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Abstract:

An approsch o auomatic test generation using neural networks was
proposed by Chakradhar i al. [1). They formulated the test generation
problem as an oplimization problem which can be solved by Hopfield's
binary newral networks where neurons take binary values either 0 or 1. In
this paper we propose a three-valued (0, 1, and 1/2) nearal network which is
an exiension of the hinary Hoplield's model and show that the test generation
problem can be solved by the three-valued model more effectively than by the
binary one, In the three-valued model, the energy function of nerworks,
hyperplanes of neurons, and update rules of neuron's states are extended o
that the third value 172 can be treated well. 1115 proved that the proposed
threc-valued model always converges. To escape from local minima, an
extenzion of Boltzmann machines is presented where the update rules are
modified by introducing probabilities of neuron’s siates.

Kevwords:
Baltzmann Machine, Neural Networks, Opiimization Problem, Test
Generation, Three-Valued,

I. Introduction

Mewral networks have been applied 1o many different fields. Although
there are many neural netwerk models, Hophield's model [2, 3] is agractive
because Lhe computational power and its speed was demonsirated by salving
one of the NP-complete problems known as the raveling salesman problem
[3].

In the field of test generation, Chakradhar et al. [1] proposed an approach
W0 aulematie st gencration using neural nerworks, They formulated the 1251
generation problem as an optimization problem which can be solved by
Hopfield's binary neural networks [2] where neyrons take binary state values
either 0 or 1. Their approach using newral nerworks is radically different
from the conventional algorithms such as the Dr-algorithm and Podem [4, 5],
[ndeed it 85 difficult to put the approach using neural networks 1o practical
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use right away, however when large scale neural networks become a reality
with advances in technology, it might provide an advantage over the
conventional methods,

The purpose: of this paper is to extend the ideas of Chakradhar ed al, [n
and \o explore new possibilies of solving computationally difficult
problems on 3-valued neural networks where neurons ke siame values from
the set [0, 1, I/2]. We propose a three-valued neural netwock madde] which
is an extension of the binary Hopfield's model and show that the test
generation problem can be solved by the three-valued model more cffecuively
than by the binary one. In this three-valued model, the energy function of
the netwark, hyperplanes of neurons, and update rules of newron's states are
extended so thar the third value 1/2 can be treated well, 1t is proved that the
proposed three-valued model always converges. To ezcape from local
minima, an extension of Boltzmann machines is presented where the update
rules are modified by introducing probabilities of neuron's states,

II. Chakradhar's Approach

First, we shall introduce briefly the approach of Chakradhar eq al. [1] in
this section.

1.1 Hopfield's Binary Model

A newral neiwork is a collection of aewrons interacting with each other.
The behavior of a newral network is completely determined by the
specification of the interaction. Let V; denote the siave of neuron i, i.c., ¥i
€ {0, 1) fori=1,2, ., N, where N i the number of neurons in the
netwark. Let V(1) denote the state of neuron i at moment & and each neuron

updates randomly in time its stye according 10 the following equation:

N
Vilt+1)= SS'{E TyVil) + L‘) (I

J=1



where sgm i defined as follows:

1 x>0
sgn(x) = { 0 z<0
where Tjj is the weight associated with the link between newrons i and j and
I; is the internal parameter of neuron i. Hopfield [2] kas shown that i Tij -
Tjj for all i and jand Tj; = 0 for all i, neurons always change their swtes in
such a manner that they lead 10 stable states that do not further change with
time and that they locally minimize an energy fumcrion defined by

N N M
E='%§§;Tiﬂi"j-2h‘ﬁ +K @
i=1 j= i=l
where K 18 a constant

2.2 Neural Networks for Logic Circuits

Ii is shown that an arbitrary logic circuil can be represented by a neural
network [1). Every net (signal line) in the circuit is represented by a neuran
and the value on the net is the state value (0 or 17 of the newron, Neural
neiworks for 2-input AND, OR, NAND, MOR, XOR and XNOR gates and a
NOT gate constituie the basis ser and gates with more than iwo inpuls are
constrcted from this basis sct. A logie circuil is realized by specifying the
matrix T = [Tj;] and vector [ = K] for the neural network. These T and [ are
determined so that the energy E of Eqn. 2 has global minima only at the
meuron states consistent with the functionality of all gates in e circull and
wll other inconsistent states have higher energy. In other words, the energy E
is 2 non-negative constant Z for all consistent states and E > Z for all
inconsistent SLAIES,

Definition 1: Associated with cach newron i is a hyperplane

E_-i:i.Tijvj + 1, =0 in an n-1 dimensional space. Associated with each
niewron i are three seis, P o, P opr 8nd Py_gpp ey whose elements are points
corresponding 1o consisient states of the network. A point belongs to Py oq
(Py_gpp) il it corresponds to only one consistent state and neuron i has an
state value 1 (0). P pipe consists of all the points corresponding 1o
consistent states but are not in the seis By ., or Py g

Definition 2: A hyperplane X, T;;V; + I, = 0 associated with
neuren | is & decision hyperplane if the points in By . and P; ¢y fall on
opposite sides of the hyperplane and all peints in  P; gpe lie on the
hyperplane.

Theorem 1 [1]: A necessary condition for the existence of a neural
neswork of n neorons for a device with n terminals (with the encrgy function
E defined in Egn. 2) is the existence of a decision hyperplane for each of the

N NEUrcs.

Example 1: Figure 1 shows a Z-input MAMND gate and the
corespending neural network, Associated with neuron 1 im the MAMD gate
are the 5215 P _oq = [(V2=1.V3=0)). Py_ggr = [(V2=1.V3=1)) and Py oiher
= [(Vg=0,V3=1)]. Associated with neuron 3 are the sets Py g =
[(V1=0.V=0), (V=1,V2=0), (V1=0.¥a=1)). Py g = ((V1=1.V2=1)] and
P3._other = {)-

From Theorem 1, the exiswence of a decision hyperplane for nearen 1
implies that Tyg + 1) > 0, Ty + Ty3 + Ij c0and Ty3 +1) = 0.
Similarly, a decision hyperplane for neuron 2 implies that Tz + 13 =0,
Tip+ T3+l <0and Tag +la=0. The decizion hyperplane for neuron 3
implics that Ig =0, Ty3 + I3 >0, Tay +l3>ﬂde|3+Tz3+134cﬂ.
Furthermare, the energy function E should be zero at all four consistent
states (Vy=Vo=0, "-’3!I}, V=0, \f2=‘|'3nl], (Vi=Vi=1, ¥a=0) and
{V1=Vy=1, V3=0). Therefore, the neural network model for the NAND gate
should satisfy the above equalitics and inequalitics that are K =Ty >0, 13
=l 20,13>>0,T12<0,T13 20, Ty 20, Ty3+11=0,Tp+1l2
=0, and Tyz + [j + 17 = I3, One solution isthatTj=lp=213=3.T|z=
-land Ty3 =Ty =-2

NAND— 1

Figure 1. 2-input NAND and the Corresponding Neural Network

2.3 Test Generation Problem Formulation

Figure 2 illustrates a network which specifies constraints for test
generation.  This network is constructed by joining the good circuit and a
faulty circuil in such a manfer that the primary inputs of the two circuits are
connecied direcly and that the primary oulpuls are connected through an
cutput interface o inclede the constraint that at least one of the primary
outputs of the faulty circuit will differ from the corresponding good circudt
cuiput. The neural network corresponding to this constraint network (the
good circuil, the faulty circuit and the output interface) is used for generating
a test vector for the faull. In this newral network, the outpul interface
incorporates the consrain that at least one of the primary outputs of the
faulty circuit will differ from the corresponding good circuit oulput.
Therefore, il a 1est exists for a fault, there exists 3 consistent labeling of the
newrons in the neural network with values from the set [0,1) that does not
violate the functionality of any gate. In this way, test generation problem
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Figure 2. Constraint Network for Test Generation

can be formulated as an optimization problem such that the desired opuma in
the: constraint neural network are the test veciors for a given faull

A local minimum of E is first obtained using a gradient descent
approach where each neuron updates randomly in Lime its state according (o
the opdate rule of Eqn. 1. Although it is guaranteed that Hopheld's netvwork
always converges on the local minima of E, it is not guaranteed that it
stabilizes at a globel minimum [2]. Hence, to escape from these local
minima, we madify the update rule through a probabilistic hill climbing
technique [6, 7]. IF the energy gap between the 0 and | states of the kth
neurcn is AEy then the state value of the newron is set to 1 with probability

P [ K]
. 1 + e 4ET

III. Three-Valued Neural Networks

As mentioned in the previpus section, the problem of wst generation is
to find out a congistent labeling of the nearons in the constraint neural
network with values from the set [0,1] that does not violate the functionality
of any gawe. However, searching with binary values involves a ot of
wasteful assignments. For example, suppose that we have 1o sel the valwe 0
an the output of an AND gate in Figure 3. Il we séarch with values only
from O or 1, we have w select one from three cases of the input
combination, (40, 01, or 10. On the other hand, if we search with values
from the set [0, 1, X} where X denotes don't care, we can select one from
two cases, 00X or X0, which reduces the search space as shown in Figure 1
{a).

In Chakradhar's appraach using the binary model, initial conditions of
neural networks for test generation are determined so that every newron has 1o
be either 0 or 1. 5o, it ofien happens that many unnecessary values are
assigned o neurons. In three-valued neural networks with values 0, 1, and X

AND)

X

Mo Change

(a) 3-valued model

AMDY

(B} Binary model

Figure 3. Comparison of 3-valued and binary models

{or 1/2), initial conditions can be selected so that all neurons have the value
172 (don't care) except the fault site,

The purpose of introducing three values (0, 1, and 1/2) is to avoid
unnecessary assignment of values 0 and 1 (pruning the search space), 1o
obtain necessary and sufficient values to detect a given fault (minimal test
vectors), and 1o speed up the convergence o the global minima,

3.1 Energy Function and Hyperplanes for 3-Valued
Model

The energy function for three-valued neural networks is defined by the
farm:

N N N N N
E=- %-z; z TV, - z I;V; - E E wi}\'jl - "q-’-L}Vil -V)+K
i=1 j=1 i=1 i=l j=1

(4}

where N is the number of neurons in the neural netwark, Tij is the weight
associated with the link between neurons i and j, Vjis the state value of
meuron i, I; is the inlernal parameter of neuron i, Wij is the weight



associated with the link between neurons i and j which is effective only when
Wi and ¥ are bath 1/2, and K 15 a constant, The swate values of nearons ane

0, 1 and 1/2. We assume Tij =T, Wij = Wjj and Tj; = Wj; = 0. The third
term is introduced o stabilize neurons under the value 172,

In the same way as Chakradhar's method, we can represent an arbitrary
logic circuit by a neural network. Every net in the circuil is represented by a
neuran and the value on the net is the state valoe (0, 1, or 1/2) of the newron,
Neural networks for 2Z-input AND, OR, NAND, NOR, XOR and XNOR
gates and a NOT gale constilute the basis sel and gates with more than two
inputs are constructed from this hasis set. A logic circuit is realized by
specifying the matrices of weights T = [T,jl and W = [‘i"-fij] and vector [ =
[1;]. These T, W and [ are determined so that the encrgy E of Eqn. 4 has
global minima only at the neuron states consisient with the functionality
{with respect to three values) of all gates in the circuit and all other
inconsisient states have higher energy. In other words, the cnergy E is a
non-negative constant Z for all consistent states and E > Z for all
inconsisicnt states.

Definition 3: Associated with each neuron i@ are three hyperplanes
(1) Ev0)- Evet) = LTV + i = 0

(2) Ejvien)- E{v,.%.} = %{EpiTijvj +1+ T Wyl - ""'rj]) =0

() Bvel) - Bver) = é{zmTij"’j +1i - Ry WiV 1 - Vﬂ') i

in an n-1 dimensional space.  Associated with each newron i are ning sets,

Pito=1)- Picoe1) Pico=13 Pigos1/23- Figneas2y Pigo=172y Pigrsas1ye
Firipaerye @0d Py oy, whose elements are points corresponding Lo
consistent states of the network. A point belongs 1o By, p) (Pyaep) il
corresponds Lo a consistent site when Visb (V=a) and an inconsistent sute
when Vi=a (Vi=b}. A poini belongs 1o P, if it coresponds to a
consistent state both when Vi=a and Vi=b.

Definition 4: A hyperplans Ej.ng'Lj"-'rj + [; = 0 associaed with
neuran i is a (0,1 )}-decision kyperpiane if the poinis in Pi.{{:lﬂ ] and Pi.[tl-::l]
fall on opposite sides of the hyperplane and all points in Fjjp=1) lic on the
hyperplane.

A hyperplane T TV + 1 + WiVl - V) = 0 associated
with neuron i is a (0,1/2)-decision hyperpiane if the points in Pjgg.q g and
Piipeifzy [all on opposile sides of the hyperplane and all points in
Pi(0u12) lie on the hyperplane.

A hyperplane T TV, +1; - WiVl - Vj) = 0 associated
with newron i is a (1/2.1)-decision hyperpiane if the points in Pjey 9o and
Pi[lf‘!ﬂ] fall on opposite sides of the hyperplane and all points in
Fig1 -1 lie on the hyperplane.

67

Theorem 2: A necessary condition for the existence of a 3-valued
neural network of n neurons for a device with n erminals (with the energy
function E defined in Eqn. 4) is the existence of three decision hyperplancs
for each of the n newrons.

Proof: The difference between the global energy of the network when
nmeuron i has the state value o and when neuron i has the siate value i, given

the current states of the other newrons, is E{y) - E[\’.=|!]' - ‘5Eimﬁ-

where o and [§ are 0, 1, or 1/2. These are:

Ev-0)= Bv=1)= AEjn; = EF'LTi i¥i+

E(v-0) - E{vt) = AEip. = %{EF'-TWJ' + 1+ WiVl - vi)
and

Ev=y)- Ev=1)=AEj = :]-!-(EjﬂT'lJ'vJ +1- Z;nn'"“""ri-j‘""'J{I 3 "rj])

For an arbitrary point P € Py (Pijaep)) neuron i has an siie value f
{a) in the consistent state 5y and @ () in the inconsistent stte 55, The
energy function E should have lower value of energy for the consistent state
5y as compared o the inconsistent state So. Therelore, ﬂEinrﬁ should
necessarily be positive (negative). The hyperplane divides the n-l
dimensional space into two regions R1 and R2, and let this point p lie in the
region R1 (R2). Therefore, for an E to cxist all points in Pyt (Pijaep)

must lic in region R1 (R2). For an arbitrary point p € Py py . there
correspond two consistent siates 5y and 5o with nearon i having state values
ot and [, respectively. Since E should aitain its minimum value, Z, in bath
the states, it is mandatory that AEjp_p be zero. Hence p must lie on the
hyperplane for E 10 exist. Hence, for any given unit i, the existence of a
(o fi-decision hyperplane is a neceseary condition for the existence of E.
Q.ED,

Example 2 Let us consider again a 2-inpul NAND gate and the
corresponding neural network shown in Figure 1. Associated with neuron 1
in the NAND gate are ning sets:

Proosny = ((Vo=1.V3=0), (V3=1/2,V1=1/2)}

Pipery = [(Va=1.V3=1), (Vo=1/2.V3=1)]

Pyo-y= [(V2=0.¥3=1)]

Pl = 1(0V2=1.V3=1/2), (V=1/2V3=1/2}}

Pl = 1(¥g=1.¥3=1), (W=1/2,¥3=1]]

Pyo=1my = ((V2=0.V3=1}]

Piias1y= 10V2=1.V3=0]

Plieny = ((V2=1,V3=1/2)] ol

Pioe=1y= ((Vz=0.V =1}, (V2=1/2.V3=1/2)).



From Theorem 2, the existence of three decision hyperplanes for each newron
are necessary for the existence of a 3-valued neural network for the NAND
gate. Let us derive the conditions of those decision hyperplanes. From three
sels, P:I{EI:-:I I PI{D-E:IJ and le“ll' the existence of a (0,1)-decision
hyperplane for neuron 1 implies that

Tz +) =0

12(T2+ Tygh+ 1 =0

Tip+Tya+lj<0

12T+ T1a+1j <0 and

T3+ =0
Similarly, from three sets, Pyyg.qray Popo<ryzy and Pyppoyyzy. the
exisience of (0,1/2)-decision hyperplanes for neuson 1 implies that

Tia+ 18T+ 1) + 14W 3> 0

12(T 24T a) + 1) + 1AW 24 W 3) = 0

T2+ T3+ <0

12T+ Ty + Iy + 1dWya <0 and

Tiz+Ij =0
From three seis. Pyoyaeqy Pijifa=n)and Pregpaoyy the existence of
(1/2,1)-decision hyperplanes for neuron 1 implies that

Tia+)1 >0

Tpa+ VIT g+ 1) - 1AW 1 <0

Tiz+lj=0 and

LT g+Ty3) + 1) - 14W 2+ W 3) =10,
Associaied with neuron 3 in the NAND gate are nine se1s:

Pye13= [(v=0,Vg=0), (¥{=1,Vo=00. V=0.Va=1), (¥ =1/2,¥2=,

(Vi=0¥a=1/2)}

Paroery = I(V1=1.Vo=1}

Pygoe1) = {1

P12y = ((V=1/2.V2=112))

Py = ((V1=1Va=1))

Pygaiy = (]

Payi ey = 1V =0,Vo=0), (Vy=1,Vo=0), (V=0.Va=1).

(Wy=1/2,Vo=l), (V=0.V4=1/2]]

Pyqieny = [(Vi=1/2.V=112)]

Pyiz-1y= [}
Similarly from three sets, Py, Paggery and Pypey). the existence of a
{0, 1}-decision hyperplane for pewron 3 implies that

I3=0

Ty +1a=0

Tag+Ig= 10

12T3 +13>0

12Tz + la=0 and

Tyy+ Tag+ 3= 0
From three sets, Pyrgey oy Pajocisz) 0 Pagp=12) the existence of
{0, 1/2)-decision hyperplanes for newron 3 implics that

1/2(Ty3 +Toy) = Iy+ LW 13+ Wazl =0 and

Ty3 + Taa+ I3<0
From three se1s, Pygypaa1)e Pagizery and Paygypaagy the existence of
(172, 1)-decision hyperplanes for newron 3 implics that

Iy=0

Tia+lp>0

Tag+Iy= 0

1f2Ty3 +13=0

1/2T33+ I3 =0 and

2Ty +Tag) + 13 - LMW 34 Waq) <0
Furthermaore, the energy funcuon E should be zero at all nine consisient
states (V) =Va=0, Va=1), (¥1=0, Va=¥a=1), (V] =V3=l, Voul), (¥y=Va=1,
V=0, (Vy=0, Va=1/2, V3=1), (V=1/2, V3=0, V3=1), (¥ |=1/2, V3=1/2,
Vym/2), (V =i, Vami/2, Vymlf2), and (V= 1/2, Vo=1, Va=1/2). These are

K-l=0

K- Tay-(Ia+l3) =0

K-Ty3 -j+iz)=0

K-Tyz-My+lah=0

K- 1Ty - (12Ia + 130 =0

K-12Ty3 -(120) +13=0

K - 144(Ty7 +#Tq3 +Tp3) - V2{1p#lp+ls) -LBW 2+ W3+ Wogl = 0

K- (IfIT3 +12T 3 +1M4T33) - (T+1203+1/213) - 1/EW3 =0

ad

K- (12T 3 +14T3 +1/2T3) - (121 +15+1/213) - 18W 3 = 0.
Summarizing the above equalities and in equalities, we have that

K=I3=0

la=Ty=0

Iy I3= 0

T30

Tia=0

Tag <0

Ty + =0

Tiz+];=0

T+t lz=ly

Wia=3IT

Wi1=-1T3 and

Wag = - 2Tg3.
Under these conditions, let us compule the encrgy for all inconsistent states.

E(Vy. V3. V1) =B, 0.0 =K =132 0

B0, 1,0)=K-Ip=l3-1z>0

E(lLO.B=K-Ij=ly-ly=0

E(1.1, 1} = K - (Ty3+T13+T23) - (11+12413) = -T12 > 0

E0, x.0)=K-1/21;>0

Ex,0,00=K- 120 =0

E(D, x. x)= K« 14Ta3 - 1/2(I3 +I3 ) - 1/8Wq3 20



E(x 0, x)=K- 14Ty - 121 +I3) - 1AW 3 =0

E(x, 5,0)= K - 4T3 - 1/2013+13) - 1/8Wg = 172130

E(x, x, 1)=K - (14T 3+ 12T 3+ 1/2T23) - (120} +17203 +13 ) -
1/BW 2 =0

E(l.x,M=K-12T2-() + 1213)=>0

E(l,x, 1) = K- (12T 4T3+ 12T23) - (I} +1203+13} = -Ty3 >0

E(x. 1,00 = K- /2Ty - (1121} 4131 >0

Efx. 1, 1) = K - (12T 2+ 1/2T 34 T9a) - {12} +I3 +13 ) =0

Ag seen from these computation, the energy E is positive for any
inconsisient state,
Omne solution which satisfies the above equalitics and inequalities is that
[j=la=2.I3=3,Tyg=-1,Ty3 = Toy = -2, Wy3 = -2, and
Wy =Woy =4,

1.2 State Transition of Neurons

The state of an individual newron i is updated as follows. Let V; denote
the state of neuron i, ie.. V; & (0,1, 12) fori= 1,2, ... N, where N is
the number of neurons in the network, Let Vi(t) denote the state of newron i
at moment t, and each neuron updates randomly in Eme its state acoording Lo
the fodlowing rule:

State Update Rule:
In case of (1) > 0

Vilt+11 =1 il Ujlo) = 8;(1)
=12 it -8j(t) « Ui < 8;(t) (5
=0 it Ui() < -8;(1)
In case of (1) < 0
Vilt+1) =1 if Upl=>0
=0 if Uy =0 ()
= Wlth otherwise.
where

Uil = Zp Ty Vile) + Iy

Bift) = Zp Wy V(011 - Vi)

Theorem 3: The algorithm based on the update rales (5)-(7) converges
on stable states provided that Tyj = Tjj, Wi = Wji and Tjj = Wij =0

Froof: This can be proved by showing thal the energy [unction E of
Eqn. 4 is always decreased by any state change produced by the algorithm
based on the update mules (5)-(7). From Eqn, 4, the energy function E is

s I M N N
=13 Y TV L WVi- 2 3 Wy VAL - VIV{1 - V) + K
i=1

i=1 j=1 i=1 j=1

(&

The difference between the global energy of the network when neuron i
has the state value o and when neuron i has the state valoe B, given the

current states of the other nearons, is E(vq) - E{y.p) = AE;q 5. where a

and B are 0, 1, or 1/2. These are:

E{"“I’ﬂ}l 7 E{'l."l.]_] o aEm—l = Z_F-JTIJVJ + Ii. - U:i ®
E{v-0)- E{v,.ﬂ = .{i.EmJi = %{E,.;Tjj"v’j +L+ Ej,lwuvﬁ - ‘v’j}}
- i{ui +8)) (10)
E{v"}] g E{vi"]'= "j'Ei.l‘-i = Jz'(EFLT;JV] + ]'. - z iwij‘l'r_{l 4 vj}}
= %{U, - 31] {11

Let us first consider the case of 8 >0, If Uj=8; then

Epv=0)-E{v=1)= ABi0.1 >0 and  Evai) - Bveer) = AEir 1 20.
According 1o the update rule (6). neuron i takes the state value 1 only when
Uj = 8, and hence this state change decreases the energy. I -8; < U; < §;
then Efvi-0)- E{‘l,r_:ﬂ = ﬂEm.; =0 and E{y-,.%} -Ey=1) = ﬁl:"-ijiq <),
Similarly, according o the update rule (5), neuron 1 wkes the state valoe 1/2
only when -8; < U; < 8, and hence the energy is decreased. If Uj <-8;
then E{v=0} - E(v=1)= AE;p.) < O and Ejv.g)- E{v~) = AEig.L < 0.
From the update rule (5}, neuron i wakes the siate value 0 only when U; < -
&, and hence the energy is decreased,
Mext, consider the case of 8; < 0. If Uj > 0 then By ) - Ejy=1) =

AEip1 >0, Since U= 02 6. Ejvey)- Eviat) = AEi.1 > 0.
According to the update mle (5), neuron | changes the state value 1o 1 only
when Uj > 8, and hence the encigy is decreased. IF Uj < 0 then
E{v=o)-E(v=1)= AEip.1 €0. Further U; « 0 5 -8; , ie.,
E{vi0) - E{v=l) = AEig 1 < 0. According to the update rule (6), neuron i
changes the state value o 0 only when Uj < 8, and hence the energy is
decreased. 1f U; = 0 then E{v=0) - E{v;=1) = AEjp.; = 0. Further U;= 0

z 8, ie. Bval)-Evae)=AEj 1 >0 U; =0 < -8 . ie,

E(v) - E{v~{) = AEjo.; <0. Therefore, E(v,) = E(v1) < Evey)
According to the wpdate rule (8), néuron i retains its state value.
Q.ED,



3.3 State Probability Functions

The algorithm mentioned in the previous section is (o use gradient
descent, i.e., the values of the variables in the problem are modified in
whatever direction redoces the energy. Howewver, for hard problems, gradient
descent gets stuck at local minima that are nod globally optimal. To escape
from local minima, we modily the update rule in the same way as a
probabilistic hill climbing technique [6, 71 by extending activation
probabilites for neurons, This is based on the idea that if jumps to higher
energy states occasionally occur, it is possible (o break out of local minima.

For 3-valued neural networks, we have to consider thres energy gaps
berween O and 1, 0 and 1/Z, and 1/2 and 1. These energy gaps are
respectively

Bviea) - Bgviet) = LTV + I ®

F.{\r;.q - E{""’i“%} - %(EJ! i'ri;'lrj + i+ EJ“W[]VJ]. = VJJ] &

E{\r':é] - _E{\,-':ﬂ = %{ij"rijvj +I;- EJ_,’W.N_H - V,L:I) (10}
As the state probability of Eqn. (3) was derived from the update rule of Eqn.

(1}, so we can define the probabilities that neuron i takes each state value, 0,
1 or 1/2, from the update rule of Eqns. {5) and (6). These state probabilities

are as follows:
In case of 8; >0
p“:p{'h'g-]]=—l-_ 11}
1 +e(vi-alfer
pio=pVet)=1- — L 12)

1 +eluisalfr

1
=p(Ve) =1 - (pia + pio) = :
py = p(VF)) Pir + Pio Te o 0o

1
1 +e-lu-a)fer

(13)
In case of B; 5 0
o = R LA (14)
Pi1 = p(Vel) 1 +eWT
i il (15)

o= W, =] - - -1 -
pie=p{¥r Pil 1+ o W7

where T iz a parameter which acts like the temperature of a physical system.

These probabilities are illustrated in Figures 4 and 5.

Figure 4. State Probabilities when 8, >0

Figure 5, State Probabilities when g; <0

IV. Conclusions

This paper proposed a three-valued (0, 1, and 1/2) neural network which
15 an extension of the binary Hopficld's model and showed that the test
generation problem can be solved by the three-valued model more effectively
than by the binary one. In the three-valued model, the energy function of
networks, hyperplancs of neurons, and update rules of neuron's states were
extended naturally so that the third value 1/2 (don't care) can be treated well.
It was proved thai the proposed three-valued model converges o local
minima as Hopfield's model does. To escape from local minima, an
extension of Boltzmann machines was presented where the update rules were
modified by introducing state probabilitics which are functions of a
LEMmperature.
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