
1 
 

Functional Fault Model for Micro Operation Faults 
of High Correlation with Stuck-At Faults  

Chia Yee OOI#1, Hideo FUJIWARA*2 
#Microelectronics and Computer Engineering Department  

Universiti Teknologi Malaysia 
81310 UTM Skudai, Johor, Malaysia 

1ooichiayee@fke.utm.my 
*Nara Institute of Science and Technology 

 8916-5 Takayama, Ikoma, Nara 630-0192, Japan 
2fujiwara@is.naist.jp 

 
Abstract—Several functional fault models have been introduced 
and few of them have been shown to have high correlation with 
stuck-at fault model through experiment. However, not all the 
stuck-at faults are considered in the experiment. One of the fault 
categories which were out of consideration is stuck-at faults in 
the arithmetic modules. This is because there is no functional 
fault model correlating well with stuck-at faults in the arithmetic 
modules. In this work, we refine the functional fault model for 
arithmetic operations and show the superiority of our extended 
functional fault model to other functional fault model 
theoretically and experimentally. 
 
Keywords— functional fault model, fault coverage, arithmetic 
operations. 

I. INTRODUCTION AND RELATED WORKS 
 
The advances of the semiconductor technology have 

enabled the scaling deep into nanometer regime but 
manufacturing processes become more defect-prone. Besides 
improving the manufacturing equipment and its set-up, testing 
plays an important role to maintain the product quality under 
the constraint of time-to-market. Therefore, it is essential to 
control the quality and the size of test data as well as the time 
taken to generate the test data. Conventionally, test vectors are 
generated from a gate level netlist using a test generation tool. 
However, gate level test generation process has become more 
time consuming and complicated due to the increasing size 
and complexity of digital designs. Subsequently, some 
attempts have been done to perform the test generation 
process at high level of abstraction of the digital design, which 
can reduce test generation time because number of elements to 
be dealt with by the search process of test generation is much 
less.  

Hierarchical test generation [1-3] is one of the high level 
test generation techniques. It involves test plan generation to 
deliver the precomputed test vectors to a module-under-test 
and to send the test responses to a primary output. The fault 
model used is stuck-at fault model. However, the limitation of 
this test generation technique is that the test quality of the 
precomputed test vectors mainly depends on the synthesis 
library eventually used in the gate-level synthesis. The fault 
coverage is not guaranteed if the precomputed tests vectors 

are not dedicated to the selected component from the synthesis 
library.  

Another high level test generation technique is called 
functional test generation, which is independent of the 
synthesis library. However, stuck-at fault model is improper at 
this abstraction level. Thus, functional fault models [4-8] have 
been introduced to support the high level test generation 
platform. Functional fault model has been introduced in [4] 
for multiplexers. They showed that the fault model has 
improved the accuracy of high level test generation. In 
addition, some functional fault models [5-6] were introduced 
for finite state machine only. More complete functional fault 
models which can represent failure at more syntax of HDL 
description are Fummi’s fault model[7] and Chen’s fault 
model[8]. The models are detailed in the following text.  

 
A. Fummi’s Fault Model 

Fummi et. al [7] introduced a fault model that consists of 
the following: 

i. Bit failure – each variable, signal or port is 
considered as a vector of bits. Each bit can be 
stuck-at zero or one. 

ii. Condition failure – each condition can be stuck-at 
true or stuck-at false, thus removing some 
execution paths in the erroneous HDL description. 

 
B. Chen’s Fault Model 

Chen et. al [8] defined a fault model that include the 
following ten faulty cases: 

i. Input stuck-at fault - a failure of the primary input 
signal that can be stuck at 0 or 1. 

ii. Output stuck-at fault - a failure of the primary output 
signal that can be stuck at 0 or 1. 

iii. If stuck then fault - a failure to execute the else 
portion of the statements for the if construct. 

iv. If stuck else fault - a failure to execute the if portion 
of the statements for the if construct. 

v. Assignment statement fault - a failure to assign a new 
correct value to a signal. 

vi. Dead clause fault - a failure of a case statement to 
execute when selected.  

vii. Micro-operation fault - a failure of micro-operation 
to perform its intended function. The operators for 

11th IEEE Workshop on RTL and High Level Testing (WRTLT'10), pp. 139-144, Dec. 2010.



2 
 

the micro-operation can be logical operators, 
relational operators, unary operators, and arithmetic 
operators.  

viii. Local stuck data fault - a failure for a signal object to 
have a proper value within a local expression. 

 
Chen’s fault model has an advantage over Fummi’s fault 

model because it can represent more stuck-at faults. Chen’s 
fault model for micro operation faults can cover some stuck-at 
faults in the arithmetic operators like adder, and subtractor, etc. 
It also covers stuck-at faults in both relational operators and 
logical operators. Local stuck data faults represented by 
Chen’s fault model can cover stuck-at faults which appear at 
fan-out branches besides fan-out stem. This paper first studies 
the correlation between the micro operation fault of Chen’s 
fault model with the stuck-at fault model. We also propose the 
extension for functional fault model in order to close the gap 
between the fault model and the stuck-at fault model.  

 

II. CORRELATION BETWEEN CHEN’S FAULT MODEL AND 
STUCK-AT FAULT MODEL 

 
Micro operation fault represents a failure of an operator to 

perform its intended functions. The following example lists an 
addition operator and its faulty counterparts. 
Example 1: 
SUM <= A + B;   ‐‐Good operation: addition 
SUM <= A – B;   ‐‐Faulty operation 1: subtraction 
SUM <= A * B;   ‐‐Faulty operation 2: multiplication 
SUM <= A / B;   ‐‐Faulty operation 3: division 
SUM <= A % B;   ‐‐Faulty operation 4: modulo 

 
SUM, A and B can be vectors of bits. By modeling faults of 
the addition in this way, it might be too loose to correlate with 
many stuck-at faults at gate level. For instance, let SUM, A 
and B be 4-bit variables respectively. Test vector A=0001 and 
B=0001 can detect all faults listed in Example 1 (Faulty 
operations 1-4). However, this test vectors cannot cover many 
stuck-at faults at gate level. Thus, the gap between this 
functional fault model and stuck-at fault model is still big. In 
other words, the functional fault model contains little 
structural information to contribute to high fault coverage in 
test generation. Therefore, it is important to extend the fault 
model through model refining. We propose an extension for 
micro operation faults in arithmetic operations. This is 
detailed in the following section.  

III. EXTENSION OF FAULT MODEL FOR MICRO OPERATION 
FAULTS 

 
We extend the fault model by considering that each micro 

operation functionally consists of W bit-slices where W is the 
bit-width of operation. The extended micro operation faults 
are called bit-slice micro operation fault. It represents a failure 
of a bit-slice of an operator to perform its intended functions.  
 

A. Adjacent Bit-Slice Micro Operation Fault 
Definition 1: Adjacent bit-slice micro operation fault is a 
failure of n bit-slices of the W-bit operator to perform its 
intended function where n ≤  W and W  is the bit-width of the 
operation.  
 
Definition 2: The fault list Fn of a W-bit operator with 
operation op is   
 

௡ܨ ൌ ሼܣሾ݅: ݅ ൅ ݊ െ 1ሿܤ ’݌݋ሾ݅: ݅ ൅ ݊ െ 1ሿ | ݌݋ᇱ ് ,݌݋ 
ሻ’݌݋ሺ݁݌ݕݐ ൌ ሻ ܽ݊݀ 0݌݋ሺ݁݌ݕݐ ൑ ݅
൑ ݊ െ 1 ሽ 

 
where A and B are the input of the operation. op is called an 
operation under test. 
 
      In the following text, we show that the size of the fault list 
does not grow tremendously with the size of the bit-width 
using the proposed fault model. Let w be the bit-width. The 
number of faults |Fi| in the fault model for adjacent bit-slice 
micro operation faults with n be the number of faulty adjacent 
bit-slices is as follows. N denotes the number of arithmetic 
operations.  
 

|Fi|=෌ ሺݓ െ ݊ ൅ 1ሻ ൈ ሺܰ െ 1ሻ௪
௡ୀଵ  

 
Notes: 
(w-n+1)=the number of faults for n bit-slice faulty micro 
operation. 
(N-1)=the number of arithmetic operations other than the 
operation under test. 
 
Example 2: The fault list Fn of a  4-bit addition (+) with a 
failure of two bit-slices is  
 
௡ܨ ൌ ሼሺܣሾ0: 1ሿ െ :ሾ0ܤ 1ሿሻ, ሺܣሾ1: 2ሿ െ :ሾ1ܤ 2ሿሻ,

ሺܣሾ2: 3ሿ െ :ሾ2ܤ 3ሿሻ, ሺܣሾ0: 1ሿ כ :ሾ0ܤ 1ሿሻ,
ሺܣሾ1: 2ሿ כ :ሾ1ܤ 2ሿሻ, ሺܣሾ2: 3ሿ כ :ሾ2ܤ 3ሿሻ,
ሺܣሾ0: 1ሿ/ܤሾ0: 1ሿሻ, ሺܣሾ1: 2ሿ/ܤሾ1: 2ሿሻ,
ሺܣሾ2: 3ሿ/ܤሾ2: 3ሿሻ, ሺܣሾ0: 1ሿ%ܤሾ0: 1ሿሻ,
ሺܣሾ1: 2ሿ%ܤሾ1: 2ሿሻ, ሺܣሾ2: 3ሿ%ܤሾ2: 3ሿሻሽ 

 
where A and B are the input of the operation. The total number 
of faults is 12. Note that % represents a modulo operation. 

Chen’s micro operation faults are covered by the adjacent 
bit-slice micro operation fault. It is equal to the adjacent bit-
slice micro operation fault with n=W. Therefore, we can 
conclude that bit-slice micro operation faults are superior to 
Chen’s micro operation faults. 
 
B. Array Micro Operation Fault 

However, adjacent bit-slice micro operation is not 
sufficient to represent faults in complex combinational 
operators like multiplier, divider and modulo operator. This is 
because the logic of a bit-slice is not only dependent on the 
logic of adjacent bit slices. Therefore, we introduce another 



3 
 

fault model called array micro operation fault for these 
operators.  

First, let addition, subtraction and logical operations be 
considered as basic operations while let multiplication, 
division and modulus be complex operations. Multiplication, 
division and modulo can be modeled in terms of basic 
operations. This model contains more structural information 
of a complex operator. Let A and B be the inputs of n-bit 
multiplication and C be the output. The operation can be 
modeled as an array multiplication as follows. 
 

ܥ ൌ ଴ܲ ൅ ଵܲ ൅ ൅ڮ ௡ܲିଵ ൌ ෍ ௜ܲ

௡ିଵ

௜ୀ଴
 

௜ܲ ൌ ሼܣሾ݊ െ 1 െ ݅: 0ሿ, ݅ᇱܾ0ሽ & ݊ሼܤሾ݅ሿሽ ݂0 ݎ݋ ൑ ݅ ൑ ݊ െ 1 
 
where ݊ሼܤሾ݅ሿሽ is an n bits consisting of eight repeating bits of 
B[i] while i'b0 means i-bit 0s. Note that P i is n-bit too. By 
defining a micro operation fault for multiplication based on 
the multiplication model above, the fault is more refined and 
closer to the structural faults of a synthesized combinational 
multiplier. 
 
Definition 3: Array micro operation fault is a failure of n bit-
slices of a W-bit basic operator in a complex operation to 
perform its intended function where n ≤  W and W  is the bit-
width of the basic operation. 
 
Using multiplication as an example, we show that the size of 
the fault list is still manageable and much smaller than the 
gate-level stuck-at fault size. Let w be the bit-width. The 
number of faults |Fi| in the fault model for array micro 
operation faults with n be the number of bits in a faulty 
adjacent bit-slices is as follows. Nj denotes the number of 
faulty operations of category j. Mj denotes the number of basic 
operators of category j that compose the multiplication. K 
denotes the number of operation categories involved. Note 
that the size of the fault list does not grow tremendously with 
the size of the bit-width using the proposed fault model. 
 

|Fi|=∑ ቀ൫෌ ሺݓ െ ݊ ൅ 1ሻ ൈ ሺ ௝ܰ െ 1ሻ௪
௡ୀଵ ൯ ൈ ௝ቁ௄ܯ

௝ୀଵ  
 
Example 3: In the array multiplication, it consists of two types 
of operations from different categories, i.e. addition of 
arithmetic category and AND operation of logical category. 
Therefore, K is 2, M1 and M2 represent the number of 
additions and AND operations, respectively.  
 
Example 4: F0 and F1 are the fault lists for an array 
multiplication using the proposed array micro operation faults. 
F0 is the faults that involve addition while F1 is the faults that 
involve AND logic operation. 
 
଴ܨ ൌ ሼ ௜ܲሾ݆: ݆ ൅ ݊ െ 1ሿ݌݋’  ௜ܲାଵሾ݆: ݆ ൅ ݊ െ 1ሿ  |݌݋’ ്
,݊݋݅ݐ݅݀݀ܽ  ሻ’݌݋ሺ݁݌ݕݐ ൌ ,ܿ݅ݐ݄݁݉ݐ݅ݎܽ 0 ൑ ݅ ൑ ݊ െ 2 ܽ݊݀ 0 ൑
݆ ൑ ݊ െ 1 ሽ  
 

ଵܨ ൌ ൛ሼܣሾ݊ െ 1 െ ݅: ݅ሿ, ݅’ܾ0ሽ݌݋’ ݊ሼܤሾ݅ሿሽ ห݌݋’ ് ,ܦܰܣ 
ሻ’݌݋ሺ݁݌ݕݐ ൌ ,݈ܽܿ݅݃݋݈ 0 ൑ ݅ ൑ ݊ െ 1 ሽ 

 
Similarly, both division and modulo operation can be 
modelled in an array of basic operations. 

IV. FAULTY MULTIPLICATION GENERATION COMPLEXITY 
 
This section describes the pseudo code to generate faulty 

multiplications according to the given fault list based on our 
proposed fault models for adjacent bit-slice micro operation 
faults and array micro operation faults. These are shown as 
pseudo code. In our experiment, we will generate the faulty 
multiplication in constraint format for SystemVerilog 
language. The pseudo code can be referred for other formats 
too (C++, etc.). 
 
Int W = 8 //W is the bitwidth 

Char operation_type[5] = {+, -, /, %, *}//all operations 

For(op_num=0; op_num<4; op_num++) //bounded by #operations-1 

For(bit_slice=1; bit_slice<=W; bit_slice++) 

  For(int i=W-1; i>=bit_slice-1; i--) 

 { Open file to store the constraint model 

   Print file header 

   Print bit-slices with faulty operations 

      Print bit-slices with good operations 

      Print the coding that generate the test vectors 

      ……… 

      Write the test pattern to STIL file if it does not exist 

in the STIL file  

  } 
Figure 1 Pseudo code for generating adjacent bit-slice micro operation 

faults for multiplication without compaction 
 
Figure 1 is the proposed coding to generate adjacent bit-

slice micro operation faults for multiplication. There are three 
for loops that determine the time complexity of the algorithm 
to solve the problem. The first for loop is bounded by a fixed 
constant of 4 which is the number of operations under 
arithmetic category. The other two for loops are bounded by 
the bit-width; bit-slice in the second for loop is the number 
of bits of faulty adjacent bit-slices while i in the third for loop 
corresponds to the first bit position of the adjacent faulty bit-
slices. Therefore, the time complexity for this algorithm is 
O(n2) where n is the size of the problem which is bit-width of 
multiplication under test.  

To reduce the test patterns generated, we introduce an 
algorithm for bit-slice micro operation faults with compaction. 
The compaction is done by including maximum number of 
neighboring faults in a given fault list into the test generation 
model so that the test generation platform can generate just 
one test pattern to detect those faults. Figure 2 shows the 
pseudo code. It has two for loops that dominate the time 
complexity of generating adjacent bit slice micro operation 
faults with compaction. So, the complexity is O(n2) too. Note 
that bit_slice and i denote the same thing as in Figure 1. 
 

Int W = 8 //W is the bitwidth 



4 
 

Char operation_type[5] = {+, -, /, %, *}//all types of 

operations 

//PART 1: generate faults 

For(op_num=0; op_num<4; op_num++) //bounded by #operations-1 

For(bit_slice=1; bit_slice<=W; bit_slice++) 

  For(int i=W-1; i>=bit_slice-1; i--) 

 {  

   Generate bit-slices with faulty operations 

      Generate bit-slices with good operations 

      Update the number of functional faults as fcount    

  } 

//PART 2: generate and write pattern to a file    

} 
Figure 2 Pseudo code for generating adjacent bit-slice micro operation 

faults for multiplication with compaction 
 

Figure 3 shows the algorithm pseudo code for array micro 
operation faults with compaction. Part 1 (resp. Part 2) is to 
generate faults for basic operation of addition (resp. AND 
operation). There are three for loops which are bounded by 
bitwidth W both in Part 1 and Part 2. bit_slice and i denote 
the same things as in Figure 1. j means the number of basic 
operations, i.e. additions, in the array multiplication in Part 1 
while k means the number of basic operations, i.e. AND 
logical operations, in the array multiplication. Therefore, the 
time complexity for this algorithm is O(n3) where n is the size 
of the problem, i.e. the bit-width of multiplication under test. 
 

PART 1: Generating faults for addition 

Int W = 8 //W is the bitwidth 

Char operation_type[5] = {*, -, /, %, +}//all operations 

For(op_num=0; op_num<4; op_num++) //bounded by #operations-1 

For(bit_slice=1; bit_slice<=W; bit_slice++) 

  For(int j=0; j<W-1; j++) 

    For(int i=W-1; i>=bit_slice-1; i--) 

   { Open file to store the constraint model 

     Print bit-slices with faulty operations 

        Print bit-slices with good operations 

        Print the coding that generate the test vectors 

    } 

 

PART 2: Generating faults for AND logical operation 

Char operation_type2[6] = {or, nor, nand, xor, xnor, and}//all 

operations 

For(op_num=0; op_num<4; op_num++) //bounded by #operations-1 

For(bit_slice=1; bit_slice<=W; bit_slice++) 

  For(int k=0; k<W; k++) 

    For(int i=W-1; i>=bit_slice-1; i--) 

   { Open file to store the constraint model 

     Print bit-slices with faulty operations 

        Print bit-slices with good operations 

        Print the coding that generate the test vectors 

    } 

PART 3: Generating test patterns to a file 

……… 

 
Figure 3 Pseudo code for generating array micro operation faults for 

multiplication with compaction 

V. EXPERIMENT SETUP AND RESULTS 
 

Several arithmetic operations were used to evaluate the 
accuracy of the fault model proposed. These include addition, 
subtraction, multiplication and division. Table I summarize 
three different fault generation programs to be used to 
generate test vectors. 

TABLE I 
THREE VERSIONS OF FAULT GENERATION PROGRAMS 

Version Features 
1 Generate test vectors without compaction using adjacent bit 

slice fault model. 
2 Generate test vectors with compaction using adjacent bit 

slice fault model. 
3 Generate test vectors with compaction using array micro 

operation fault model. 
 
To evaluate the correlation between the proposed extended 

fault model and the stuck-at fault model, an experiment as 
shown in Figure 4 is set up. Besides showing that the new 
functional fault model contributes to high fault coverage, we 
also showed that this can be achieved with short test length 
which is comparable to the one from gate level test generation. 
Table II shows the test length in the third column with also the 
number of gate-level stuck-at faults in the second column 
when gate-level test generation is performed.  
 

 
 

Figure 4 Experiment Flow 

 

TABLE II 
TOTAL NUMBER OF FAULTS AND TEST APPLICATION TIME FOR 100% FAULT 

EFFICIENCY 

Operator #faults Test length 
(100%) 

8-bit Adder 394 13 
8-bit Subtractor 426 11 
8-bit Multiplier 1670 35 
8-bit Divider 2218 68 

 
In Table III, n in the first column denotes the number of bits 

in the faulty slices while #F.fault denotes the number of 
functional faults. FTG(s) indicates the computation time to 
generate the test patterns in seconds. FC(%) means fault 
coverage in percentage and TL means test length in clock 
cycles (CCs). First, we compare the fault coverage resulted 

Adjacent bit-slice micro 
operation faults for an 
operation under test 

Functional test generation 
with/without compaction 

Fault simulation of the 
operator under array /random 
logic implementation. 

Fault coverage and test length evaluation 

Array micro operation fault for 
an operation under test 

Functional test generation with 
compaction 

Fault simulation of the 
operator under array /random 
logic implementation. 



5 
 

from our proposed functional fault model with Chen’s fault 
model. The row of n=8 in Table III for adjacent bit-slice 
micro operation fault model represents the experimental result 
of Chen’s fault model. The fault coverage is not the highest 
compared to that of the fault model when n<8. This means 
micro operation faults from Chen’s fault model alone is not 
sufficient to obtain high fault coverage. The average fault 
coverage for any n for addition, subtraction and multiplication 
using adjacent bit-slice micro operation fault model is above 
65%. However, the fault coverage is not good for division 
under the same fault model. Thus, the division fault coverage 
was evaluated again using array micro operation fault model. 
It showed a tremendous improvement as can be seen from the 
last two column of Table III. This means some complex 
operation like division needs more refined fault model to 
obtain more accurate fault coverage. Besides fault coverage, 
test length from our proposed functional fault model was 
evaluated. Test length could be reduced for 2~3 times if the 
functional test generation is equipped with compaction 
technique though the compaction caused the increase of 
computation time of functional test generation for 2 times. 

To show further the evaluation of our functional fault model 
in fault coverage and test length, we proposed two methods of 
fault simulation at gate-level given the test patterns from the 
functional test generation using our proposed functional fault 
models. These methods are fault simulation with linear 
ordering of n and fault simulation with binary ordering of n, 
where n is the number of bits of faulty adjacent slices in the 
extended micro operation faults. In the first fault simulation, 
fault simulation starts with the functional faults of n-bit faulty 
adjacent bit-slices where n is in increasing order, i.e. 
n=1,2,3,…. until the required minimum fault coverage is 
achieved (e.g. 98%). The second fault simulation requires n to 
proceed with binary ordering, i.e. ݊ ൌ 8,4,2,1,3,6,5,7.  The 
experimental result of these two fault simulations are 
tabulated in Table IV. In this part of the experiment, we use 
adjacent bit-slice micro operation fault model for addition, 
subtraction and multiplication and array micro operation fault 
model for division. The functional test generation performed 
here are with compaction. Although Table III shows that the 
fault coverage from test generation with compaction is 
generally lower than that from test generation without 

compaction, the test patterns from the former can achieve 100% 
for addition and subtraction with short test length, 20~26 and 
28~29, respectively. Fault simulation with linear ordering of n 
showed better result in term of test length over fault 
simulation with binary ordering of n for both addition and 
subtraction. High fault coverage was also obtained for 
multiplication and division, which are 99.64% and 90.20%, 
respectively.  

VI. CONCLUSION 
We have proposed a more accurate functional fault model 

for micro operations to be used in high level test generation 
platform. This could close the gap of test data quality between 
functional test generation and gate-level test generation as 
reflected by the high fault coverage obtained in the 
experiment. The proposed functional fault model will be used 
to evaluate the fault coverage and test application time for 
sequential circuits without scan. Besides arithmetic operations, 
similar extension should be studied for relational operations. 

REFERENCES 
[1] T. M. Sarfet, R.G. Markgraf, M.H. Schulz and E. Trischler, “A 

hierarchical test pattern generation system based on high-level 
primitives,” IEEE Trans. on CAD and Integrated Circuits and Systems, 
vol. 11, pp. 34-44, 1992. 

[2] J. Lee and J. H. Patel, “Hierarchical test generation under architectural 
level functional  constraints,” IEEE Trans. on CAD and Integrated 
Circuits and Systems, vol. 15, pp. 1144-1151, Sept. 1996. 

[3] I. Ghosh and M. Fujita, “Automatic test pattern generation for 
functional register-transfer level circuits using assignment decision 
diagrams,” IEEE Trans. on CAD and Integrated Circuits and Systems, 
vol. 20, pp. 402-415, 2001. 

[4] Jaan Raik and Raimund Ubar, “Enhancing hierarchical ATPG with a 
functional fault model for multiplexers,” Proceeding of DDECS, pp. 
219-222, 2004. 

[5] K.T. Cheng and J.Y. Jou, “A functional fault model for sequential 
machines,” IEEE Trans. Of Comp. Aided Des. Of Int. Circuits Sys, pp. 
1065-1073, September 1992. 

[6] I. Pomeranz, S. Patil and P.K. Parvathala, “A functional fault model 
with implicit fault effect propagation requirements,” Proceeding of 
ATS, pp. 95-102, 2006. 

[7] F. Ferrandi, F. Fummi and D. Sciuto, “Implicit Test Generation for 
Behavioral VHDL Models,” Proc. of the Int. Test Conf., pp. 587, 1998. 

[8] C-I. H. Chen, “Behavioral test generation/fault simulation”, IEEE 
Potentials, pp. 27-32, Feb/Mac 2003. 

 

 

 
 
 
 
 
 
 
 
 
 
 

  



6 
 

TABLE III 
TEST GENERATION WITH AND WITHOUT COMPACTION  USING EXTENDED MICRO OPERATION FAULT MODEL 

op n ADJACENT BIT-SLICE  MICRO OPERATION FAULT MODEL ARRAY MICRO OPERATION FAULT MODEL 
#F. fault No compaction With compaction #F. fault With compaction

FTG (s) FC (%) TL (CCs) FTG (s) FC (%) TL (CCs) FTG (s) FC (%) TL (CCs) 

ad
di

tio
n 

1 32 147.71 95.94 18 261.02 94.16 9     
2 28 100.30 95.43 17 219.01 77.16 6     
3 24 99.62 94.67 16 213.22 84.01 5     
4 20 84.53 91.37 17 149.55 80.20 5     
5 16 66.73 90.36 11 125.21 82.23 5     
6 12 51.62 82.74 9 91.96 73.10 4     
7 8 28.61 74.62 6 51.26 53.30 2     
8 4 16.95 75.13 4 18.61 35.03 1     

su
bt

ra
ct

io
n 

1 32 135.08 95.77 16 323.94 90.38 9     
2 28 126.79 95.54 15 269.56 88.26 7     
3 24 124.92 95.07 21 233.34 83.33 6     
4 20 99.48 95.07 19 177.06 91.55 6     
5 16 80.37 87.56 12 162.07 84.27 6     
6 12 87.98 85.45 9 110.71 73.24 4     
7 8 35.98 74.18 4 70.12 71.83 3     
8 4 20.81 72.54 4 24.53 39.20 1     

m
ul

tip
lic

at
io

n 

1 32 51.79 85.75 16 180.06 94.01 15 544 6248.03 94.97 90 
2 28 44.80 88.68 17 140.94 86.71 11 476 4940.62 95.09 79 
3 24 38.64 74.55 15 102.43 82.04 7 408 4685.85 95.03 64 
4 20 32.14 84.97 11 80.21 75.33 5 340 3917.01 94.73 68 
5 16 26.23 76.89 11 58.29 69.10 4 272 3029.00 94.91 52 
6 12 19.09 69.10 9 39.75 51.26 2 204 1984.90 94.85 40 
7 8 12.80 57.96 5 26.45 44.67 2 136 1430.28 94.73 35 
8 4 7.46 73.71 4 6.90 32.87 1 68 403.67 34.13 2 

di
vi

si
on

 

1 32 161.90 34.28 23 283.53 24.16 7 272 2822.24 70.05 50 
2 28 131.67 34.06 22 230.84 16.40 6 240 2402.06 74.16 41 
3 24 133.16 17.48 18 212.90 33.92 6 208 2105.73 74.30 40 
4 20 102.60 23.22 15 187.95 15.99 5 176 1724.97 74.89 37 
5 16 78.71 19.33 14 136.35 8.08 5 144 1368.68 71.77 33 
6 12 57.93 20.55 8 110.42 7.09 4 112 1115.55 69.83 26 
7 8 44.99 16.44 6 67.60 6.01 3 80 753.13 56.96 17 

 
 
  



7 
 

TABLE V 
OPTIMIZED TEST LENGTH USING FAULT SIMULATIONS WITH LINEAR ORDERING AND BINARY ORDERING   

op Fault simulation with linear ordering of n Fault simulation with binary ordering of n 

n # F. 
fault 

FTG (s) FC (%) TL 
(CCs) 

n # F. 
fault 

FTG (s) FC (%) TL  
(CCs) 

ad
di

tio
n 

 

≤1 32 261.02 94.16 9 8 4 18.61 35.03 1 
≤2 60 480.03 98.73 15 8,4 24 168.16 81.22 6 
≤3 84 693.25 100 20 8,4,2 52 387.17 94.16 12 
≤4     8,4,2,1 84 648.19 99.75 21 
≤5     8,4,2,1,3 108 861.41 100 26 
≤6     8,4,2,1,3,6     
≤7     8,4,2,1,3,6,5     
≤8     8,4,2,1,3,6,5,7     

su
bt

ra
ct

io
n 

≤1 32 593.5 90.38 9 8 4 24.53 39.20 1 
≤2 60 826.84 96.24 16 8,4 24 201.59 91.78 7 
≤3 84 1003.9 97.89 22 8,4,2 52 471.15 98.83 14 
≤4 104 1165.97 100 28 8,4,2,1 84 795.09 99.77 23 
≤5     8,4,2,1,3 108 1028.43 100 29 
≤6     8,4,2,1,3,6     
≤7     8,4,2,1,3,6,5     
≤8     8,4,2,1,3,6,5,7     

m
ul

tip
lic

at
io

n 

≤1 32 180.06 94.01 15 8 4 6.90 32.87 1 
≤2 60 321.00 97.25 26 8,4 24 87.11 79.58 6 
≤3 84 423.43 99.34 33 8,4,2 52 228.05 91.08 17 
≤4 104 503.64 99.34 38 8,4,2,1 84 408.11 97.54 32 
≤5 120 561.93 99.40 42 8,4,2,1,3 108 510.54 99.58 39 
≤6 132 601.68 99.40 44 8,4,2,1,3,6 120 550.29 99.58 41 
≤7 140 628.13 99.40 46 8,4,2,1,3,6,5 136 608.58 99.64 45 
≤8 144 635.03 99.64 47 8,4,2,1,3,6,5,7 144 635.03 99.64 47 

di
vi

si
on

 

≤1 272 2822.24 70.05 50 8 48 408.17 58.45 9 
≤2 512 5224.3 80.22 91 8,4 224 2133.14 76.38 46 
≤3 720 7330.03 84.96 131 8,4,2 464 4535.2 82.38 87 
≤4 896 9055.00 86.90 168 8,4,2,1 736 7357.44 83.97 137 
≤5 1040 10423.68 89.43 201 8,4,2,1,3 944 9463.17 86.90 177 
≤6 1152 11539.23 90.20 227 8,4,2,1,3,6 1056 10578.72 88.62 203 
≤7 1232 12292.36 90.20 244 8,4,2,1,3,6,5 1200 11947.4 90.20 236 
≤8 1280 12700.53 90.20 253 8,4,2,1,3,6,5,7 1280 12700.53 90.20 253 

 


