!2

!. !)

!,!/

%+* %,*

Figure 2: block compatibilities: (a)DFG
paths, (b)compatibilities for an initial partition,
(c)compatibilities after {Pg} and {Pf} are merged.

super operation {+4, +2}. One merge is affected to
compatibilities for other blocks if merged variables
or operations appear in other blocks. For example,
{Ph}, {Pd} are not compatible in Fig.2(c) since their
merge implies resource sharing between super variables
{+3}, {+4,+2} and +2 and +3 are not compatible.
Outline The proposed method aims to reduce the num-
ber of RTL paths first, and to reduce RTL true paths
second. In the proposed method, DFG paths are parti-
tioned so that they share RTL paths as much as possible.
At that time, we also consider resource sharing between
DFG true paths so that the number of RTL true paths is
reduced. It has the following 4 steps.

1. DFG path partitioning
A set of DFG paths are partitioned into blocks
where each block is a set of DFG paths that share
the same RTL path. We start this step with an initial
partition where each block is composed of a single
DFG path. Then, we repeatedly select two blocks
and merge them into one block until no compati-
ble block pair remains. In each iteration, a pair of
blocks such that more compatible block pairs re-
main after their merge is selected. If there are two
or more candidate pairs, a block pair that has true
paths for both blocks is preferred.

2. Operational module binding
Though there is no compatible DFG path blocks
at the beginning of this step, there may exist com-
patible super operations. In this step, we assign
super operations to operational modules so that su-
per operations with more common input variables
and common output variables can share operational
modules.

Table 1: Benchmark characteristics
benchmark latency #PI #PO #op. #variable
Lwf 5 2 1 5 7
Tseng 5 3 1 8 11
Paulin 5 4 3 10 11

3. Register binding
Register binding is similar to the operational mod-
ule binding. We assign super variables to registers
so that super variables with more common opera-
tions that generate or use the super variables can
share registers.

4. Interconnect binding
This step assigns super input variables to ports of
operational modules. If the corresponding opera-
tion is commutative, interconnect binding has some
flexibility. We perform an interconnect binding so
that each register is connected with less ports.

4 Experimental Results
We evaluate the proposed method using some high level
synthesis benchmarks. We compare the results with the
RTL circuits with the minimum number of operational
modules and registers shown in [7]. Table 1 shows the
characteristics of the benchmarks, where #op. means
the number of operations.
Table 2 shows the number of RTL paths for the pro-

posed method (Proposed) and the results with the mini-
mum number of operational modules and registers (Min-
imum module & register), where total, #true and #false
mean the number of total RTL paths, the number of true
paths and the number of false paths, respectively. This
result shows that the proposed method can reduce both
the number of RTL paths and the number of RTL true
paths in most cases. Therefore, the proposed method
can reduce delay fault test cost.
We also evaluate area of obtained RTL circuits (Table

3). In some cases, the proposed method needs more re-
sources than the optimal cases. However, path-based re-
source binding works effectively to reduce interconnect
area. For two benchmarks, we can reduce the number of
multiplexors while preserving the minimum number of
other resources.

5 Conclusions
This paper proposes a new high level synthesis method
that reduces the numbers of RTL paths and RTL true
paths during resource binding. The proposed method
adopts a path-based assignment strategy that considers

3

Table 2: The results on the number of RTL paths

benchmark Proposed Minimum module & register
total #true #false total #true #false

Lwf 9 7 2 14 8 6
Tseng 19 13 6 22 13 9
Paulin 26 12 14 27 9 18

Table 3: The results on area

benchmark Proposed Minimum module & register
#module #mux #register #module #mux #register

Lwf 3 3 3 3 4 3
Tseng 7 6 7 7 7 5
Paulin 4 8 6 4 10 6

assignment of variables and an operation of a DFG path
together. Experimental results shows that the proposed
method effectively reduce both RTL paths and RTL true
paths.

References
[1] A. Krstic and K.-T. Cheng, Delay fault testing for VLSI circuits.

Kluwer Acdemic Publishers, 1998.
[2] Y. Yoshikawa, S. Ohtake, and H. Fujiwara, “False path identifi-

cation using RTL information and its application to over-testing
reduction for delay faults,” in Proceedings of IEEE 16th Asian
Test Symposium, pp. 65–68, 2007.

[3] N. Ikeda, S. Ohtake, M. Inoue, and H. Fujiwara, “RTL false
path identification using high level synthesis information,” Tech-
nical Report of IEICE, vol. 107-482, pp. 63–68, Feb. 2008 (In
Japanese).

[4] Y. Yoshikawa, S. Ohtake, T. Inoue, and H. Fujiwara, “A synthe-
sis method to alleviate over-testing of delay faults based on RTL
don’t care path identification,” in Proceedings of IEEE VLSI Test
Symposium, 2009.

[5] Y. Yoshikawa, S. Ohtake, T. Inoue, and H. Fujiwara, “Fast false
path identification based on functional unsensitizability using
RTL information,” in Proceedings of 14th Asia and South Pacific
Design Automation Conference 2009, pp. 660–665, 2009.

[6] T.Kim and X.Liu, “Compatibility path based binding algorithm
for interconnect reduction in high level synthesis,” in Proceedings
of International Conference on Computer Aided Design, pp. 435–
441, 2007.

[7] T. Takasaki, T. Inoue, and H. Fujiwara, “A high-level synthesis
approach to partial scan design,” in Proceedings of IEEE Asia
Test Symposium, pp. 309–314, 1999.

4

