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Abstract—Functional test sequences for manufacturing test are
typically derived from test sequences used for design verification. Since
long verification test sequences cannot be used for manufacturing test
due to test-time constraints, functional test sequences often suffer from
low defect coverage. In order to increase their effectiveness, we propose
a DFT method that uses the register-transfer level (RTL) output-
deviations metric to select observation points for an RTL design and
a given functional test sequence S. The selection of observation points
is based on the output deviation for S and the topology of the design.
Simulation results for six ITC’99 circuits and the OpenRisc1200 CPU
show that the proposed method outperforms two baseline methods in
terms of the stuck-at and transition fault coverage, as well as for two
gate-level defect coverage metrics, namely bridging (BCE+) and gate-
equivalent fault coverage. Moreover, by inserting a small subset of
all possible observation points using the proposed method, significant
defect coverage increase is obtained for all benchmark circuits.

I. INTRODUCTION

Structural test for modeled faults at the gate level is widely
used in manufacturing testing [1]. Although structural tests can be
developed to achieve high fault coverage for modeled faults, they
often suffer from inadequate defect coverage. Scan-based structural
testing for aggressive defect screening is also associated with the
problems of overtesting and yield loss [2] [3]. Hence functional
tests are often used to supplement structural tests to improve test
quality [4] [5]. However, it is impractical to generate and evaluate
functional test sequences at gate-level for large circuits. A more
practical alternative is to carry out test generation, test-quality
evaluation, and design-for-testablity (DFT) earlier in the design
cycle at the register-transfer (RT) level [6]–[9].

A number of methods have been presented in the literature for
test generation at RT-level [10]–[16]. However, they usually suffer
from low gate-level fault coverage due to the lack of gate-level
information or due to the poor testability of the design. To increase
testability and to ease test generation, various DFT methods at
RT-level have also been proposed. These DFT methods can be
classified into two categories, namely scan-based methods [17]–[21]
and techniques that do not use scan design [22]–[27]. Scan-based
DFT techniques are easy to implement, but they lead to long test
application time and they are less useful for at-speeding testing.
Non-scan DFT techniques offers lower test application time and
they facilitate at-speed testing. In [22], non-scan DFT techniques
are proposed to increase the testability of RT-level designs. The
orthogonal scan method, which uses functional datapath flow for
test data, is proposed in [23] to reduce test application time. In [24]
[25], design-for-hierarchical-testability techniques were described
to aid hierarchical test generation. In [26], the authors presented
a method based on strong testability, which exploits the inherent
characteristic of datapaths to guarantee the existence of test plans
(sequences of control signals) for each hardware element in the
datapath. To reduce the overhead associated with strong testability,
a linear-depth time-bounded DFT method was presented in [27].
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Although much work has been done on RTL DFT to increase
testability and ease RT-level test generation, much less work on
RTL DFT has been targeted towards increasing the defect coverage
of existing functional test sequences. The generation of functional
test sequences is a particularly challenging problem, since there
is insufficient automated tool support and this task has to be
accomplished manually or at best in a semi-automated manner.
Therefore, functional test sequences for manufacturing test are
often derived from design-verification test sequences [28]–[30] in
practice. It is impractical to apply such long verification sequences
during time-constrained manufacturing testing. Therefore, shorter
subsequences must be used for testing, and this leads to the problem
of inadequate defect coverage. Therefore, we focus on RTL DFT
to increase the effectiveness of these existing test sequences.

To enhance the effectiveness of given test sequence for an
RT-level design, we can either insert control points to increase the
controllability of the design or observation points to increase the
observability of the design. In this work, we limit ourselves to the
selection and insertion of observation points. We use the RT-level
output deviation metric from [31] and the topology information of
the design to select and insert the most appropriate observation
points. The RT-level output deviation metric has been defined and
used in [31] to grade functional test sequences.

To evaluate the proposed observation-point selection method,
we use six ITC ′99 circuits as well as the OpenRISC 1200, which
is more representative of industry designs, as the experimental
vehicles. Simulation results show that the proposed method out-
performs two baseline methods for defect coverage (represented
by gate-level bridging and gate-equivalent fault coverage, as well
as traditional stuck-at and transition fault coverage). Moreover, by
inserting a small subset of all possible observation points using the
proposed method, significant defect coverage increase is obtained
for all circuits.

The remainder of this paper is organized as follows. Section
II defines the problem and presents the proposed observation-
point selection method based on RT-level deviations and topology
information. The design of experiments and experimental results
are reported in Section III. Section IV concludes the paper.

II. OBSERVATION-POINT SELECTION

In this section, we first define the DFT problem being tackled
in this paper. Next we give basic definitions for topology. Then
we introduce the new concept of RT-level internal deviations.
Following this, we introduce the metrics that can be used to guide
observation-point selection. Finally, we present the observation-
point selection algorithm based on RT-level output deviations and
topology information of the design.

A. Problem definition

To make the existing functional test sequences more useful
for targeting defects in manufacturing testing, we can increase the
testability of the design by inserting an observation point for each
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Fig. 1. An example to illustrate RTL topology.

register output. However, it is impractical to insert all possible
observation points since it will lead to high hardware and timing
overhead. In practice, the number of observation points is limited
by area and performance considerations. For a given upper limit
n, our goal is to determine the best subset of n observation points
from all the possible observation points such that we can maximize
the defect coverage, i.e., maximize the effectiveness, of a given
functional test sequence S. When n is not given, another interesting
problem arises: Given RT-level description for a design and a
functional test sequence S and given the highest fault coverage
that can be obtained by S and by inserting the maximum number
of observation points, the goal is to determine both n and n
observation points to maximize the effectiveness of S. In this paper,
we focus on the first case when n is given. For the second case,
we will investigate it in the future work.

B. Topology analysis

We exploit RTL topology information, which refers to the
interconnection between registers and combinational blocks at RT-
level; see Fig. 1. Each oval in Fig. 1 represents a register while each
“cloud” represents a combinational block between two registers.
A directed edge implies possible dataflow. From the extracted
topology graph G, we can see how registers are connected to
each other through combinational blocks. We next define related
terminology that is used in the paper.
1-level downstream and upstream registers: Consider two reg-
isters R1 and R2. If there is a directed edge from R1 to a
combinational block in G, and there is a directed edge from the
same combinational block to R2, then R2 is a 1-level downstream
register for R1 (denoted as R2 D R1) and R1 is a 1-level upstream
register for R2 (denoted as R1 U R2). For example, in Fig. 1, we
have R3 D R0 and R0 U R3.
p-level downstream and upstream registers (p>1): This is a
recursive definition and it is based on the 1-level downstream
register and upstream register defined above. Consider two registers
R1 and Rp+1. If there is a sequence of registers Ri (i = 2..., p)
such that (R2 D R1)

∧
...(Ri+1 D Ri)

∧
...(Rp+1 D Rp) is true,

and if Rp+1 is not a k-level downstream register for R1 (k < p),
then Rp+1 is a p-level downstream register for R1 and Rp+1 is
a p-level upstream register for R1. For example, in Fig. 1, Reg7
is a 3-level downstream register for Reg0 and Reg0 is a 3-level
upstream register for Reg7.

C. RT-level internal deviations

The RT-level output deviation for S has been defined in [31] to
be a measure of the likelihood that error is manifested at a primary
output. It can be calculated at RT-level for a given design based

TABLE I. Difference between internal deviations and output deviations.

Register 0 → 0 0 → 1 1 → 0 1 → 1 obs Idev Odev
Reg0 200 300 250 250 0.33 0.6675 0.3047
Reg1 100 250 250 200 0.33 0.6324 0.2813
Reg2 100 250 250 200 0.33 0.6325 0.2813
Reg3 500 200 150 150 0.5 0.5038 0.2956
Reg4 500 50 50 400 0.5 0.1814 0.0953
Reg5 500 50 50 400 0.5 0.1814 0.0953
Reg6 500 50 50 400 1 0.1814 0.1814
Reg7 500 50 50 400 1 0.1814 0.1814

on three contributors. The first contributor is the transition count
(TC) of registers. Higher the TC for a functional test sequences,
the more likely is it that this functional test sequences will detect
defects. The second contributor is the observability of a register.
The TC of a register will have little impact on defect detection if
its observability is so low that transitions cannot be propagated to
primary outputs. Therefore, each output of registers is assigned
an observability value using a SCOAP-like measure. The third
contributor to RT-level output deviation is the weight vector, which
is used to measure how much combinational logic a register is
connected to. Each register is assigned a weight value, representing
the relative sizes of its input cone and fanout cone.

Before analyzing the factors that determine the selection of
observation points, we first introduce the new concept of RT-level
internal deviations. We define the RT-level internal deviation to be
a measure of the likelihood of error being manifested at an internal
register node, which implies that an error is manifested at one or
more bits of register outputs. The calculation of RT-level internal
deviations is different from that for RT-level output deviations, in
that here we do not consider whether a transition in a register is
propagated to a primary output.

We use an example to illustrate the difference between internal
deviations and output deviations. Consider a circuit with the topol-
ogy shown in Fig. 1. Suppose the CL vector is (1, 0.998, 0.998, 1).
To simplify the calculation we suppose that the weight value for
each register is 1. Suppose that, for a functional test sequence TS,
we have recorded the TCs of the registers for each type of transition
in Columns 2−5 of Table I. In the same table, the column obs shows
the observability value of each register, which is obtained from
the topology information. Idev and Odev list the internal deviation
value and output deviation value for each register, respectively.
For example, the internal deviation value of Reg0 is calculated
as 1−1200·1 ·0.998300·1 ·0.998250·1 ·1250·1, i.e., 0.6675. The output
deviation of Reg0 is calculated as 1 − 1200·1·0.33 · 0.998300·1·0.33 ·
0.998250·1·0.33 · 1250·1·0.33, i.e., 0.3047.

D. Metrics to guide observation-point selection

Next we describe two RTL testability metrics that can be used
for evaluating the quality of test sequences. We also show how these
two metrics can be combined to guide the selection of observation-
points for DFT. The first metric is related to the output deviation for
the test sequence S while the second metric considers the topology
of the RTL design.

1) RT-level output deviations: In this work, we only consider
the insertion of observation points at outputs of registers. For
a register Reg, we have the following attributes attached to it:
Idev(Reg), Odev(Reg), obs(Reg). These attributes represent its
internal deviation, output deviation, and observability value, respec-
tively. For two registers Reg1 and Reg2, we define the following
two observation-point-selection rules:
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Rule 1: If Reg1 and Reg2 do not have predecessor/succssor
relationship and Idev(Reg1) > Idev(Reg2), select Reg1;
Rule 2: When Reg1 is the logical predecessor of Reg2, and
Idev(Reg1) is close in value with Idev(Reg2), select Reg2.

For Rule 1, the motivation is that if we select a register with
higher Idev , its observability will becomes 1. Thus, its Odev will
also become higher. The higher Odev of this register contributes
more to Odev for the circuit. Since it has been shown that cumu-
lative Odev is a good surrogate metric for gate-level fault coverage
[31], we expect to obtain better gate-level fault coverage when we
select a register with higher Idev .

For Rule 2, if we select Reg2, obs(Reg2) will become 1
and obs(Reg1) will also be increased due to the predecessor
relationship between Reg1 and Reg2. Therefore, it is possible
that the selection of Reg2 yields better results than the selection
of Reg1, i.e., the cumulative observability after the insertion of
observation point on Reg2 is higher than for Reg1.

To satisfy the above two rules, we consider the RT-level output
deviations in guiding the selection of observation points. Since
Odev is proportional to Idev and obs, if we select a register with
higher Odev , we will tend to select the register with higher Idev

and higher obs. Therefore, we satisfy Rule 1 as well as implicitly
satisfying Rule 2: for two registers Reg1 and Reg2 whose Idev

values are comparable, if Reg1 is the predecessor of Reg2, we
have obs(Reg1) < obs(Reg2) and Odev(Reg1) < Odev(Reg2).
Then we will not select Reg1, which is in accordance with Rule 2.

2) Topology information: The RT-level output deviation met-
ric alone is not sufficient to ensure the selection of best observation
points. If we select a register (labeled as R1) with the highest
output deviation, it does not enhance the output deviation of its
downstream registers. Instead, if the observation point is inserted
a downstream of R1 (says R2), it benefits R1 as well as other
registers between R1 and R2. Therefore, selecting one register with
the highest output deviations in each step does not always lead to
the steepest increase in the overall output deviation value for the
whole circuit. Let us revisit the example of Section II-C. The output
deviation for the original circuit calculated using [31] is 0.8612. If
we want to select one observation point, according to the Odev of
each register in Table I, we will select Reg0 since it has the highest
output deviation value. The observability value of Reg0 will be
increased to 1 and the observability value of all other registers
will remain unchanged. Based on the updated observability vector,
the overall output deviation value can be recalculated as 0.9336.
The increase in output deviation is 0.9336 − 0.8612, i.e., 0.0724.
However, if we consider Reg3 (the 1-level downstream register of
Reg0) as the observation point, the observability value of Reg3 is
increased to 1 and the observability value of Reg0, Reg1, Reg2
will also be increased to 0.5. The overall output deviation value will
be calculated to be 0.9423 and the increase in output deviation is
0.9423−0.8612 in this case, i.e., 0.0811. From the above example,
we see that in some cases, the register with the highest output
deviation is not the best choice for inserting an observation point.

We therefore consider both the topology information and
output deviation as metrics to guide observation-point selection.
In each step, we consider k candidate registers (where k is a
user-defined parameter) and evaluate the deviation improvement
for the whole circuit for each of the k observation points. The
best candidate is selected in each step. The k candidate registers
are determined as follows. First, we take the m registers with the

highest output deviations. Next, take 1-level to p-level (p is set to
2 in this paper) downstream registers of these top-most deviation
registers in order until the number of candidate registers reaches k.
E. Observation-point selection procedure

In the selection of observation-points, we target the specific
bits of a register. The calculation of Idev , Odev , obs is carried out
for each bit of a register. Given an upper limit n on the number of
observation points, the selection procedure is as follows:

• Step 0: Set the candidate set to be all bits of registers that do
not directly drive a primary output.

• Step 1: Derive the topology information for the design and save
it in a look-up table. Obtain the weight vector, observability
vector, and TCs for each register bit, and calculate RT-level
output deviations for each register bit.

• Step 2: Take m register bits with the highest output deviations.
Take 1-level to p-level downstream register bits of these m
top-most deviation register bits in order based on the topology
information, until the number of these register bits reaching
k. Put these k register bits in the current candidate list.

• Step 3: For each register bit in the current candidate list,
evaluate the output deviation improvement for the design when
it is inserted as an observation point. Select the best candidate
and clear the current candidate list.

• Step 4: If the number of selected observation points reaches
n, terminate the selection procedure.

• Step 5: Update the observability vector using the inserted
observation point (selected in Step 3) and the topology in-
formation. Re-calculate output deviations for each register bit
using the updated observability vector. Go to Step 2.
In Step 1, the topology information of the design, including

all the direct predecessor bits and all the direct successor bits for
a register bit, can be extracted using a design analysis tool, e.g.,
Design Compiler from Synopsys. It only needs to be determined
once and it can be saved in a look-up table for subsequent use. In
Step 3, each time we put k register bits in the current candidate
list. These k register bits comes from register bits with top-most
output deviations and their downstream register bits. In Step 4, after
selecting and inserting an observation point, we need to update
the observability vector because the observability of its upstream
nodes will also be enhanced. There is no need to recompute TCs
and the weight vector since they depend only on the functional test
sequence, and they are not affected by observation points.

III. EXPERIMENTAL RESULTS

To evaluate the efficiency of the proposed observation-point se-
lection method, we performed experiments on six ITC ′99 circuits
[7] as well as on a more industry-like design, i.e., the OpenRISC
1200 processor [32]. The OpenRISC 1200 is a 32-bit scalar RISC
with Harvard microarchitecture, 5-stage integer pipeline, virtual
memory support (MMU), and basic digital signal processor (DSP)
capabilities. The functional test sequences for the six ITC ′99 are
generated using the RT-level test generation method from [7]. For
the OpenRISC 1200, the functional test sequences are obtained
by simulation of the design-verification test, which is provided by
developers of the OpenRISC 1200.

Our goal is to show that the RT-level deviation-based
observation-point selection method can provide higher defect cov-
erage than other baseline methods. Besides traditional stuck-at and
transition fault coverage, we use enhanced bridging fault coverage
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Fig. 2. CPU/DSP block diagram of OpenRISC 1200.

estimate (BCE+) [33] [34] and gate-exhaustive (GE) score [35]
[36] to evaluate the unmodeled defect coverage. The GE score is
defined as the number of the observed input combinations of gates.
Here, “observed” implies that the gate output is sensitized to at
least one of the primary outputs. We first observe the highest defect
coverage when all possible observation points are inserted into the
design. Next we show the defect coverage for different observation-
point selection methods for a given number of observation points.

A. Experimental setup

All experiments were performed on a 64-bit Linux server with
4 GB memory. Synopsys Verilog Compiler (VCS) was used to run
Verilog simulation and compute the deviations. The Flextest tool
was used to run gate-level fault simulation. Design Compiler (DC)
from Synopsys was used to synthesize the RT-level descriptions
as gate-level netlists and extract the gate-level information for
calculating the weight vector. For synthesis, we used the library
for Cadence 180nm technology. Matlab was used to obtain the
Kendall’s correlation coefficient [37]. The Kendall’s correlation
coefficient is used to measure the degree of correspondence between
two rankings and assessing the significance of this correspondence.
It is used in this paper to measure the degree of correlation of
functional state coverage and gate-level fault coverage. A coefficient
of 1 indicates perfect correlation while a coefficient of 0 indicates
no correlation. All other programs were implemented in C++ codes
or Perl scripts.

B. OpenRISC 1200 Processor

The OpenRISC 1200 processor is intended for embedded,
portable and networking applications. It includes the CPU/DSP
central block, direct-mapped data cache, direct-mapped instruction
cache, data MMU and instruction MMU based on hash-based
DTLB, etc. We only target the CPU/DSP unit in this paper since
CPU/DSP is the central part of the OpenRISC 1200 processor.
Figure 2 shows the basic block diagram of the CPU/DSP unit. The
instruction unit implements the basic instruction pipeline, fetches
and dispatches instructions as well as executes conditional branch
and jump instructions. GPRs is the general-purpose registers unit.
OpenRISC 1200 implements 32 general-purpose 32-bit registers.
The Load/Store unit transfers all data between the GPRs and the
CPU’s internal bus. The MAC unit executes DSP MAC operations,
which are 32×32with 48-bit accumulator. The system unit connects
all other signals of the CPU/DSP that are not connected through
instruction and data interfaces. The exception unit handles the
exceptions for the core.

TABLE II. Gate-level fault coverage (stuck, transition) of the design before and
after inserting all observation points.

Benchmark Original design Design with all observation points
Circuits SFC% TFC% #OP SFC% TFC%

b09 59.18 47.93 27 82.8 67.86
b10 36.89 20.19 14 69.03 45.67
b12 50.25 26.67 115 55.23 31.92
b13 35.9 23.33 43 70.83 44.02
b14 83.95 74.6 161 92.34 83.32
b15 9.91 5.35 347 23.29 11.36

or1200 cpu 10.33 4.68 1891 37.53 18.96

TABLE III. Gate-level BCE+ and GE score of the design before and after
inserting all observation points.

Benchmark Original design Design with all observation points
Circuits BCE+% GE score #OP BCE+% GE score

b09 45.58 121 27 70.13 173
b10 28.04 132 14 55.07 330
b12 29.91 889 115 33.52 1005
b13 23.11 257 43 47.12 483
b14 74.52 8601 161 81.23 8934
b15 4.4 806 347 10.63 1987

or1200 cpu 4.65 1690 1891 19.86 6273

C. Maximum defect coverage for the design with all observation
points inserted

The defect coverage of a functional test sequence S is deter-
mined by the quality of S, and the controllability and observability
of the design. The defect coverage can be enhanced by improving
the quality of S or by inserting control and observation points to the
design. We focus here only on selection and insertion of observation
points so that S can be made more effective for manufacturing test.
Therefore, it is of interest to determine the maximum gate-level
fault coverage when all possible observation points are inserted,
and to normalize the fault coverage to this maximum when we
evaluate the impact of inserting a subset of all possible observation
points.

Tables II-III compare the stuck-at and transition fault coverage
as well as two gate-level metrics (BCE+ and GE score) for the
original design to the design with all observation points inserted.
The parameters SFC% and TFC% represent stuck-at and transition
fault coverage respectively. The parameter BCE+% indicates the
gate-level fault coverage for bridging fault estimate. #OP lists the
number of observation points. The or1200 cpu entry represents
the CPU/DSP unit of the OpenRISC 1200 processor. Since we
are focused on observation-point selection in this paper, we will
consider the maximum gate-level fault coverage for the design
with all observation points inserted as a measure of the highest
achievable gate-level fault coverage. This maximum value is then
used to normalize the fault coverage for the design with only a
subset of observation points inserted.

D. Comparison of normalized gate-level fault coverage

In this section, we compare the normalized gate-level metrics
(stuck-at fault coverage, transition fault coverage, BCE+ and GE
score) for different observation-point selection methods. The nor-
malized stuck-at fault coverage, transition fault coverage, BCE+
and GE score are obtained by taking the stuck-at fault coverage,
transition fault coverage, BCE+ and GE score of the design with
all observation points inserted as the reference.

An automatic method to select observation signals for design
verification was proposed in recent work [38]. Since this method is
also applicable to observation-point selection in manufacturing test,
we take it as an example of recent related work. For the six ITC ′99
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Fig. 3. Results on gate-level normalized metrics for b09, b10 and b12: (1) BCE+; (2) GE score.
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circuits, we compare the proposed method to [38] and to a baseline
random observation-point insertion method. For or1200 cpu, we
compare the proposed method to two baseline random observation-
point insertion methods since the method implemented by [38] is
not directly applicable to it.

For each circuit, we select the same number of n (for various
values of n) observation points using different methods. Results
for normalized gate-level fault coverage and normalized GE score
are shown in Fig. 3-6. Due to lack of space, results for normalized
gate-level stuck-at fault coverage and transition fault coverage for
ITC′99 circuits are on the web [39]. The results for all cases show
that the proposed method consistently outperforms the baseline
methods in terms of defect coverage metrics. Also, by inserting a
small fraction of all possible observation points using the proposed
method, significant increase in defect coverage are obtained for all
circuits. For each circuit, it only costs several seconds to calculate
RT-level deviations and select observation points. These indicate the
effectiveness of the proposed RT-level observation-point selection
method.
E. Impact of functional coverage on the final defect coverage

In this section, we will analyze the impact of functional
coverage on the final defect coverage obtained for the design with
all observation points inserted. One of the most commonly used
functional coverage metric is the state coverage [40]–[42]. State
is defined as the values of the state variables in the design. State
coverage is defined as the ratio of the states covered by a test
sequence over the target states. Here we consider the complete
state set as the target states.

Table IV lists the state coverage for the six ITC ′99 circuits.
“No. of Register Bits” represents the total number of bits for all
state variables in the design. “Target States” lists the number of
all possible states. “Covered States” shows the number of states
covered by the given functional test sequences. The last column
shows the state coverage. We can see that the state coverage is
very low for each circuit.

In order to see the impact of state coverage on the final defect
coverage, we investigate the correlation between the state coverage
and the gate-level fault coverage metric. Since the state coverage
is quite low, we transform it by performing “log” operation on its
denominator. For example, for b09, the state coverage is 390/2 28.
We transform it to 390/log(228), that is 390/(28 ∗ log(2)).
In this way, we can get the transformed format of state
coverage for each circuit, denoted as a vector Trans state cov
(Trans state cov b09, ..., T rans state cov b15). Next, we
record the gate-level stuck-at fault coverage of the design

TABLE IV. State coverage.

Benchmark No. of Target Covered State
Register Bits States States Coverage

b09 28 228 390 390/228

b10 20 220 160 160/220

b12 122 2122 1230 1230/2122

b13 53 253 1141 1141/253

b14 216 2216 4695 4695/2216

b15 417 2417 117 117/2417

TABLE V. Kendall’s correlation coefficient.
Stuck-at Transition BCE+
Fault Fault

Coefficient 0.733 0.6000 0.6000

with all observation points inserted as a vector stuck cov
(stuck cov b09, ..., stuck cov b15). Then, we calculate the
Kendall’s correlation coefficient between Trans state cov
and stuck cov. In the similar way, we calculate the Kendall’s
correlation coefficient between the transformed form of state
coverage and transition fault coverage (BCE+). Table V shows
the correlation between transformed form of state coverage and
stuck-at fault coverage (transition fault coverage, BCE+ metric).
We see that the coefficients are significant. The results demonstrate
that the higher transformed state coverage a design has, the more
tendentious for the design with all observation points inserted to
provide higher defect coverage.

IV. CONCLUSIONS

We have proposed an RT-level deviations metric and shown
how it can used in combination with topology information to
select and insert observation points for an RT-level design and a
functional test sequence. This DFT approach allows us to increase
the effectiveness of functional test sequences (derived for pre-
silicon validation) for manufacturing testing. Experiments on six
ITC′99 benchmark circuits and the OpenRISC 1200 cpu show
that the proposed RT-level DFT method outperforms two baseline
methods for enhancing defect coverage (represented by stuck-at
fault coverage, transition fault coverage, BCE+ and GE score).
We have also shown that the RT-level deviations metric allows us
to select a small set of the most effective observation points. As
future work, we are applying the proposed method to the selection
of control points to further increase the effectiveness of given
functional test sequences.
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