The 5th IEEE Int. Symp. on Electronic Design, Test & Applications (DELTA 2010), pp. 20-25, Jan. 2010.

Enabling False Path Identification from RTL
for Reducing Design and Test Futileness

Hiroshi Iwata, Satoshi Ohtake and Hideo Fujiwara

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, lkoma, Nara 630-0192, Japan
Email: { hiroshi-i, ohtake, fujiwara } @is.naist.jp

Abstract—Information on false paths is useful for design and
test. Since identification of false paths at gate level is hard,
several methods using high-level design information have been
proposed. These methods are effective only if the correspon-
dence between paths at register transfer level (RTL) and at
gate level can be established. Until now, the correspondence
has been established only by some restricted logic synthesis. In
this paper, we propose a method for mapping RTL false paths
to their corresponding gate level paths without such a specific
logic synthesis.

Keywords-false path, high level testing, path mapping, func-
tional equivalence

I. INTRODUCTION

For design and test of circuits, false path information
is very valuable since it can be used for reducing the
time required for logic synthesis, test generation and test
application, and circuit area while also minimizing over-
testing. From the perspective of design, circuit area and time
required for logic synthesis can be made small by using
false path information. From the testing point of view, since
no test pattern can be generated for path delay faults on
false paths, prior false path identification can greatly reduce
ATPG time. Furthermore, since some path delay faults on
false paths can become testable due to application of design
for testability (DFT) and result in over-testing, this can be
alleviated by false path identification.

Several false path identification methods at gate level
for combinational circuits[1], [2], [3] and for sequential
circuits[4], [S] have been proposed. However, since it is dif-
ficult to apply false path identification methods at gate level
for large circuits containing a tremendous number of paths,
some methods using register transfer level (RTL) design
information, instead of gate level, have been proposed[6].
Yoshikawa et al.[6] defined RTL false paths and proposed
a method to identify them. However, these methods would
be useful only if the correspondence between paths at RTL
and paths at gate level can be established. Until now,
the correspondence has been established through module
interface preserving-logic synthesis (MIP-LS)[6]. Currently,
using MIP-LS is the only way to guarantee information on
the correspondence. However, it is not practical to restrict
synthesis only to MIP-LS.

Ordinary design flow False path identification flow

| RTL False path
identification

RTL circuit RTL false paths|

Proposed in [9]

Logic synthesis Proposed method

Path mapping
e
Gate level
false paths

e
Gate level
circuit

L e——
Test patterns

Figure 1. The false path identification flow.

In this paper, we focus on path mapping from a set of RTL
false paths to gate level paths without considering MIP-LS.
Figure 1 shows the false path identification flow. We first
propose a method of mapping a set of RTL paths to its
corresponding gate level paths (this is called path mapping)
with an arbitrary logic synthesis independent of false paths.
The proposed method maps RTL signal lines composing
the RTL paths to gate level nets by using the functional
equivalence relation of signal lines (this is called signal
line mapping). The effort required for signal line mapping
is alleviated by using the uniqueness of a set of the RTL
paths and the rough candidate selection method. Because
the number of signal lines that uniquely identify a set of
RTL paths is much lower than that of whole signal lines
in the set of RTL paths, and our path mapping algorithm
only needs to map the reduced signal lines, the number
of RTL signal lines to be mapped is significantly reduced.
Signal line mapping is achieved by checking the equivalence
between signal lines and all the gate level nets; however, it
is obviously not practical. Therefore, we utilize the method
that finds candidates of the functionally equivalent nets from
a gate level circuit by using a diagnostics technique[7].

Since the gate level paths mapped by our method are
represented as signal lines, each gate level path does not
need to be fully specified as a path, so we are able to handle
bundled paths. This representation is compatible with EDA
tools, like Synopsys Design Constraint (SDC). Experimental
results show that many RTL paths can be mapped to gate

level paths using the proposed method within a reasonable
time.

Then, we consider false path mapping. The definition of
RTL false path in [6] assumes MIP-LS and the assumption
guarantees that the corresponding gate level paths are false.
In this paper, we show that any corresponding gate level
path mapped from the set of RTL false paths by using
the proposed method with an arbitrary logic synthesis is
false. Experiments show that our path mapping method can
establish the correspondences of RTL false paths and many
gate level false paths.

The rest of this paper is organized as follows. Prelimi-
naries are presented in Section II. Section III presents the
proposed RTL path mapping method. Section IV shows that
the gate level paths mapped from a set of RTL false paths
with the proposed method are false. Experimental results are
given in Section V. Section VI concludes the paper.

II. PRELIMINARIES
A. Circuit model

In this paper, we only consider structural RTL designs. A
structural RTL design consists of a controller represented by
a combinational module and a state register, and a datapath
represented by RTL modules and signal lines connecting
them, where an RTL module is an operational module, a
register or a MUX and a signal line has an arbitrary bit
width.

B. Gate level and RTL path representation

A gate level path is an ordered set of gate level nets
{e§,...,e5} where e§ is the net directly connected to a
primary input or the output of an FF, ¢ is the net directly
connected to a primary output or the input of an FF, and
e (i =2,...,n—1) is the net connecting the gates having
e | as an input and eﬁrl as an output A subset of a gate
level path p@ is called a sub gate level path of p©.

Similarly, an RTL path is an ordered set of RTL signal
lines {e{%, RN ef} where ef’/ is the RTL signal line directly
connected to a primary input or the output of a register, e
is the RTL signal line directly connected to a primary output
or the input of a register, and eZ(i = 2,...,n — 1) is the
RTL signal line connecting the modules having ef? | as an
input and eﬁl as an output. A subset of an RTL path p® is
called a sub RTL path of p™.

For an RTL signal line s, each one bit signal line separated
from s is referred to as a bit-sliced RTL signal line of
s. The i-th bit of s is represented as s[i]. A bit-sliced
RTL path is an ordered set of bit-sliced RTL signal lines
{efi[k1],...,el[ky]} where efl[ky] is the ki-th bit-sliced
RTL signal line directly connected to a primary input or the
output of a register, e?[k,] is the k,-th bit-sliced RTL signal
line directly connected to a primary output or the input of a
register, and e®[k;](i = 2,...,n — 1) is the k;-th bit-sliced
RTL signal line connecting the modules having ef* | [k;_1]

pattern <—the same — pattern
1

P v L
Iw Iw : cut
v signal line
Gs) Gi(s)
*I. ------- *m *m+1 *I. ------- *m *m+1

< identical —>
Figure 2. Functionally equivalent signal lines s1 and s2.

as an input and e ; [k;+1] as an output. A subset of a bit-
sliced RTL path p? is called a sub bit-sliced RTL path of

p™.

C. Relation between signal lines

Here, we first define signal line cutting, which is an
operation needed for defining functionally equivalent signal
lines. For a combinational circuit C' with n inputs, m outputs
and an internal signal line s, the following operation is
referred to as cutting C' on s. Create the (n + 1)-th new
input port and the (m + 1)-th new output port. Remove the
signal line s. Create connections between (n + 1)-th input
port and the end point of s and between the start point of s
and the (m + 1)-th output port. In the following discussion,
we represent the combinational circuit resulting from the
above operations as C*(s).

For two functionally equivalent combinational circuits, we
define functional equivalence of signal lines as follows.

Definition 1 (Functionally equivalent signal line): For
two functionally equivalent combinational circuits C; and
C5 with internal signal lines s; and ss, respectively, s; and
so are functionally equivalent if and only if C{(s;) and
C5(s2) are functionally equivalent. O
In the following discussion, we represent the relation of
functional equivalence between signal lines s; and sg as
S1 =1 S2.

Figure 2 illustrates functionally equivalent signal lines.
The signal lines s; and sy are functionally equivalent if the
responses from Cj(s1) and C3(sy) are identical for any
input pattern.

D. Relation between paths

We define the functional equivalence between a sub bit-
sliced RTL path and a sub gate level path as follows.

Definition 2 (Functionally equivalent path): Sub bit-
sliced RTL paths and sub gate level paths are simply
referred to as sub paths. Sub paths ¢; = {e1,,...,e1, } and

g2 = {ea,,...,ea, } are functionally equivalent if g and
g2 satisfy the following conditions.

1) n=m

2) e1, =162, (i=1,...,n) O

For mapping a given RTL path to gate level paths, it is
sufficient to map only the RTL signal lines that uniquely
identify the RTL path to gate level nets. Therefore, we
provide the following definition to alleviate the signal line
mapping effort.

Definition 3 (Identification of path): A sub RTL path ¢
is said to uniquely identify an RTL path pT if p is the only
path that properly includes ¢*.]

Definition 4 (Identification of path set): A sub RTL path
q™ is said to uniquely identify a set of RTL paths, P, if
PP is the only set of RTL paths that properly includes ¢7.
O

III. PROPOSED METHOD OF PATH MAPPING

In this section, we formulate the path mapping problem
and present a solution to the problem independent of false
paths. Consideration of false paths is described in Section
Iv.

A. Path mapping problem

We formulate the path mapping problem as a problem
to find a set of gate level paths corresponding to a set
of RTL paths. For solving path mapping problem, it is
sufficient to consider only the RTL combinational circuit
C*, which is the combinational part of a given structural
RTL design ST, and the gate level combinational circuit
C%, which is the combinational part of a gate level design
synthesized from S®. We assume that there exists a one-to-
one correspondence between the input/output signal lines of
CT and C€. This relation is called I/O mapping information.
The 1/0 mapping information of C* and C'“ can be obtained
by preserving all the bits of the registers in S® during logic
synthesis. The preservation is common for logic synthesis
for structural RTL designs.

Definition 5 (Path mapping problem):

Input « CT: an RTL combinational circuit
o CCY: a gate level circuit that is functionally
equivalent to CF
o The 1/0 mapping information between C'* and
G

C
o PT: a set of RTL paths
n m;
Output P¢ = {J U PS5,

i=0j=0

where P is defined as follows. Let ¢/(i =
1,...,n) be a sub RTL path that uniquely identifies
PR and ¢B(j =1,...,m;) be a sub bit-sliced RTL
path of quj where n is the number of the sub RTL
paths of P, Let q” be a sub gate level path that is
functionally equ1valent to ¢ff. P is a set of gate

level paths including q” a

B. Path mapping algorithm

We propose an algorithm solving the path mapping prob-
lem as follows. The algorithm establishes correspondences
between a set of RTL paths, P, and a set of gate level
paths, P9,

1) Generate the minimum sub RTL path ¢f*(i =

that uniquely identifies PF.

1,...,n)

2) Try to obtain a gate level net e” that is functionally
equivalent to each bit-sliced RTL signal line eft i (k=
1,...,1), where egk is an element of a bit-sliced RTL
path ¢f(j = 1,...,m;) of ¢f, m; is the number
of combinations of bit-sliced RTL paths obtained by
specifying the bit portion of every RTL signal line on
ql*, and [is the number of RTL signal lines on ¢%. Go
to step 3 if egk is obtained for all j and k of at least
one sub RTL path ¢, ie. all the RTL signal lines
on some sub RTL path are mapped to gate level nets.
(Otherwise, all qu must be tried.)

3) Find all the gate level paths that include
{eg-l, . ”l} such that every em (k=1,...,0) is
found in the previous step. The set of all the obtained
gate level paths is referred to as PG

4) Calculate PG =

Note that, the signal hne mappmg in step 2 is described in
the next subsection. We assume that at most one gate level
net is functionally equivalent to a bit-sliced RTL signal line
for simplifying the algorithm description. In our experiments
reported in Section V, we did not face a case where more
than one gate level net is mapped. However, we can handle
multiple nets by taking into account all the paths that go
through the nets. In step 3 and 4, not all the gate level
paths need to be listed; it is not practical. Instead paths are
represented just by specifying nets, {em, ey e”l that are
passed through. This representation is compatible w1th EDA
tools like SDC description.

C. Signal line mapping

In this section, we formulate the problem finding func-
tionally equivalent nets. Then, we will show an algorithm
for solving the problem. Signal line mapping algorithm is
used in the proposed path mapping algorithm.

1) Signal line mapping problem: We formulate the signal
line mapping problem to find a set of nets, which is func-
tionally equivalent to a bit-sliced RTL signal line in an RTL
circuit, in a gate level circuit.

Definition 6 (Signal line mapping problem):

Input o C: an RTL combinational circuit
«CC: a gate level circuit that is functionally
equivalent to CT*
« The I/O mapping information between C'® and
CG
o e®[k]: the k-th bit-sliced RTL signal line of an
RTL signal line e in CF

Output EY = {e%|e® =; e'[k]} where e is a net in C§

2) Signal line mapping algorithm: Given an RTL com-
binational circuit C and a gate level combinational circuit
CY, checking functional equivalence between a bit-sliced
RTL signal line e®[k] in CF and a gate level net e in C¢
can be performed by applying all the possible input patterns
to both circuits C®*(ef[k]) and C“*(e“), and comparing

find equivalent fault

[response Je=identical =] response |

(b) specific value (1) on additional PI

(a) equivalent fault (s-a-1)

Figure 3. Relation between equivalent faults and functionality of respective
signal lines.

their output responses. This is achieved by applying equiv-
alence checking for CT*(e®[k]) and C%*(e%). However, it
is not practical to explicitly check the functional equivalence
for all the possible combinations between e®[k] and €€ in
Ce.

Ravi et al.[7] proposed a method of finding candidates
for functionally equivalent nets of a given bit-sliced RTL
signal line using fault diagnosis techniques. In this paper,
their method is utilized to solve the signal line mapping
problem. More specifically, their method injects a stuck-at
fault on the bit-sliced RTL signal line and finds the stuck-
at faults, which have identical behavior to the fault under
the test patterns, in the gate level circuit. The faults in
the gate level circuit and the fault in the RTL circuit are
said to be equivalent. A necessary condition of functional
equivalence is that the responses of the RTL circuit and the
gate level circuit are identical when value v’s are fixed to
ef'[k] and e“, respectively (see Fig.3 (b)). It is the same
situation when s-a-v faults are assumed to be presented
on ef'[k] and on e, respectively (see Fig.3 (a)). To make
our signal line mapping algorithm complete, we perform
functional equivalence checking for ef[k] and each of the
above candidate nets e“. The overall algorithm to solve the
signal line mapping problem is shown in the following.

1) Generate a complete test set 7' for all the testable

stuck-at faults in CC.

2) For each v € {0,1}, the following two steps are

performed.

a) Obtain a set of faulty output responses Rpy,
by applying T to the RTL circuit C'** with an
injected s-a-v fault on the given bit-sliced RTL
signal line ef[k].

b) Find all the single s-a-v faults of C'“ such that all
the faulty circuits induced by the faults have the
same output responses Ry, when T is applied to
these circuits. A set of the nets having equivalent
faults is referred to as ECV.

3) Obtain E¢ = E¢0 0 ECT,

4) For each ¢ € E, create C7*(eR[k]) and CE*(e¥)

by cutting C* and C on e®[k] and e“, respectively.

5) Perform equivalence checking for CT(ef*[k]) and

C%* (%) and eliminate ¢ from E¢ if they are not
functionally equivalent.

Steps 1 to 3 are the same as the procedure for finding
a functionally equivalent signal line by using the fault
diagnosis technique in [7]. In [7], the complete test set T’
for the detectable faults in a gate level circuit is used as the
input patterns for fault diagnosis. The procedure first finds
s-a-0 (resp. 1) faults in C'¢ that are equivalent to the s-a-0
(resp. 1) fault injected on e®[k] under the test set 7". Then
the procedure selects gate level nets that have both s-a-0 and
s-a-1 faults as the candidates of equivalent nets. These nets
obtained by the steps satisfy the necessary condition of the
functional equivalence. Finally, steps 4 and 5 are performed
to guarantee sufficiency.

The completeness of the overall algorithm is shown in
Theorem 1. Here we assume that the fault diagnosis tech-
nique used in the algorithm can report all the suspected
faults, i.e., it never misses an equivalent fault under its input
patterns.

Theorem 1: Given an RTL combinational circuit C¥, its
synthesized gate level circuit C© and a bit-sliced RTL signal
line ef[k] in CE. Any €& € E is functionally equivalent to
ef![k] if and only if FY is the set of gate level nets obtained
by the signal line mapping algorithm. o

Due to the limitation of the space, we briefly show the
proof. By applying Steps 1 to 3, gate level nets satisfying
the necessary condition of functionally equivalent signal
line are selected. From the assumption of the diagnosis,
the functionally equivalent signal lines are still available
in the nets. In Steps 4 and 5, only gate level nets which
are functionally equivalent to ef*[k] are selected. Detailed
description is available in [8].

IV. RTL FALSE PATH MAPPING

In [9], Yoshikawa et al. defined non-robust untestable
paths for RTL circuits as follows.

Definition 7 (RTL non-robust untestable path): An RTL
path p in an RTL circuit S® is RTL non-robust untestable
(RTL-NRU) if all the gate-level paths in 6(p) are non-robust
untestable (NRU) for any gate-level circuit S¢ synthesized
from S, where J(p) is a set of gate level paths correspond-
ing to p. O

In order to guarantee the correspondence between RTL-
NRU and 4(p), restricted logic synthesis called module
interface preserving logic synthesis (MIP-LS) is employed.

Under the assumption of logic synthesis, they also provide
sufficient condition of RTL-NRU based on control signals of
MUXes and registers. In this paper, we refer to an RTL path
that satisfies the sufficient condition of RTL-NRU as an RTL
false path. A gate level paths in which both path delay faults
with rising and falling transitions at the starting point are
non-robust untestable is also referred to as a gate level false
path. For a given path p = {e1,...,e,} in an RTL circuit,
intuitively, the condition is as follows. The path p is RTL
false if at least one of the following is satisfied for any input
sequence and any ¢: (1) there is no controllability to make a

transition on the starting register which drives e; in cycles
between ¢ and ¢ + 1 (if any); (2) there is no propagatability
of a value from e; to e;41 forsome ¢ (i =1...n)int+1
(if any); (3) no response on e,, is captured on the ending
register in ¢ + 2 (if any); and (4) there is no observability
for the captured responses (if any). These are checked only
by examining control signal values of MUXes and registers
supplied from the controller. Notice that in their RTL circuit
model, for an RTL circuit, state transitions of the controller
are known and are completely specified for all the pairs of
states and input vectors. Detailed description is available in
[9].

The condition means that no transition can be propagated
through an RTL-NRU path, which is identified based on the
condition, in non-robust sensitization criteria or the response
captured at the ending register cannot be observed. If we can
remove the assumption of logic synthesis, we can utilize
the identification method reported in [6] for more general
circuits synthesized without the restriction. Therefore, we
obtain the following theorem.

Theorem 2: For an RTL false path p%, in an RTL circuit
SE any p© € P that is mapped from p® with our path
mapping method in a synthesized gate level circuit is gate
level false. |

Due to the limitation of the space, we briefly show the
proof. If any conditions of RTL-NRU (1)-(4) are satisfied,
the corresponding gate level paths mapped with our pro-
posed method are always NRU since the conditions for the
module boundary on the path are preserved in the gate level
circuit even if the MIP-LS assumption is removed. Detailed
description is available in [8]. By this theorem, we are able to
treat gate level false paths in a gate level circuit synthesized
with an arbitrary logic synthesis (without restricting logic
synthesis to MIP-LS) through the proposed path mapping
method.

V. EXPERIMENTAL RESULTS

In this section, we show experimental results for evaluat-
ing our RTL path mapping method by mapping RTL paths
and RTL false paths identified with the method proposed in
[6]. We used three RTL benchmark circuits, LWF, Tseng and
Paulin and an industrial circuit, MPEG. In these experiments,
we used only the datapath part of each circuit and tried
to map all the paths in the datapath. Table I shows the
circuit characteristics of the circuits. Columns “#bit”, “#PI”,
“#PO” and “#reg” show the bit width, the number of
primary inputs, that of primary outputs and that of registers,
respectively. Sub columns “MIP-LS” and “Arbitrary” under
“Area (#gates)” show the circuit area synthesized by MIP-
LS[6] and that without restriction, respectively. From the
area comparison, we confirmed that our method eliminates
the impact on logic synthesis results. In these experiments,
we used Synopsys DesignCompiler to perform logic syn-
thesis, Synopsys TetraMax to generate test patterns for

Table I
CIRCUIT CHARACTERISTICS.

Circuit | #bit | #PI | #PO | #reg MH‘?_‘E; (f\gr?atiiz'ary

LWF 16 2 2 5 1,571 1,467

Tseng 8 3 2 6 1,357 1,077

Paulin 8 2 2 7 1,590 1,303

MPEG 8 5 16| 241 | 38,183 28,454
Table 11

PATH MAPPING RESULTS.

LWF | Tseng | Paulin | MPEG
Pmr(%] | 73.7| 90.0| 100.0| 100.0
Pmry[%]| 742] 96.8| 100.0| 100.0
CPU[sec] [28.14| 21.74| 0.30| 0.10

gate level circuits synthesized with “Arbitrary”, Cadence
Encounter Test and Diagnostics as a fault diagnostic engine,
Synopsys Formality to perform equivalence checking and
Synopsys PrimeTime to enumerate the gate level paths on
Sun Microsystems Sun Fire X4100 (Opteron 256(3GHz),
16GB).

We use the RTL path mapping ratio Pmr = il

PR
100[%] as an evaluation criterion, where |P%| is tllle t‘otal
number of RTL paths in the datapath and |PRT| is the
number of RTL paths mapped. Furthermore, to evaluate
in more detail, we consider bit-sliced RTL paths in the
datapath. We use the bit-sliced RTL path mapping ratio

|ﬁgRRT“ x 100[%], where |PF| is the total number
of bit-sliced RTL paths in the datapath and |Pf*T| is the
number of bit-sliced RTL paths mapped. Table II shows the
path mapping ratios, bit-sliced path mapping ratios and time
required for the mapping.

Table III shows the signal line and path mapping results in
detail. Rows “#Ptotal”, “#Punique”, “#Stried”, “#Smapped”
and “#Pmapped” show the total number of RTL paths, the
number of paths uniquely identified with the I/O mapping
information, the number of RTL signal lines targeted by
signal line mapping, the number of RTL signal lines mapped,
i.e., the gate level nets that are functionally equivalent to
the bit-sliced RTL signal lines found, and the number of
the RTL paths mapped. Columns “RTL” and “bsRTL” under
each circuit name mean bundled RTL and bit-sliced RTL,
respectively. Thanks to Definition 3 (unique identification of
path), most of the RTL paths were able to be mapped only
by using I/O mapping information or CPU time was able to
be saved. The proposed method achieved 90.9% RTL path
mapping ratio and 92.8% bit-sliced RTL path mapping ratio,
in average. Here, we discuss the paths that are not mapped.
(Bit-sliced) RTL paths that were not able to be mapped to
the gate level paths existed because the algorithm was not
able to find any signal line needed for path mapping, i.e.,
there existed no functionally equivalent net in the gate level
circuits.

Table IV shows the result of RTL false path mapping
and the time required for this mapping. Rows “#Ptotal”,
“#Pfalse”, “Ratio”, “Total”, “Unique”, “Ravi”, “FEchk”,

X

Pmry, =

Table 1T
SIGNAL LINE AND PATH MAPPING RESULTS IN DETAIL.

LWF Tseng Paulin MPEG
RTL [bsRTL |[RTL [bsRTL [RTL [bsRTL |[RTL|bsRTL
#Ptotal 191 46M| 20| 36K| 29| 124K| 606| 326K
#Punique | 14| 34M| 18| 32K| 29| 124K| 606| 326K
#Stried 5 80| 5 401 0 0] 0 0
#Smapped| 0 13 0 12 - - - -
#Pmapped| 14| 34M| 18| 35K| 29| 124K| 606| 326K

Table IV
FALSE PATH MAPPING RESULTS.
LWF Tseng Paulin MPEG
RTL |Gate level| RTL |Gate level| RTL |Gate level[RTL|Gate level
#Ptotal 19 1.8M| 20 856K| 29 2.3M| 606 1.8M]
#Pfalse 5 470K’ 6 419K| 13 1.6M| 32 16
Ratio[%] [26.32 25.48(30.00 48.91]44.83 69.83(5.28 0.00
Total[s] 15.36 21.73 0.27 1.72
Unique|[s] 0.21 0.24 0.27 1.72
Ravi[s] 15.15 17.07 0.00 0.00
FEchk[s] 0.00 442 0.00 0.00
Pwhole[s] 9321 3721 103.39 303.65
Pfalse[s] 2426 19.07 73.53 0.22

“Pwhole” and “Pfalse” show the total number of paths, the
number of false paths, the ratio of #Pfalse to #Ptotal, the
total time required for false path mapping, the time required
for finding candidates of functionally equivalent signal lines,
the time required for equivalence checking, the time required
for enumerating the whole paths in the gate level circuit and
the time required for enumerating the false paths mapped,
respectively. Columns “RTL” and “Gate level” under each
circuit name mean the number of paths in RTL and the
ones in gate level, respectively. Many gate level false paths
were available with our proposed path mapping method in
practical time without considering MIP-LS.

On the other hand, a sequential ATPG algorithm can
identify false paths at gate level. However, sequential ATPG
tools cannot identify them in a practical amount of time.
For example, as reported in [6], TetraMax took about 50
hours to identify 10,000 false paths of Paulin. Since the RTL
false path identification method proposed in [6] and our path
mapping method took less than 1 second for several circuits,
our high level identification approach is very effective.

Table V shows false path mapping results in detail. Rows
“#Pfalse”, “#Punique”, “#Stried” and “#Smapped” show the
number of RTL false paths, the number of paths uniquely
identified with the I/O mapping information, the number of
bit-sliced RTL signal lines targeted by signal line mapping,
and the number of bit-sliced RTL signal lines mapped,
respectively. Therefore, we can say that the proposed method
finds almost all gate level false paths corresponding to the
given RTL false paths.

VI. CONCLUSIONS

Establishing correspondence between an RTL circuit and
its synthesized gate level circuit is important for high level
testing approaches. In this paper, we proposed a method to
establish correspondence between a set of RTL paths and
gate level paths without restricting logic synthesis. To the

Table V
DETAILS OF THE FALSE PATH MAPPING.

LWF | Tseng | Paulin | MPEG
#Pfalse 5 6 13 32
#Punique 4 5 13 32
#Stried 32 16 0 0
#Smapped 0 7 - -

best of our knowledge, this is the first work that tackles RTL
to gate level path mapping. Furthermore, we showed that
RTL false paths identified by [6] can be mapped to gate level
false paths with our proposed method. In our experiments,
the proposed path mapping method was utilized as a false
path mapping procedure, and many false paths were able
to be found in a circuit synthesized with an arbitrary logic
synthesis by using our proposed path mapping method.

ACKNOWLEDGMENTS

The authors would like to thank Profs. Michiko Inoue
and Tomokazu Yoneda of Nara Institute of Science and
Technology and Yuki Yoshikawa of Hiroshima City Univer-
sity for valuable discussion and cooperation. This work was
supported in part by Semiconductor Technology Academic
Research Center (STARC) under the Research Project and
in part by Japan Society for the Promotion of Science
(JSPS) under Grants-in-Aid for Scientific Research (B) (No.
20300018).

REFERENCES

[1] K. T. Cheng and H. C. Chen, “Classification and identification
of nonrobust untestable path delay faults,” IEEE Trans. on
CAD, vol. 15, no. 8, pp. 845-853, Aug. 1996.

[2] S. Kajihara, K. Kinoshita, I. Pomeranz, and S. Reddy, “A
method for identifying robust dependent and functionally
unsensitizable paths,” in International Conference on VLSI
Design, 1997, pp. 82-87.

[3] S. M. Reddy, S. Kajihara, and 1. Pomeranz, “An efficient
method to identify untestable path delay faults,” in Asian Test
Symposium, 2001, pp. 233-238.

[4] A.Kisti¢, S. T. Chakradhar, and K.-T. T. Cheng, “Testable path
delay fault cover for sequential circuits,” in European Design
and Test Conference, 1996, pp. 220-226.

[5] R. Tekumalla and P. Menon, “Identifying redundant path delay
faults in sequential circuits,” in International Conference VLSI
Design, 1996, pp. 406-411.

[6] Y. Yoshikawa, S. Ohtake, and H. Fujiwara, “False path identifi-
cation using RTL information and its application to over-testing
reduction for delay faults,” in Asian Test Symposium, 2007, pp.
65-68.

[7] S.Ravi,I. Ghosh, V. Boppana, and N. K. Jha, “Fault-diagnosis-
based technique for establishing RTL and gate-level correspon-
dences,” IEEE Trans. on CAD, vol. 20, no. 12, pp. 1414-1425,
2001.

[8] H. Iwata, S. Ohtake, and H. Fujiwara, “An approach to RTL
false path mapping using uniqueness of paths,” Nara Institute
of Science and Technology(NAIST), Tech. Rep. 2009004,
2009.

[9] Y. Yoshikawa, S. Ohtake, T. Inoue, and H. Fujiwara, “A
synthesis method to alleviate over-testing of delay faults based
on RTL don’t care path identification,” in [EEE VLSI Test
Symposium, May. 2009, pp. 71-76.

