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Abstract 

Assertions are used in functional verification of design 
to detect design errors. In this paper we propose an 
approach for their reuse in manufacturing test pattern 
generation at Register-Transfer Level (RTL) for non-
scan designs. The proposed approach provides for 
fault coverage increase and speed-up of test 
generation process. The discussed case-study 
demonstrates the feasibility and effectiveness of the 
proposed idea.  
 
1. Introduction 
 

Test pattern generation for the today’s sequential 
circuits is lacking satisfactory methods and remains to 
be a challenge for both industry and academia. One of 
the wide spread solutions used by the community at 
present is substitution of the hard test pattern 
generation task by theoretically much simpler 
approach relying on scan-paths together with 
combinational Test Pattern Generation (TPG). 
However, the scan-path methods have their 
shortcomings including increased area, delay and 
consumed power. It also causes targeting of non-
functional failure modes, which results in over-testing 
and yield loss. In the rest of the paper we will consider 
circuits under test without scan chains or other DFT 
(design for testability) solutions.   

To cope with the TPG problem a number of 
approaches have been proposed. Some of them i.e. the 
ones targeting deterministic TPG at the gate level [7] 
can efficiently handle sequential designs of even a 
couple of thousands of gates. The simulation-based 
approaches [8] cannot guarantee detection of hard-to-
test faults. The fundamental shortcoming of the 
functional test generation approaches [9] that rely on 
functional fault models is that they do not offer full 
structural level fault coverage. Hierarchical and RTL 
test pattern generation has been proposed [10] as a 
promising alternative to target complex sequential 
circuits. The published works include implementing 
assignment decision diagram models [11] combined 
with SAT methods to address register-transfer level 
test pattern generation.  

In [1] and [2] we have proposed a hierarchical 
constraint-based TPG for RTL designs. Its advantages 

as well as some limitations will be discussed in more 
details in the next section.  

In this paper we propose to have a broader look at 
the discussed above problem of TPG for 
manufacturing test. The preceding phases of an ASIC 
development flow (Figure 1) normally include the 
design phase which is tightly coherent with the 
functional verification process targeted at design 
errors. The main goal of the functional verification is 
to insure the functionality of the design 
implementation (normally expressed by means of 
hardware description languages i.e. HDLs) 
corresponds to the requirements of the specification 
prior the synthesis phase. The verification process can 
rely on both formal and simulation-based approaches. 
The verification is a hard task by itself and intensive 
research goes in this area as well. One of the efficient 
strategies used in verification is application of 
assertions [3], which are pieces of a design explicitly 
specified behavior and aimed at design hard to verify 
parts. The recent emergence and success of such 
assertion specification languages as PSL (Property 
Specification Language) [4] and SystemVerilog [5] is 
an important step in assertion-based verification 
methodology development. The assertions can be used 
in both formal and simulation-based verification 

Figure 1. ASIC development flow 
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approaches, however normally they are cleaned out 
from the HDL code once the verification process is 
finished and the design is sent for synthesis.  

The approach we propose in this paper considers 
reuse of the information functional verification 
assertions contain for TPG targeted at structural 
manufacturing test. One of the important observations 
here is that normally the assertions are written by the 
design engineer who has a deep understanding of the 
design’s functionality.  

In [6] we have discussed the ideas for verification 
assertions reuse directions very generally.  

In [12] and [13] the authors address hardware 
checkers generation from assertions targeted to aid 
manufacturing testing.    

As opposed to the mentioned approaches we 
consider assertions as extra information for 
deterministic TPG targeted at RTL non-DFT designs.  

The rest of the paper is organized as follows. 
Section 2 describes the existing hierarchical 
constraint-based TPG for RTL designs called 
DECIDER. Section 3 introduces the proposed 
approach for verification assertions reuse for RTL 
TPG. A case-study using ITC’99 benchmark circuit 
b02 is used here for the approach explanation. Section 
4 concludes the paper.  
 
2. RT-level test pattern generator 
DECIDER 
 

In [1] and [2] we have proposed a hierarchical test 
generation approach for non-scan designs at RTL. The 
high-level symbolic path activation, described in this 
section is a complete algorithm, i.e. if transparent 
paths for fault effect propagation and value 
justification exist, they will be activated. The 
algorithm has been implemented as a systematic 
search and therefore an inconsistency in any stage 
causes a backtrack and a return to the last decision. 
However, due to the NP-complete nature of the 
problem, in some cases, the search must be terminated 
after a certain maximal number of solutions have been 
tried. 

The approach has two main phases. During the 
first phase, high-level test path activation, an untested 
module is selected and for this module propagation 
and justification is performed. In addition, constraints 
for the test path are extracted. The goal of the second 
phase is to satisfy the constraints by using a constraint 
solver and to compile the test patterns by assigning the 
values obtained by the constraint solver to the primary 
input signals. For this purpose an open source 
ECLiPSe constraint solver [14] is used.  

The high-level test generation constraints are 
divided into three categories. These are path activation 
constraints, transformation constraints and 
propagation constraints. Path activation constraints 

correspond to the logic conditions in the control flow 
graph that have to be satisfied in order to perform 
propagation and value justification through the circuit. 
Transformation constraints, in turn, reflect the value 
changes along the paths from the inputs of the high-
level Module Under Test (MUT) to the primary inputs 
of the whole circuit. These constraints are needed in 
order to derive the local test patterns for the module 
under test. Propagation constraints show how the 
value propagated from the output of the MUT to a 
primary output is depending on the values of the 
signals in the system. The main idea here is to 
guarantee that fault signals will not be masked when 
propagated.  

All the above categories of constraints are 
represented by common data structures and 
manipulated by common procedures for creation, 
update, modeling and simulation. 
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Let us explain the role of these constraints in test 

generation on an example test path activation for a 
circuit module shown in Figure 2. In the Figure there 
are two path activation constraints: true = f1(x1,x2) and 
false = f2(x2,x3). The first one is necessary to 
propagate the value from the output of the module to 
the primary output y3 of the circuit. The latter is 
required for justification of the first input (D1) of the 
module under test. Both these constraints are extracted 
from the conditional nodes traversed in the control 
flow graph of the circuit during high-level path 
activation. The figure also presents two transformation 
constraints. These constraints are applied for 
computing the value of the corresponding module 
input depending on the values of primary inputs of the 
circuit. Finally, there is a propagation constraint, 
which states that the value propagated from the 
module to the primary output y3 is dependent on the 
primary input x6. Thus, in order to avoid fault masking 
the value of x6 must be chosen such that the fault free 
and faulty values of Dout would differ. Note, that the 

Figure 2. Test generation constraints in DECIDER 
 



subsets of the primary input variables included into 
the different types of constraints may overlap. 
 
Table 1. Characteristics of the benchmark circuits 

circuit 
# 

faults 
# FSM 
states PI bits 

PO 
bits 

# of 
reg. 

# of 
mux 

# of 
FU 

gcd16 1754 8 33 16 3 4 3 
mult8x8 2036 8 17 16 7 4 9 

ellipf 5388 28 130 113 17 7 3 
risc 6434 4 26 16 8 4 4 

diffeq 10,008 6 81 48 7 9 5 
 
Table 2. Comparison of sequential circuit test 
generation tools 

circuit HITEC GATEST DECIDER 
 F.C., % time, s F.C., % time, s F.C., % time, s 

gcd16 59.11 365 86.13 190.7 90.95 677.4 
mult8x8 65.9 1243 69.2 821.6 74.7 93.7 

ellipf 87.9 2090 94.7 6229 95.04 1258.9 
risc 52.8 49,020 96.0 2459 96.5 150.5 

diffeq 96.2 13,320 96.40 3000 97.09 453.7 
aver. F.C.: 72.4 88.4 90.9 

 
In our previous works we have proven the 

DECIDER to be an efficient tool for RTL circuits 
TPG. Table 1 [19] presents the characteristics of the 
example circuits used in test pattern generation 
experiments in this paper. The following benchmarks 
were included to the test experiment: a Greatest 
Common Divisor (GCD), an 8-bit multiplier 
(MULT8x8), an Elliptic Filter (ELLIPF), an ALU 
based processor (RISC) and a Differential Equation 
(DIFFEQ). The VHDL versions of GCD and DIFFEQ 
were obtained from high-level synthesis benchmark 
suites [16],[17] and the designs of MULT8x8 and 
RISC from functional test generation (FUTEG) 
benchmarks [18]. The second column „# faults“ shows 
the number of single stuck-at faults in the circuits, the 
third column „# FSM states“ shows the number of 
states in the control part FSM, and the columns „PI 
bits“ and „PO bits“ present the number of primary 
input and primary output bits, respectively. Finally, 
the 6th, 7th and 8th columns show the number of 
registers, multiplexers and functional units 
respectively. 

In Table 2 [19], comparison of test generation 
results of three sequential ATPG tools on the 
hierarchical benchmark designs are presented. These 
include a gate-level deterministic ATPG HITEC [7], a 
genetic algorithm based GATEST [8], and DECIDER 
[19]. Columns „F.C., %“ give the single stuck-at fault 
coverages of the test patterns generated measured by 
the fault simulator from TURBO TESTER system 
[15], created at Tallinn University of Technology. 
Columns „time, s“ stand for test generation run-times 
achieved on a 366 MHz SUN UltraSPARC 60 server 
with 512 MB RAM under SOLARIS 2.8 operating 
system. The results show that DECIDER is very 
efficient for testing sequential designs. It achieves in 

average 2.5 % higher fault coverage than the genetic 
tool GATEST on the given benchmark set. 
 
3. Test generation for FSMs using 
assertions 
 

DECIDER relies on HLDD representations [19] of 
the design under test in order to generate the test 
patterns. The tool is capable of modeling FSMs, 
however, it is unable to target nodes in the FSM itself. 
This is due to the fact that the concept of testing FSMs 
is very different from datapath testing. When targeting 
datapaths, then the steps of fault manifestation, fault 
effect propagation and value justification are 
performed. Values are propagated through the 
datapath and FSM is taken into account only to keep 
track of the control state sequence. 

However, when targeting FSMs and control 
dominated circuits then the approach differs. Here we 
need to: 
Step A: activate a state sequence to the control state 
(or state transition) under test. 
Step B: differentiate the fault-free and faulty control 
states (or state transition). 
Step C: activate a sequence propagating this 
difference to observable outputs. 

 
Consider the following motivational example 

based on the ITC99 benchmark circuit b02 [20] 
presented in Figure 3 shows the state diagram of the 
circuit and in Figure 4 its corresponding high-level 
decision diagram (HLDD) is given. The circuit has 
one input signal called input, one output signal called 
output, and one internal variable state. In the state 
diagram, the diagram nodes are labeled by FSM states 
{A, B, C, D, E, F, G} the edges are labeled by the 
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Figure 3. The FSM of the case-study circuit b02 
 



values of inputs, which activate the corresponding 
transition and the output values at that transition. The 
input and output values are separated by a slash 
symbol. In the HLDD presented in Figure 4 the non-
terminal nodes are labeled by inputs and current state 
and the terminal nodes are labeled by output and next 
state values, respectively. The HLDD computes values 
to a vector of design variables {state, output} during 
each clock cycle.  

The fault models targeted during the test 
generation process by DECIDER for both FSM and 
datapath are expressed [19] using HLDDs.   

 
Consider an incomplete set of verification 

assertions written in PSL language: 
 

p1: assert always ({(state=A); [*3]; !input; }|=>{ output }); 
p2: assert always (input and !(state=D) -> next !output); 

 
These two assertions represent checks for 

functional correctness of the FSM implementing the 
b02 design. The first assertion p1 states that if we have 
the following sequence of signal values: first we are in 
state A, and then after a three don’t-care clock cycles 
we have input set to zero  then on the next clock cycle 
(|=> is a non-overlapping implication operator) the 
output will be set to 1. The second assertion p2 is 
interpreted as follows. If input is one and we are not in 
state D then at the next clock cycle output must be 
zero. 

In a real design flow the verification engineer 
writes a longer set of assertions that represents 
properties specifying the behavior of the circuit. Such 
information, although created for verification purposes, 
could be used by the automated test generation 
algorithm because it contains some high-level 
knowledge about the functionality of the design.  

For example, property p1 can be beneficial in 
activating the test sequence for value justification  
(step A of the FSM test generation, mentioned above). 
Assume that we need to justify state E, which is the 
only state where output is one, by backtracing a state 
sequence to the initial state A (See Figure 3). The 
information that is transferred to the ATPG by p1 is 
that when we justify, it is necessary to set input to zero 
after a three arbitrary values to reach E from A. 
Therefore, the justification sequence is easily derived 
just by moving to A, holding input equal to zero and 
waiting for 4 clock-cycles. Unnecessary backtracks 
and entering of loops during the systematic search will 
be avoided. 

Similarly, the same assertion could be applied in 
propagation to state E from an arbitrary state of the 
FSM (Step C of FSM test generation).  

Property p2 may be utilized in distinguishing the 
fault-free and faulty control states (Step B). For 
example, if we are in state D then we need to set input 
to one in order to distinguish it from other states. 

In a similar manner the information from 
verification assertions can be reused for datapath TPG. 
Generally assertions consist of two parts: precondition 
and implication separated by the one of the 
implication operators (e.g. ->). Let’s denote the set of 
signals in the precondition part by SPand the set of 
signals in the implication part by SP. 

 
Let’s consider a circuit under test containing two 

modules (Figure 5). And an abstract assertion W 
which both SP and SI are some of the signals crossed 
by the curved line in Figure 5. 

 
W: fPrecondition (SP) -> fImplication (SI);  
 

 
Then for a fault F1 in Module 1 both SP and SI can 

be used as a monitoring constraint, which allows to 
reduce the propagation time (Figure 6a) required for  

Figure 6. Assertion applicability for TPG a)fault 
propagation  b) fault justification. 
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Figure 4. The HLDD for the case-study circuit b02 
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Step C.  In case of a fault F2 in Module 2 the signals 
set SP can be controlled depending on the monitoring 
results of SI and thus can be used to reduce the 
justification time (Figure 6b) required for Step A.   

The knowledge from assertions may be forwarded 
to the ATPG algorithm in the form of implications, 
similar to combinational gate-level ATPG algorithms 
taking advantage of implications and learning 
[22],[23],[24]. In order to allow the transfer of 
knowledge from verification assertions into the ATPG 
algorithm, both, representation of assertions and 
derivation of implications from them have to be 
formalized.  

In Section 2 we have discussed constraints for test 
generation that are derived automatically from the 
circuit structure. An approach for the assertion 
information for TPG formalization can be their use to 
provide for additional constraints. The constraints 
from assertions allow avoiding unnecessary 
backtracks and thus can speed-up test generation 
process and increase the fault coverage.  
 

 
4. Conclusions and future work 
 
 The paper has proposed an approach for design 
functional verification assertions reuse for 
manufacturing test pattern generation at Register-
Transfer Level (RTL) for non-scan designs. The 
proposed assertions reuse allows our previously 
proposed constraint-based automated test pattern 
generator to increase fault coverage and speed-up test 
generation process. The discussed case-study 
demonstrates the feasibility and effectiveness of the 
proposed idea. 
 
Acknowledgements 
 
 This work has been supported in part by Estonian 
Science Foundation through grants 8478 and 7068, by 
European Commission projects FP7-2009-IST-4-
248613 DIAMOND and FP7-REGPOT-2008-1 
CREDES, by Research Centre CEBE funded by EU 
Structural Funds. 
 
References 
 
[1] J. Raik, R. Ubar, "Fast test pattern generation for 
sequential circuits using decision diagram representations", 
JETTA, Kluwer, 16(3), 2000. 
[2] T. Viilukas, J. Raik, M. Jenihhin, R. Ubar, A. 
Krivenko, “Constraint-based Test Pattern Generation at the 
Register-Transfer Level”, Proc. of IEEE International 
Symposium on Design and Diagnostics of Electronic 
Circuits and Systems (DDECS’10), 2010 
[3] H.D.Foster, A.C.Krolnik, “Creating Assertion-Based 
IP”, Springer, New York, 2008 

[4] IEEE-Commission, IEEE standard for Property 
Specification Language (PSL), IEEE Std 1850-2005/2010, 
April 6, 2010 
[5] IEEE Computer Society, IEEE standard for 
SystemVerilog-Unified Hardware Design, Specification, and 
Verification Language, IEEE Std 1800-2005/2009, 
December 11, 2009  
[6] M. Jenihhin, J. Raik, R. Ubar, A. Chepurov, “On 
reusability of verification assertions for testing”, Proc. of 
IEEE Biennial Baltic Electronics Conference (BEC’08), 
Tallinn, Estonia, October 2008, pp. 151-154  
[7] T. M. Niermann, J. H. Patel, "HITEC: A test 
generation package for sequential circuits", Proc. of 
European Conf. Design Automation (EDAC), pp.214-218, 
1991.  
[8] E. M. Rudnick, et al. "Sequential circuit test 
generation in a genetic algorithm framework", Proc. of DAC, 
pp. 698-704, 1994.  
[9] D. Brahme, J. A. Abraham, "Functional Testing of 
Micro-processors", IEEE Trans. Comput., vol. C-33, 1984.  
[10] B. T. Murray, J. P. Hayes, "Hierarchical test 
generation using precomputed tests for modules", Proc. ITC, 
pp.221-229, 1988.  
[11] H. Fujiwara, C. Y. Ooi, Y. Shimizu, "Enhancement of 
Test Environment Generation for Assignment Decision 
Diagrams", WRTLT, 2008 
[12] M. R. Kakoee, M. Riazati, S. Mohammadi, 
“Enhancing the Testability of RTL Designs Using 
Efficiently Synthesized Assertions”, Proc. of ISQED 2008, 
pp.230 - 235  
[13] M. Boule, J.-S. Chenard, Z. Zilic, “Assertion 
Checkers in Verification, Silicon Debug and In-Field 
Diagnosis”, Proc. of ISQED 2007, pp. 613 – 620 
[14] ECLiPSe Constraint Programming System, URL: 
http://eclipseclp.org/ 
[15] Turbo Tester Tools. URL: http://www.pld.ttu.ee/tt 
[16] HLSynth92 benchmarks. 
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth92/ 
[17] HLSynth95 benchmarks. 
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth95/ 
[18] E. Gramatova, M. Gulbins, M. Marzouki, A. Pataricza, 
R. Sheinauskas, R. Ubar, “FUTEG Benchmarks,” Technical 
Report of project COPERNICUS JEP 9624 FUTEG 
No9/1995. 
[19] Jaan Raik, Raimund Ubar, Taavi Viilukas, Maksim 
Jenihhin. Mixed Hierarchical-Functional Fault Models for 
Targeting Sequential Cores. Elsevier Journal of Systems 
Architecture, Vol. 54, Issue 3-4, pp. 465-477, Elsevier, 
March-April 2008. 
[20] F.Corno, M.S.Reorda, G.Squillero, “RT-level ITC'99 
benchmarks and first ATPG results”, Journal, Design & Test 
of Computers, IEEE, 17(3),  July - Sept. 2000, pp. 44 – 53 
[21] Pomeranz, I. and Reddy, S. M., Application of 
Homing Sequences to Synchronous Sequential Circuit 
Testing. IEEE Trans. Comput., vol. 43, number 5, pp. 569-
580, 1994. 
[22] Paul Tafertshofer ,  Andreas Ganz ,  Manfred 
Henftling, A SAT-Based Implication Engine for Efficient 



ATPG, Equivalence Checking, and Optimization of Netlists. 
Int. Conf. CAD, 1997. 
[23] R. Mukherjee, J. Jain, M. Fujita, J. A. Abraham, D. S. 
Fussell, "On More Efficient Combinational ATPG Using 
Functional Learning," vlsid, pp.107, 9th International 
Conference on VLSI Design: VLSI in Mobile 
Communication, 1996. 
[24] Bommu, S.  Chandrasekar, K.  Kundu, R.  Sengupta, 
S., CONCAT: CONflict Driven Learning in ATPG for 
Industrial designs.  International Test Conference, 2008. 
 
 


