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Abstract

This paper presents a seed ordering and selection method in
LFSR-reseeding-based BIST for high quality delay test. The pro-
posed method selects seeds based on the gain in the sum of the
longest path lengths sensitized by seeds, which is highly correlated
with statistical delay quality level (SDQL). We also evaluate the
contributions of pseudo-random patterns in several mixed-mode
BIST approaches and the impact of base seed set on the final qual-
ity of selected seeds. Experimental results show that the proposed
method intelligently selects seeds and obtains significant reduction
in seed count under SDQL constraint within a reasonable time.
keywords: BIST, seed ordering, delay test, SDQM.

1 Introduction

Nanometer technologies have led to drastic increase in opera-
tional frequency, and screening timing-related defects has become
more important to ensure product quality. Such timing-related de-
fects caused by resistive opens, resistive shorts and process vari-
ations manifest themselves as small delay variations called small
delay defects (SDDs). In addition, transistor aging has been known
as troublesome phenomenon in the field. It is well known that ag-
ing causes gradual delay increase and finally lead to a system fail-
ure [1, 2, 3]. Therefore, high quality delay test as well as built-in
self-test (BIST) are required for ensuring high field reliability.

Though ATPG tools based on the traditional transition delay
fault model is widely used, the delay test quality for SDDs has
been questioned because they tends to activate the faults through
short paths [4, 5]. Therefore, commercial timing-aware ATPG
tools were introduced recently [5, 6, 7]. However, timing-aware
ATPGs require long CPU run time for pattern generation and fault
simulation, and result in a significantly large pattern count. Test
data volume reduction is therefore essential especially for the field
test where the resources (memory or hardware) for test data is lim-
ited.

Test pattern ordering methods, which rank test patterns and
place the most effective test patterns at the top of the ordered se-
quence, can be effective to reduce test data volume. Several tech-
niques have been proposed recently to reduce the pattern count
for screening SDDs in this direction. In [8], the authors use the
output deviation [9] as a surrogate long-path coverage metric for
SDDs. Similar methods were proposed to take into account the in-
terconnect contribution [10] and process variations and crosstalk
contributions [11] to the total delay of sensitized paths. In [12],
an efficient pattern grading and selection method using standard
delay format (SDF) timing information was proposed for screen-
ing SDDs, which has no output deviation saturation problem like
[8, 10]. In [13], a SDD-aware seed selection technique was pre-
sented for LFSR-reseeding-based test compression, which also
utilizes the output deviation as a surrogate long-path coverage met-
ric for SDDs.

However, the previous works have the following problems
when we consider the field reliability. First, in all the previous
work [8, 10, 11, 13], the “number of activated long paths” is con-
sidered to be a useful metric for evaluating the delay test qual-
ity. They defined long path limits (between 70-90% of the system
clock period in [13]), and evaluated the number of activated dis-
tinct long paths within the limit. However, SDDs which can be
activated only through short and intermediate paths are also im-
portant for reliability since a SDD escapes on such paths during
test might magnify during subsequent aging in the filed and cause
a failure of the device [4]. Secondly, only [13] considered the seed
selection problem in LFSR-reseeding-based test compression for
the detection of SDDs while the others tackled the pattern selec-
tion problem without test compression. Besides, in [13], only the
deterministic patterns (i.e., one seed per pattern) are considered in
the LFSR-based compression environment. However, when a seed
is loaded in the LFSR, we can apply some pseudo-random patterns
(known as mixed-mode BIST [14, 15, 16]) and there is a possibil-
ity that they will detect more SDDs so that some of the seeds are
not needed.

In this paper, we address the seed ordering and selection prob-
lem for high quality delay test. We adopt “Statistical Delay Qual-
ity Model (SDQM)” proposed by Sato et al. [17] as a model of
delay test quality, which is also adopted for commercial timing-
aware ATPG tools [5, 6, 7]. The SDQM is based on a statistical
delay defect distribution function and careful consideration on re-
lations between defect sizes and activated path lengths. The model
uses a metric called “Statistical Delay Quality Level (SDQL)” for
each test set to evaluate its quality. The SDQL for a given test
set represents the amount of delay defects that should be detected
but cannot be detected by the test set. We also adopt a LFSR-
reseeding-based BIST architecture as in [13]. Our contributions
are summarized as follows.

e We present a seed ordering and selection technique for
LESR-reseeding-based BIST to achieve high quality delay
test. The proposed method selects seeds based on the gain
in the sum of the longest path lengths sensitized by seeds,
which is highly correlated with statistical delay quality level
(SDQL).

e Experiments for several ITC’99 benchmark circuits show the
proposed seed ordering and seed selection method can ob-
tain significant seed count reduction under SDQL constraint
within a reasonable time.

e We explore several mixed-mode BIST approaches where the
ratio between deterministic and pseudo-random patterns are
different, and show how the pseudo-random patterns con-
tribute to test data volume reduction in high quality delay
test.

e We apply the proposed method to several base seed sets gen-
erated by different ATPGs, and investigate the impact of base
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Figure 2. Delay defect distribution function and SDQL for a fault.

seed set on the final test quality of selected seeds.

The rest of the paper is organized as follows. We introduce
SDQM and SDQL in Section 2, and Section 3 presents a seed or-
dering and selection method. Experimental results are shown in
Section 4, and Section 5 evaluates the several mixed-mode BIST
approaches and selection of base seed sets. Finally, Section 5 con-
cludes this paper.

2 Statistical Delay Quality Model (SDQM)

In this section, we introduce statistical delay quality model
(SDQM) and statistical delay quality level (SDQL) proposed by
Sato et al.[17]. The SDQM is proposed to evaluate test quality
based on a delay defect distribution function which is derived from
fabrication process. The SDQM considers rising and falling delay
faults on each of input and output pins of each gate. Though the
number of faults is the same as transition faults, a delay defect size
is associated with each fault. Figure 1 shows a concept of delay
defect sizes that should be detected and can be detected by a given
test set. Let f be a fault, and let L4 and Ly be the lengths of the
longest true path passing through f and the longest path passing
through f that is actually sensitized by the given test set, respec-
tively. Let Ty¢ and T¢ be system clock timing and test timing,
respectively. The difference T,,f,g,, = Tyc — Ly is the minimum de-
lay defect size that can affect system behavior and therefore should
be detected. The difference T{{er = T¢ — L is the minimum delay
defect size that can be actually detected by the given test set.

The SDQL for a given test set is the amount of delay defects
that should be detected but cannot be detected by the test set, and
defined as follow, where N is the total number of faults and F(¢) is
a delay defect distribution function.
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Figure 3. BIST architecture.

3 Seed Ordering and Selection

In this paper, we target a scan BIST architecture that consists
of LFSR, phase shifter and MISR, and we focus on the input side
of the BIST shown in Figure 3. Our technique is applicable with
any number of scan chains and any phase shifter. In the BIST,
deterministic patterns are encoded into seeds of n bits where n
is the number of FFs in the LFSR. A seed s; is loaded into the
LFSR and then expanded into the desired test pattern in the scan
chains by running the LFSR for m cycles, where m is the maxi-
mum length of the scan chains. If the LFSR runs for another m
cycles, a pseudo-random pattern is expanded in the scan chains.
In this paper, we consider a mixed-mode BIST technique where
d; patterns are expanded from each seed s;. That is, only the first
pattern is a deterministic pattern and the remaining d; — 1 patterns
are pseudo-random patterns.

We present a seed ordering and selection method for the above
BIST architecture to obtain high quality delay test based on SDQL.
The outline of the proposed method is as follows.

1. Generate deterministic patterns and encode them into a seed

set S puse Called base seed set.

2. Order the seeds in S, so that the SDQL improves by the
maximum amount with the inclusion of each additional seed.

3. If there is a seed count constraint &, select the top k seeds
from the ordered sequence (this is the case to minimize
SDQL under the seed count constraint).

4. If there is a SDQL constraint, select the seed from the top
of the ordered sequence until the constraint is satisfied (this
is the case to minimize the number of seeds to satisfy the
SDQL constraint).

The deterministic patterns are generated by existing ATPG
tools, and the patterns are encoded into seeds by solving a linear
system of equations, which is an algebraic representation of the
linear expansion of the LFSR and the phase shifter into the scan
chain FFs [18]. Therefore, we focus on the ordering method in
Step 2 in the following subsection.

3.1 Simulation Based Ordering

For the seed ordering in Step 2, we can consider the following
method based on timing-aware fault simulation.

SimulationBased
S pase: base seed set
S': ordered seed set (empty initially)
1. Repeat Steps 2 and 3 until 4, becomes empty.
2. For each s € Sy, run fault simulation for the expanded
patterns from S + {s} to calculate SDQL.
3. For s with the minimum SDQL, set S = S + {s} and S puse =
N base — {S }



Table 1. CPU time of fault simulation.
fault sim. CPU time(s)
circuit #gates #faults #patterns transition TA
b15 8985 17329 727 0.8 47.4
b17 27766 65218 1375 52 194.4
bl8 79400 172403 3293 49.2 1680.5
b19 152599 353301 6131 185.6 6415.8

In the ith iteration, it requires |S pgse| — (F — 1) times fault simula-
tion to obtain SDQL for each test pattern set expanded from S +{s},
which includes X cs.(y @ patterns. However, timing-aware fault
simulation to calculate SDQL is time-consuming. Table 1 shows
CPU times required for timing-aware and non-timing-aware fault
simulations for ITC benchmark circuits, where we used Synop-
sys TetraMAX and SunFireX4100 with AMD Opteron256 3.0GHz
and 16GB memory (Sun Microsystems). In timing-aware fault
simulation, we have to consider not only fault detection but also
the length of a sensitized path, and a fault can be dropped only
when a test pattern detects the fault by the longest path passing
through the fault. Therefore, it cannot be accelerated by fault
dropping like non-timing-aware fault simulation, and Simulation-
Based method is impractical for large circuits.

3.2 Proposed Seed Ordering

SimulationBased uses SDQL values to select a seed in each
iteration, and therefore needs to run time-consuming fault simula-
tion. In contrast, the proposed method uses the sum of the longest
sensitized path lengths for all the faults instead of SDQL values.
For each fault, the length of the longest path sensitized by a seed
set can be easily calculated without delay defect distribution func-
tion F(¢) and fault simulation, once we obtain the length of the
longest path sensitized by each seed. Let lﬁ and [} be the length of
the longest path sensitized by the expanded patterns from seed set
S and seed s for a fault f, respectively. Let Ly denote the sum of
the longest sensitized path lengths for the expanded patterns from
S. Ly, is obtained as follows.

Ly = Ls + ) max(l} - 13,0) ©)
feN
Let us define the gain Gaing  in the sum of the longest sensi-
tized path lengths when s is added to S as follows.

Gains, = Lsuy—Ls = ) max(j —,0) 3)
feN

The proposed method selects a seed s with the largest Gaing

as the i-th test pattern. Though we do not directly evaluate SDQL

values in each iteration like SimulationBased, the increase of the

longest sensitized path length for a fault f implies the decrease of

T/ . From Equation (1), it implies the decrease of SDQL. The

det”
outline of the proposed method is summarized as follows.

SeedOrdering
S pase: base seed set
S': ordered seed set (empty initially)
1. For each s € Sp4, run fault simulation for the expanded
patterns from s to obtain SDQL and L.
2. For s with the minimum SDQL, set S = S + {s} and Sy =
N base — {3}
3. Repeat Steps 4 and 5 until S, becomes empty.
4. For each s € S 4, calculate Gaing .

Table 2. Characteristics of benchmark circuits.

circuit #gates #FFs #faults Bin F(r)
bl5 8985 417 17329 1.19
b17 27766 1317 65218 1.19
bl8 79400 3020 172403 0.71
b19 152599 6042 353301 0.71

5. For s with the maximum Gaing g, set S =S + {s} and S 45 =
Sbase - {5}

In Step 1, we run fault simulation to obtain / since TetraMAX
can provide it through timing-aware fault simulation on and it is
independent of delay defect distribution function F(¢). If F(¢) is
available, then we can obtain a SDQL value for each seed as a by-
product of the fault simulation. That is why we select the first seed
based on SDQL in Step 2. However, we can remove Step 2 if F(¢)
is not available. In the proposed method, we apply fault simulation
only one time for the above purpose, and therefore it can order a
seed set much faster than SimulationBased.

4 Experimental Results

In this section, we present experimental results using several
ITC’99 benchmark circuits. The characteristics of the circuits used
in the experiments are summarized in Table 2. In the experiment,
we used Synopsys TetraMAX ATPG with Small Delay Defect Test
mode. We can provide a delay defect distribution function F(¢) to
TetraMAX to calculate SDQL in the form described as the follow-
ing equation.

Fo)=A-¢®+C C))

In all the experiments in this section, we set A = 1,C = 0, and set
B so that F(Tyc) = 0.1 holds where Ty¢ denotes the system clock
timing of the circuit. The values of B are shown in the column “B
in F(¢)” in Table 2.

To evaluate the test quality of the proposed ordering method,
we first generate launch-off capture (LoC) test patterns with un-
specified bits (X’s) using the timing-aware ATPG, and encode
them into a base seed set. Table 3 summarizes the ATPG results,
the BIST architecture we assumed, and the base seed set genera-
tion results. “X ratio” and “C,,,” denote the average percentage
of X’s and the maximum number of specified bits in the generated
patterns, respectively. “#schains” and “c_sep.” denote the number
of scan chains and the channel separation between two adjacent
scan chains implemented by the phase shifter, respectively. “SC”
denotes the seed coverage which is the ratio of the number of the
encoded seeds to the number of the generated patterns.

For the base seed sets in Table 3, we compared the proposed
method with two different ordering methods: (1) ATPG ordering
(i.e., original order generated by ATPG) and (2) random ordering.
In this experiment, we set d; (the number of the expanded patterns
from seed s;) to 1 for all seeds in the base seed set. Table 4 shows
the CPU times required for the proposed method, and Figure 4
shows the SDQL transitions using the seeds ordered by ATPG,
random and the proposed ordering methods. The columns “fsim”,
“other” and “total” show CPU times for fault simulation, the other
computation, and total computation, respectively. From these re-
sults, we can observe that the proposed method efficiently im-
proves SDQL (i.e., achieves lower SDQL) compared to the ATPG
and random ordering methods with the seed count constraints for
all the circuits.



Table 3. Seed generation results for timing-aware patterns.

ATPG results BIST architecture seed gen. results
circuit TGT(m) FC(%) SDQL #patterns X ratio(%) Conax(bit) #schains  #LFSR stages c_sep. #seeds SC(%)
bl5 1.9 82.0 2498.0 727 87.9 258 8 96 2048 700 96.3
b17 9.2 86.2 7841.8 1375 90.2 655 26 240 2048 1319 95.9
b18 43.8 79.7  33986.1 3293 94.4 703 60 384 2048 3129 95.0
bl9 115.4 79.0  70768.2 6131 96.9 1258 120 608 2048 5850 95.4
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Figure 4. SDQL transition using the seeds ordered by ATPG, random method and the proposed method.

Table 4. CPU time of seed ordering.

circuit | fsim(m)  other(m) total(m)
bl5 0.6 0.0 0.6
b17 2.2 0.1 23
b18 19.1 0.6 19.7
b19 72.5 2.4 74.9

Table 5 shows the results of the seed selection based on the
three different ordering methods: (1) ordered by ATPG (atpg),
(2) random ordering (rand) and (3) proposed ordering (pro) un-
der several SDQL constraints to be satisfied. We set four SDQL
constraints for each circuit: (1) 0% loss, (2) 2% loss, (3) 5% loss
and (4) 10% loss. Let ypase and yempry denote the SDQLSs for the
base seed set and empty seed set, respectively. Then, a% SDQL
1088 Yaoinss 18 given as follows.

Ya%loss = Ybase T (yemp/y - ybase) X % (5)
That is, 0% loss denotes the SDQL value which can be obtained
by selecting all seeds in the base seed set, and % loss denotes
the SDQL value which has % smaller improvement than 0% loss
SDQL.

From Table 5, we can observe that, even in the case of 0%
loss (i.e., without sacrificing SDQL), the proposed method ob-
tained up to 15% reduction in the number of selected seeds com-
pared to other methods. This means that the proposed method can
efficiently find unnecessary seeds which have no contribution to
SDQL in the base seed set. In case of 2% loss (i.e., if we are
allowed to sacrifice SDQL by 2%), we can obtain significant re-
duction in seed count, and it can reach around 50% in average
compared to other methods. The results show that the proposed
ordering method can reduce test data volume in high quality delay
test efficiently.

5 Evaluation of Mixed-Mode BIST and Base Seed
Set Selection

In the previous section, we evaluated the effectiveness of the
proposed method using (1) the base seed sets generated by timing-
aware ATPG and (2) the BIST with d; = 1 for all seed s; (i.e., only
one deterministic pattern is expanded from each seed). However,

Table 5. Seed selection results under SDQL constraints: ATPG
vs random vs proposed.

#seeds selected relative diff(%)

circuit SDQL constraint atpg rand pro Aatpg  Arand
bl5 2262.86 (0% loss) 700 700 593 -15.3 -15.3
231493 (2% loss) 692 636 308 -55.5 -51.6

2393.04 (5% loss) 663 566 177 -73.3 -68.7

2523.23 (10% loss) 590 457 107 -81.9 -76.6

b17 7164.50 (0% loss) 1318 1319 1243 -5.7 -5.8
7357.64 (2% loss) 1202 1144 629 -47.7 -45.0

7647.35 (5% loss) 969 954 385 -60.3 -59.6

8130.21 (10% loss) 756 728 240 -68.3 -67.0

bl8 32476.02 (0% loss) | 3129 3129 2879 -8.0 -8.0
33080.83 (2% loss) | 2925 2549 1361 -53.5 -46.6
33988.04 (5% loss) | 2433 1966 789 -67.6 -59.9
35500.06 (10% loss) 1946 1347 450 -76.9 -60.6

b19 68390.51 (0% loss) | 5850 5850 5323 -9.0 -9.0
69609.96 (2% loss) | 5379 4835 2185 -59.4 -54.8
71439.14 (5% loss) | 4258 3689 1194 -72.0 -67.6
74487.78 (10% loss) | 3358 2458 655 -80.5 -73.4

when a seed is loaded in the LFSR, we can apply some pseudo-
random patterns and there is a possibility that they will detect more
SDDs so that some of the seeds are not needed. Moreover, delay
test quality of the seeds selected by the proposed method depends
on the given base seed sets. Therefore, in this section, we inves-
tigate the following two questions for the same circuits used in
Section 4.

e How do the pseudo-random patterns in the mixed-mode
BIST contribute to test data volume reduction in high quality
delay test?

e What is the impact of base seed sets on the final delay test
quality after seed selection?

5.1 Mixed-Mode BIST

To evaluate the contribution of the pseudo-random patterns in
the mixed-mode BIST to test data volume reduction in high qual-
ity delay test, we explored the three types of mixed-mode BIST
approaches as follows.

Type I : d patterns are expanded from every seed s (i.e., 1 deter-
ministic pattern and d — 1 pseudo-random patterns for every seed).
dissetto 1,2,4 and 8.

Type 11 : d patterns are expanded only from the first selected seed



Table 6. Seed ordering and selection results for different mix-mode BIST environments.

circuit ‘ ‘ SDQL [ mix-mode BIST [[ #seeds  Aseeds |] #patterns Apatterns ‘ ordering CPU
constraint [ type ] d [l (%) [ dp p total (%) time (m)

b18 32476.02 1 (base case) 1 2879 - 2879 0 2879 - 19.7

(0% loss 2 2173 -24.5 2173 2173 4346 51.0 30.8

for base case) 4 1803 -37.4 1803 5409 7212 150.5 57.7

8 1572 -45.4 1572 11004 12576 336.8 118.5

1T 1024 2144 -25.5 2144 1023 3167 10.0 26.3

2048 1980 -31.2 1980 2047 4027 39.9 33.1

4096 1960 -31.9 1960 4095 6055 110.3 44.5

jili 1024 1749 -39.2 1749 2046 3795 31.8 32.1

2048 1755 -39.0 1755 4094 5849 103.2 44.5

4096 1520 -47.2 1520 8190 9710 237.3 70.9

b19 68390.51 1 (base case) 1 5323 - 5323 0 5323 - 74.9

(0% loss 2 4249 -20.2 4249 4249 8498 59.6 1234

for base case) 4 3483 -34.6 3483 10449 13932 161.7 237.0

8 2854 -46.4 2854 19978 22832 328.9 493.2

11 1024 3897 -26.8 3897 1023 4920 -7.6 90.0

2048 3687 -30.7 3687 2047 5734 7.7 102.8

4096 3595 -32.5 3595 4095 7690 44.5 133.2

jili 1024 3274 -38.5 3274 2046 5320 -0.1 105.3

2048 3219 -39.5 3219 4094 7313 37.4 135.4

4096 2820 -47.0 2820 8190 11010 106.8 1959

s1, and 1 deterministic pattern is expanded from the other seeds. d
is set to 1024, 2048 and 4096.

Type I1I : d patterns are expanded only from the first two selected
seed s; and S5, and 1 deterministic pattern is expanded from the
other seeds. d is set to 1024, 2048 and 4096.

We applied the proposed method to the same base seed sets
used in Section 4 in the above mixed-mode BIST environments.
Table 6 shows the results of the seed selection method under a
SDQL constraint for 18 and »19. The columns “#seeds” and
“Aseeds” denote the number of selected seeds and the relative dif-
ference to “type I widh d = 1 (base case)”, respectively. The
columns “dp”, “rp”, “total” and “Apatterns” denote the number
of deterministic patterns, random patterns, total patterns and the
relative difference to the base case, respectively.

In each mixed-mode type, we can observe that there is a trade-
off relation between the reduction in the number of selected seeds
and the increase in the number of expanded patterns, which cor-
respond to test time. In general, if d becomes large, the number
of selected seeds is decreased while the number of expanded pat-
terns are increased. However, in some cases (type II and III with
d = 1024 for b19), we can obtain reduction both in the seed and
pattern counts.

In comparison between type I and IL, type II can generate more
efficient pseudo-random patterns in terms of SDQL since type 1L
achieved similar reduction in the seed count as type I with smaller
increase in the pattern count to satisfy the same SDQL value. This
shows that the long pseudo-random sequence expanded from one
seed is more effective than the set of very short pseudo-random se-
quences expanded from every seed. In comparison between type
II and III, type III can generate more efficient pseudo-random pat-
terns compared to type II. This shows that the contribution of the
pseudo-random sequence from one seed is saturated if it is too
long.

There results suggest that it is worth using some pseudo-
random patterns to minimize the seed count if the seeds are stored
on-chip and test time is not expensive. However, we need a way to
find a minimum seed set with value d; for each seed under SDQL
and test time constraints. This is one of our future works.

5.2 Base Seed Set

Since the delay test quality of selected seeds depends on base
seed sets, in order to find a suitable base seed set, we applied the
proposed method for several base seed sets generated from differ-
ent ATPG patterns. In the experiment, we generated patterns us-
ing timing-aware ATPG and n-detect ATPGs for transition faults
forn = 1,2,4 and 8. Table 7 shows the ATPG results and the
base seed set generation results. For the seed generation, we as-
sumed the same BIST architecture as shown in Table 3. We can ob-
serve that the timing-aware ATPG denoted “T'A” in Table 3 always
achieved higher transition fault coverage than n-detect ATPGs. In
order for fair comparison, we also prepared another timing-aware
patterns denoted “T'A_limit” in Table 3. “TA_limit” was generated
by the same timing-aware ATPG as “TA” but it was terminated
when the transition fault coverage became almost the same as n-
detect ATPGs.

Table 8 shows the results of the seed selection for the five dif-
ferent base seed sets under a SDQL constraint. In the experiments,
we assumed the mixed-mode BIST of type I with d = 1 (i.e.,
only the deterministic patterns are expanded from each seed). The
columns “#seeds”, “Aseeds” and “CPU” denote the number of se-
lected seeds, the relative difference to the 1-detect case and CPU
time for seed ordering, respectively. From Table 8, we can ob-
serve that the base seed set generated from timing-aware ATPG
“TA” produced the best results for all the circuits, and obtained up
to 78% reduction in seed count compared to “l-detect” seed set.
Except for “TA”, all the four base seed sets have almost same tran-
sition fault coverage. However, “TA _limit” is still the best among
them with reasonable CPU time for the large two circuits, »18 and
b19. These results show that timing-aware ATPG is suitable to
obtain high quality delay test.

6 Conclusions

In this paper, we have presented a seed ordering and selection
method in LFSR-reseeding-based BIST to achieve high quality de-
lay test. The proposed method selects seeds based on the gain in
the sum of the longest path lengths sensitized by seeds, which is
highly correlated with SDQL. Experimental results show that the
proposed method intelligently selects seeds and obtains significant



Table 8. Seed ordering and selection results for different base seed sets.

bl5 bl7 b18 b19
SDQL constraint = 2555.59 SDQL constraint = 7854.65 SDQL constraint = 35107.89 SDQL constraint = 74411.53
(0% loss for 1-detect) (0% loss for 1-detect) (0% loss for 1-detect) (0% loss for 1-detect)
base #seeds  Aseeds CPU #seeds  Aseeds CPU #seeds  Aseeds CPU #seeds  Aseeds CPU
seed set (%) (m) (%) (m) (%) (m) (%) (m)
1-detect 464 - 0.4 942 - 1.6 1865 - 12.1 2933 - 395
2-detect 167 -64.0 0.7 543 -42.4 3.4 1130 -394 24.7 2021 -31.1 87.5
4-detect 152 67.2 14 453 51.9 6.9 328 -55.6 50.4 1640 441 1755
8-detect 139 -70.0 2.8 432 -54.1 13.7 749 -59.8 101.3 1381 -52.9 353.7
TA 99 78.7 0.6 304 67.7 23 509 727 19.7 662 774 74.9
TA limit 229 -50.6 0.5 449 -52.3 1.8 683 -63.4 17.7 825 -71.9 70.3
Tabl: Z ATPG and seed generation results for different ATPG high field reliability,” in Proceedings of International Conference on
METOCs: ATPG results seed gen. results ASIC, IEEE, pp. 581_5.84’ 2009. o
circuit | ATPG TGT FC SDQL  #patterns | #sceds sC [4] N. Ahmed, M.. Tehranipoor, and V. Jay.aram, Timing-based delay
(m) (%) (%) test for screening small delay defects,” in Proc. Design Automation
bl5 1-detect 04 782 2668.0 508 488 96.1 Conference, pp. 320-325, July 2006.
2-detect 08 782 2666.2 1016 976 96.1 [5] X. Lin, K. H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi,
4-detect L5 782 26606.2 2032 1952 96.1 R. Klingenberg, Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware
8-detect 30 782 26662 4064 394 961 ATPG for high quality at-speed testing of small delay defects,” in
TA 1.9 82.0 2498.0 727 700 96.3 . S .
TA limit 17 784 2584.7 627 600 95.7 Proc. Asian Test Symposium, pp. 139-146, Nov. 2006.
B17 | l-detect 58 820 8527.0 966 951 3.5 [6] Synopsys, TetraMAX ATPG User Guide, Version C-2009.06-SP2,
2-detect 6.1 823 8571.5 2024 1997 98.7 September 2009.
4-detect 120 823 8572.5 4057 4002 98.6 [7] A. Uzzaman, M. Tegethoff, B. Li, K. M. Cauley, S. Hamada, and
8-detect 238 823 8576.7 8120 8016 98.7 Y. Sato, “Not all delay tests are the same - SDQL model shows true-
T, Arﬂ?mit 35 ggg ;?gég };Zi }Ség ggg time,” in Proceedings of the 15th Asian Test Symposium, (Washing-
Bis T-detect TT7 748 366431 7989 1920 963 ton, DC, USA), pp. 147-152, IEEE Computer Society, 2006.
2-detect 27 751 364883 4042 3896 96.4 [8] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern grad-
4-detect 458 754  36315.1 8198 7933 96.8 ing and pattern selection for small-delay defects,” in Proceedings of
8-detect 932 755  36276.6 16416 15844 96.5 VLSI Test Symposium, (Los Alamitos, CA, USA), pp. 233-239, IEEE
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— . ~ . . [9] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using
b19 1-detect 26.7 73.6 76644.7 3144 3004 95.6 .. .
2_detect 529 134 76845.4 6766 6466 95.6 output-deviation-based reordering of test patterns,” IEEE Transac-
4-detect 974 734  76839.7 13533 12933 95.6 tions on Computer-Aided Design on Integration Circuits and Sys-
8-detect 204.2 73.4 76839.7 27069 25859 95.5 tems, vol. 27, no. 2, pp. 352-365, 2008.
TA 1154 790  70768.2 6131 5850 95.4 [10] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Interconnect-
TAlimit | 1046 73.6 744537 5529 5361 97.0 aware and layout-oriented test-pattern selection for small-delay de-
. . . L. fects,” in Proc. International Test Conference, Oct. 2008.
reducgon in seed count under SDQL constrzfunt within a reason- [11] K. Peng, M. Yilmaz, M. Tehranipoor, and K. Chakrabarty, “High-
able time. We also have explored several mixed-mode BIST ap- quality pattern selection for screening small-delay defects consider-
proaches and showed the contribution of pseudo-random patterns ing process variations and crosstalk,” in Proc. Design, Automation
to test data volume reduction in high quality delay test. Further- and Test in Europe, Mar. 2010.
more, we have investigated the impact of base seed set using differ- [12] K. Peng, J. Thibodeau, M. Yilmaz, K. Chakrabarty, and M. Tehra-
ent ATPG methods, and showed the timing-aware ATPG can lead Tupoor, “A novel hybrid method for SDD pattern grading and selec-
. . tion,” in Proc. VLSI Test Symposium, pp. 45-50, Apr. 2010.
to hlgh delay test q}lallty for the‘ ﬁnally selected seed sets. One [13] M. Yilmaz and K. Chakrabarty, “Seed selection in LFSR-reseeding-
of the future works is to find a minimum seed set and the number based test compression for the detection of small-delay defects,” in
of expanded patterns from each seed under SDQL and test time Proc. Design, Automation and Test in Europe, pp. 1488-1493, Apr.
constraints in the mixed-mode BIST. 2009.
[14] S. Hellebrand, H. G. Liang, and H. J. Wunderlich, “A mixed-mode
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