
Optimizing Delay Test Quality with a Limited Number of Test Set

Michiko Inoue† Akira Taketani Tomokazu Yoneda† Hiroshi Iwata
Hideo Fujiwara†

Graduate School of Information Science, Nara Institute of Science and Technology
† Japan Science and Technology Agency, CREST

Abstract

To obtain high defect coverage for current nanometer
VLSI design, timing-aware ATPGs are being developed to
detect small delay faults. However, timing-aware test gen-
eration results in a large test set compared with test gen-
eration targeting traditional fault models such as stuck-at-
fault or transition fault. The statistical delay quality level
(SDQL) is proposed to evaluate test quality for small de-
lay defects, and it is adopted as a measure for timing-aware
test generation in several EDA tools. However, SDQL re-
quires a high computation cost to evaluate a test set. In
this paper, we address a problem to get a limited number of
test set with high delay test quality based on SDQL. In the
proposed method, we first generate a base test set and then
efficiently select a test set with high delay test quality under
a constraint on the number of test patterns. Experimental
results demonstrate that our method can obtain a small test
set with high quality SDQL within a reasonable time.

1 Introduction

Nanometer VLSI design is facing various problems on
dependability. Resistive-open defects occur more often than
before, and they lead to small delay faults[4]. In addi-
tion, further scaling down of transistors induces transis-
tor aging problem[7]. To overcome these problem, testing
that detects small delay faults or defects has an important
role[1, 2, 3, 9].
The statistical delay quality model (SDQM) is proposed

to evaluate test quality for small delay defects[5, 6], and it
is adopted as a measure for timing-aware test generation in
several EDA tools[2, 8, 9]. The SDQM has careful consid-
eration into statistical delay defect distribution and evalu-
ates not only test pattern quality but also quality of fabrica-
tion, design and test timing. Statistical delay quality level
(SDQL) is a delay test metric based on SDQM. Though it
is promising as a delay test quality measure, timing-aware

ATPG and fault simulation based on SDQL tend to take long
CPU time. In addition, a test set based on SDQL becomes
large compared with test sets targeting other fault models.
Therefore, it is important to obtain small test set with high
delay test quality within a reasonable time.
Yilmaz et al. proposed test set pattern grading and se-

lection method for small delay defects[10]. They avoided
time-consuming timing-aware ATPG and evaluated delay
test quality using the number of sensitized long paths, where
a long path is a path with at least 70% of the clock period.
They proposed a test set selection method based on their
delay test metric.
In this paper, we address the problem to generate a small

test set with high delay test quality measure. We adopt
SDQL as a delay test quality. In our test generation flow,
we first generate a test set called a base test set using ex-
iting ATPG and select a limited number of test patterns so
that their delay test quality are maximized. We proposed
a test set selection method from a given base test set. The
proposed method selects test patterns based on the lengths
of sensitized paths, those are correlated with SDQL but
can be efficiently evaluated. The proposed method avoids
to apply time-consuming SDQL evaluation repeatedly, and
therefore, selects a test set within a reasonable time. In the
experiments, we demonstrate the efficiency of the proposed
test set selection method, and also evaluate ATPG methods
as base test set generators.
The rest of the paper is organized as follows. We intro-

duce SDQM and SDQL in Section 2, and then propose a
test set selection method in Section 3. Experimental results
are given to evaluate the proposed test set selection method
and ATPG methods for base test set generation in Section
4. Finally, Section 5 concludes this paper.

2 Statistical Delay Quality Model (SDQM)

In this section, we introduce statistical delay quality
model (SDQM) and statistical delay quality level (SDQL)
proposed by Sato et al.[5, 6]. The SDQM is proposed to

1

First IEEE Int. Workshop on Reliability Aware System Design and Test (RASDAT 2010), pp. 46-51, Jan. 2010.

Figure 1. Timing relations for the two types of
paths.

evaluate test quality based on a delay defect distribution
function which is derived from fabrication process. The
SDQL is a delay test quality metric that shows the amount
of delay defects that should be detected but cannot be de-
tected by a given test set.
The SDQM considers rising and falling delay faults on

each of input and output pins of each gate. Though the num-
ber of faults is the same as transition faults, a delay defect
size is associated with each fault. Figure 1 shows a concept
of delay defect sizes that should be detected and can be de-
tected by a given test set. Let f be a fault, and letLA andLB

be the lengths of the longest true path passing through f and
the longest path passing through f that is actually sensitized
by the given test set, respectively. The true path is defined as
a path that is designed to keep timing constraints. Let TMC

and TC be system clock timing and test timing, respectively.
The difference T f

mgn = TMC − LA is the minimum de-
lay defect size that can affect system behavior and therefore
should be detected. The difference T f

det = TC − LB is the
minimum delay defect size that can be actually detected by
the given test set.
The SDQL for a given test set is defined as follow, where

N is the total number of faults and F (s) is a delay defect
distribution function.

SDQL =
∑

f∈N

∫ T f
det

T f
mgn

F (s)ds (1)

It shows the total delay test quality of the chip based on the
delay defect test escapes. A shadow area in Fig.2 shows
an amount of delay defect for one fault escaped during test.
The SDQL is the total amount of such test escapes for the
total faults. Therefore, smaller SDQL means better delay
test quality.

Figure 2. SDQL for one fault.

3 Test Set Selection Method

In this paper, we propose a method to generate a test set
with the minimum SDQL under a constraint on the number
of test patterns. We solve the problem by the following two
steps.

1. Generate a test set Tbase according to some criteria.

2. Select a limited number of test patterns with the mini-
mum SDQL from Tbase.

A test set Tbase generated in Step 1 is called a base test
set, and it is generated by existing ATPG tools in this paper.
Therefore, we first consider how to select a test set with the
minimum SDQL from a given test set Tbase.

3.1 Simple Greedy Method

We can consider a simple greedy method as a heuristic
to solve to select a test set with the minimum SDQL. We
call the method SimpleGreedy.

SimpleGreedy
T : a given test set
P : the number of selected test patterns
T ′: a selected test set
1. Set T ′ = ∅
2. Repeat Steps 3 and 4 for P times
3. For each t ∈ T , calculate SDQL for a test set T ′ + {t}
4. For T ′ + {t} with the minimum SDQL

Set T ′ = T ′ + {t}, T = T − {t}

The above SimpleGreedy requires fault simulation
|Tbase| − (i − 1) times to obtain SDQL for each test set
T ′ + {t} in the i-th iteration. Therefore, fault simulation is
applied

∑P
i=1(|Tbase|− (i − 1)) = 1

2P (2|Tbase|− P + 1)
times. In general, fault simulation to obtain SDQL is time-
consuming. The reason is as follows. In fault simulation for

2

Table 1. CPU time of fault simulation
fault sim. CPU time(s)

circuit #faults #patterns transition SDQL
b04 2,620 124 0.03 0.27
b12 4,794 698 0.14 3.29
b13 1,267 97 0.01 0.08
b15 26,428 1,793 1.98 86.30
b17 80,612 5,745 18.86 390.70
b18 223,312 13,030 185.07 5,501.43
b19 433,410 24,058 719.72 19,992.62
b20 46,538 3,894 12.87 1,504.55

SDQL, it cannot be accelerated by fault dropping like fault
simulation for fault coverage. In case of fault simulation for
fault coverage, once some fault is detected by some test pat-
tern, the fault does not need to be cared by remaining test
patterns. However, in fault simulation for SDQL, we have
to consider not only detected or not but also the length of a
sensitized path, and a fault can be dropped only when some
test pattern detect the fault by the longest true path pass-
ing through the fault. Therefore, fault simulation for SDQL
treats many faults for every test pattern and calculates the
integration provided in Equation (1) many times. Table 1
shows CPU times required for fault simulation to obtain
SDQL for ITC benchmark circuits, where we used Tetra-
MAX with Small Delay Defect Test mode (Synopsys) and
SunFireX4100 with AMD Opteron256 3.0GHz and 15GB
memory (Sun Microsystems). The table compares CPU
times between fault simulations for fault coverage for tran-
sition faults and SDQL. From the table, we can find that
fault simulation for SDQL takes long computation time, and
therefore, SimpleGreedy is impractical for large circuits.

3.2 Proposed Method

SimpleGreedy uses SDQL values to select a test pat-
tern in each iteration, and therefore needs to apply time-
consuming fault simulation. In contrast, the proposed test
set selection method uses the length of the longest sensi-
tized path for selection. The lengths of the longest sensi-
tized paths for all the faults for a test set can be easily found
without fault simulation, once we obtain the length of the
longest sensitized path for each fault and each test pattern.
The proposed method first obtains, for each test pattern, an
SDQL value and the lengths of the longest paths sensitized
by the test pattern for all the faults. Though this first step
needs fault simulation for SDQL, we do not need further
fault simulation to select test patterns.
First, we explain how to find the lengths of the longest

paths for a test set without fault simulation. Assume that
we already selected a set T ′ of i − 1 test patterns and the
lengths of the longest paths sensitized by T ′ for all the faults

are known. We also know the lengths of the longest paths
sensitized by each test pattern t for all the faults. Let lT

′

f

and ltf be the length of the longest path sensitized by T ′ and
t for a fault f , respectively. It is obvious that the length
of the longest path sensitized by T ′ + {t} is max(lT

′

f , ltf),
and hence, we can easily obtain the longest sensitized path
lengths for T ′ + {t}.
In the proposed method, we use the sum of the longest

sensitized path lengths for all the faults instead of a SDQL
value. Though we do not directly evaluate SDQL values
in each iteration like SimpleGreedy, the increase of the
longest sensitized path length for some fault f implies the
decrease of T f

det. From Equation (1), it implies the decrease
of SDQL. Let LT ′ denote the sum of the longest sensitized
path lengths for test set T ′. The sum LT ′+{t} is obtained as
follows.

LT ′+{t} = LT ′ +
∑

f∈N

max(ltf − lT
′

f , 0) (2)

Let us define GainT ′,t as follows.

GainT ′,t = LT ′+{t} − LT ′

=
∑

f∈N

max(ltf − lT
′

f , 0) (3)

The proposed method selects a test pattern t with the largest
GainT ′,t as the i-th test pattern. The outline of the proposed
method is as follows.

TestSetSelection
T : a given test set
P : the number of selected test patterns
T ′: a selected test set
1. Set T ′ = ∅
2. For each test pattern t ∈ T ,

apply fault simulation
and obtain an SDQL value and ltf for each f .

3. Select t with the minimum SDQL, and
set T = {t}.

4. Repeat Steps 5 and 6 for P − 1 times
5. For each t ∈ T , calculate GainT ′,t

6. For t with the maximum GainT ′,t

Set T ′ = T ′ + {t}, T = T − {t}

In the proposed method, we apply fault simulation for
SDQL for a test set with one test pattern only |Tbase| times,
and therefore, it can select a test set much faster than Sim-
pleGreedy.

4 Experiments

We made experiments to evaluate the proposed test set
selection method and also to analyze test generation meth-
ods suitable for base test sets. The experiment environment
is the same as described in Section 3.

3

4.1 Evaluation of Selection Method

To evaluate the test quality of the proposed method, we
compared the method with other selection methods. In the
experiment, we generated base test sets using timing-aware
ATPG (TetraMAX with Small Delay Defect Test mode).
Table 2 shows the test generation results for ITC benchmark
circuits, where TGT, FC and FE show test generation time,
fault coverage, and fault efficiency, respectively. We can
provide a delay defect distribution function F (s) to Tetra-
MAX in the form described as Equation (4).

F (s) = A · e−Bs + C (4)

In this experiment, we set A = 1, C = 0, and set B so that
F (TMC) = 0.1 holds. The values of B are shown in the
column “B in F (s)” in Table 2.
For comparison, we prepared two different selection

methods: (1) select the first P test patterns generated by
ATPG and (2) select a test pattern with the most gain for
fault coverage as the i-th pattern. For the second selection
method, called a coverage basedmethod, we slightly modi-
fied Steps 4 and 5 in the proposed method so that it evaluates
fault coverage of T ′ + {t}, or the number of faults detected
by T ′ + {t}, instead of GainT ′,t. This evaluation is also
possible without fault simulation, once we apply fault sim-
ulation for each test pattern at the beginning.
We applied the three test set selection methods for the

base test sets in Table 2. We varied the number P of selected
test patterns, and Table 3 shows CPU times for the proposed
method and the coverage based method for P = |Tbase|
where Tbase is a base test set. That is, Table 3 shows upper
bounds of the selection methods for any number P . The
columns “fsim”, “other” and “total” show CPU times for
fault simulation, the other computation, and total computa-
tion, respectively. The proposed method takes longer CPU
time than the coverage based method, since the proposed
method applies fault simulation for SDQL at the beginning.
However, the total CPU time is less than double of fault sim-
ulation time for the whole circuit shown in Table 1 except
for a few small circuits.
Figures 3 and 4 shows relations between the number of

selected patterns and SDQL values for the three methods.
These figures shows SDQL improvement that is the im-
provement of SDQL value from the SDQL value for an
empty test set. The SDQL value SDQL0 for an empty
test set means the total amount of delay defects that should
be detected. The SDQL0 and the SDQL improvement are
given as follows.

SDQL0 =
∑

f∈N

∫ ∞

T f
mgn

F (s)ds (5)

SDQL improvement = SDQL0 − SDQL (6)

Figure 3. SDQL and selection method for b18.

Figure 4. SDQL and selection method for b19.

In Fig.2, SDQL0 corresponds to the area of “Undetected”
and “Detected”, and the SDQL improvement corresponds to
the area of “Detected”. Therefore, the SDQL improvement
shows the total amount of detected delay defects.
From Fig.3 and Fig.4, we can find that both the proposed

and coverage based methods efficiently improve SDQL
compared with the simple selection based on ATPG order,
and the proposed method can work most efficiently. Though
it might seem that difference between the proposed method
and the coverage based method is slightly little, there is a
big difference between them. For example, if we try to ob-
tain the same SDQL as obtained by the proposed method
for P = 2000 for b18 (Fig.3), we need around double size
of test set using the coverage based method.

4.2 ATPG for Base Test Set

Since the delay test quality of selected test sets depends
on base test sets, in order to find a suitable base test set, we

4

Table 2. Timing-aware test generation result.
circuit #gates #FFs #faults #patterns TGT(s) FC(%) FE(%) SDQL B in F (s)

b04 1,025 66 2,620 124 2.20 67.37 85.57 126.66 3.14
b12 1,730 121 4,794 698 6.71 88.40 91.20 51.27 4.22
b13 643 51 1,262 97 0.45 72.98 84.79 16.42 4.08
b14 8,460 215 22,904 1,325 2,429.06 84.27 86.74 8,497.64 0.70
b15 8,983 417 26,428 1,793 439.21 79.00 84.21 1,993.73 1.19
b17 27,766 1,317 80,612 5,745 2,193.66 85.96 88.17 5,654.23 1.19
b18 79,401 3,020 223,312 13,030 32,898.94 80.82 83.22 32,453.11 0.71
b19 152,599 6,042 433,410 24,058 103,917.61 81.24 83.04 63,921.51 0.71
b20 17,546 430 46,538 3,894 14,542.42 94.13 95.39 15,001.30 0.71

Table 3. CPU time of test set selection.
proposed coverage based

circuit fsim other total fsim other total
b04 0.85 0.13 0.98 0.40 0.09 0.49
b12 5.20 0.94 6.14 1.50 0.65 2.15
b13 0.49 0.09 0.58 0.29 0.05 0.34
b14 190.34 5.55 195.89 25.23 2.92 28.15
b15 73.23 7.11 80.34 17.46 3.26 20.72
b17 537.21 65.72 602.93 175.17 23.57 198.74
b18 5,168.63 390.59 5,559.22 1,191.56 120.45 1,312.01
b19 24,727.96 1,828.55 26,556.51 4,807.91 534.31 5,342.22
b20 1,071.01 23.55 1,094.56 162.51 10.72 173.23

compared several base test sets generated by different test
generation methods. In the experiment, we applied timing-
aware ATPG and n-detect ATPGs for transition faults for
n = 1, 2, 4. Table 4 shows the results on base test set gener-
ation and test set selection. Though the timing-aware ATPG
needs longer test generation time than ATPG for transition
faults, it results in better SDQL and fault coverage. More-
over, the timing-aware ATPG generates less test patterns
than 2-detect and 4-detect ATPGs.
We selected test sets using the proposed selection

method for four types of base test sets. Table 4 shows CPU
times to select all the test patterns in the base test set. Fig-
ures 5 and 6 show the SDQL improvements from SDQL
value for an empty test set for ITC benchmark b18 and
B19. The SDQL values for an empty test set are 48,716.09
for b18 and 93,339.22 for b19. In the figures, “timing-
aware(select)” and “timing-aware(ATPG)” means the re-
sults on the proposed test set selection and the simple se-
lection using ATPG order, respectively. From these figures,
we can find that timing-aware ATPG is suitable to obtain
high delay test quality.

5 Conclusions

In this paper, we consider how to obtain high delay test
quality with a limited number of test set, and proposed a
test set selection method from a given base test set. The

Figure 5. SDQL and base test set for b18.

proposed method selects test sets with small number of test
patterns and high delay test quality based on SDQL within
a reasonable time. Furthermore, we examined suitable test
generation for base test sets, and found the timing-aware
test generation can lead to high delay test quality.

5

Table 4. Test set selection for various base test sets.
circuit b18 b19

base test set selection base test set selection
ATPG TGT #tp SDQL FC CPU time (m) TGT #tp SDQL FC CPU time (m)
method (m) (%) fsim other total (m) (%) fsim other total

timing-aware 548.3 13,030 32,742 80.82 86.1 6.5 92.7 1732.0 240,58 64,190 81.24 412.1 30.5 442.6
1-detect 8.3 7,494 36,816 74.83 51.0 3.8 54.8 27.9 13,403 70,944 75.26 210.3 14.6 225.0
2-detect 14.1 13,755 36,045 75.51 103.4 7.0 110.4 50.4 24,789 69,528 76.06 328.1 26.7 354.9
4-detect 25.1 25,932 35,429 76.27 196.3 13.7 210.0 88.7 46,878 68,440 76.73 680.2 55.8 736.0

Figure 6. SDQL and base test set for b19.

Acknowledgment

The authors would like to thank Prof. Seiji Kajihara and
Prof. Yasuo Sato with Kyusyu Institute of Technology and
Prof. Satoshi Ohtake with Nara Institute of Science and
Technology for their variable comments to this work.

References

[1] N. Ahmed, M. Tehranipoor, and V. Jayaram. Timing-based
delay test for screening small delay defects. In Proceedings
of the 43rd annual Design Automation Conference, pages
320–325, New York, NY, USA, 2006. ACM.

[2] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski,
T. Kobayashi, R. Klingenberg, Y. Sato, S. Hamada, and
T. Aikyo. Timing-aware atpg for high quality at-speed test-
ing of small delay defects. In ATS ’06: Proceedings of the
15th Asian Test Symposium, pages 139–146, Washington,
DC, USA, 2006. IEEE Computer Society.

[3] R. Mattiuzzo, D. Appello, and A. Chris. Small-delay-defect
testing. EDN, July 2009.

[4] P. Nigh and A. Gattiker. Test method evaluation experiments
& data. In Proceedings of International Test Conference,
pages 454–463, Los Alamitos, CA, USA, 2000. IEEE Com-
puter Society.

[5] Y. Sato, S. Hamada, T. Maeda, A. Takatori, and S. Kaji-
hara. Evaluation of the statistical delay quality model. In
Proceedings of the 2005 Asia and South Pacific Design Au-
tomation Conference, pages 305–310, New York, NY, USA,
2005. ACM.

[6] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama,
and S. Kajihara. Invisible delay quality ? sdqm. model lights
up what could not be seen. In Proceedings of the Interna-
tional Test Conference 2005, page 47.1, 2005.

[7] Y. Sato, S. Kajihara, Y. Miura, T. Yoneda, S. Ohtake, M. In-
oue, and H. Fujiwara. A circuit failure prediction mecha-
nism (DART) for high field reliability. In Proceedings of
International Conference on ASIC, IEEE, pages 581–584,
2009.

[8] Synopsys. TetraMAX ATPG User Guide, Version C-
2009.06-SP2, September 2009.

[9] A. Uzzaman, M. Tegethoff, B. Li, K. M. Cauley, S. Hamada,
and Y. Sato. Not all delay tests are the same - SDQL model
shows true-time. In Proceedings of the 15th Asian Test Sym-
posium, pages 147–152, Washington, DC, USA, 2006. IEEE
Computer Society.

[10] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor. Test-
pattern grading and pattern selection for small-delay defects.
In Proceedings of VLSI Test Symposium, pages 233–239,
Los Alamitos, CA, USA, 2008. IEEE Computer Society.

6

