
An Approach for Verification Assertions Reuse
in RTL Test Pattern Generation

Maksim Jenihhin1, Jaan Raik1, Hideo Fujiwara2, Raimund Ubar1, Taavi Viilukas1

1Tallinn University of Technology, Estonia 2Nara Institute of Science and Technology, Japan

Abstract

Assertions are used in functional verification of design
to detect design errors. In this paper we propose an
approach for their reuse in manufacturing test pattern
generation at Register-Transfer Level (RTL) for non-
scan designs. The proposed approach provides for
fault coverage increase and speed-up of test
generation process. The discussed case-study
demonstrates the feasibility and effectiveness of the
proposed idea.

1. Introduction

Test pattern generation for the today’s sequential
circuits is lacking satisfactory methods and remains to
be a challenge for both industry and academia. One of
the wide spread solutions used by the community at
present is substitution of the hard test pattern
generation task by theoretically much simpler
approach relying on scan-paths together with
combinational Test Pattern Generation (TPG).
However, the scan-path methods have their
shortcomings including increased area, delay and
consumed power. It also causes targeting of non-
functional failure modes, which results in over-testing
and yield loss. In the rest of the paper we will consider
circuits under test without scan chains or other DFT
(design for testability) solutions.

To cope with the TPG problem a number of
approaches have been proposed. Some of them i.e. the
ones targeting deterministic TPG at the gate level [7]
can efficiently handle sequential designs of even a
couple of thousands of gates. The simulation-based
approaches [8] cannot guarantee detection of hard-to-
test faults. The fundamental shortcoming of the
functional test generation approaches [9] that rely on
functional fault models is that they do not offer full
structural level fault coverage. Hierarchical and RTL
test pattern generation has been proposed [10] as a
promising alternative to target complex sequential
circuits. The published works include implementing
assignment decision diagram models [11] combined
with SAT methods to address register-transfer level
test pattern generation.

In [1] and [2] we have proposed a hierarchical
constraint-based TPG for RTL designs. Its advantages

as well as some limitations will be discussed in more
details in the next section.

In this paper we propose to have a broader look at
the discussed above problem of TPG for
manufacturing test. The preceding phases of an ASIC
development flow (Figure 1) normally include the
design phase which is tightly coherent with the
functional verification process targeted at design
errors. The main goal of the functional verification is
to insure the functionality of the design
implementation (normally expressed by means of
hardware description languages i.e. HDLs)
corresponds to the requirements of the specification
prior the synthesis phase. The verification process can
rely on both formal and simulation-based approaches.
The verification is a hard task by itself and intensive
research goes in this area as well. One of the efficient
strategies used in verification is application of
assertions [3], which are pieces of a design explicitly
specified behavior and aimed at design hard to verify
parts. The recent emergence and success of such
assertion specification languages as PSL (Property
Specification Language) [4] and SystemVerilog [5] is
an important step in assertion-based verification
methodology development. The assertions can be used
in both formal and simulation-based verification

Figure 1. ASIC development flow

Specification+

Design+phase+

Product+
Maintenance+

Verification+

Assertions+

Testing+

DfT+

Manufacturing+

+

11th IEEE Workshop on RTL and High Level Testing (WRTLT'10), pp. 107-110, Dec. 2010.

approaches, however normally they are cleaned out
from the HDL code once the verification process is
finished and the design is sent for synthesis.

The approach we propose in this paper considers
reuse of the information functional verification
assertions contain for TPG targeted at structural
manufacturing test. One of the important observations
here is that normally the assertions are written by the
design engineer who has a deep understanding of the
design’s functionality.

In [6] we have discussed the ideas for verification
assertions reuse directions very generally.

In [12] and [13] the authors address hardware
checkers generation from assertions targeted to aid
manufacturing testing.

As opposed to the mentioned approaches we
consider assertions as extra information for
deterministic TPG targeted at RTL non-DFT designs.

The rest of the paper is organized as follows.
Section 2 describes the existing hierarchical
constraint-based TPG for RTL designs called
DECIDER. Section 3 introduces the proposed
approach for verification assertions reuse for RTL
TPG. A case-study using ITC’99 benchmark circuit
b02 is used here for the approach explanation. Section
4 concludes the paper.

2. RT-level test pattern generator
DECIDER

In [1] and [2] we have proposed a hierarchical test
generation approach for non-scan designs at RTL. The
high-level symbolic path activation, described in this
section is a complete algorithm, i.e. if transparent
paths for fault effect propagation and value
justification exist, they will be activated. The
algorithm has been implemented as a systematic
search and therefore an inconsistency in any stage
causes a backtrack and a return to the last decision.
However, due to the NP-complete nature of the
problem, in some cases, the search must be terminated
after a certain maximal number of solutions have been
tried.

The approach has two main phases. During the
first phase, high-level test path activation, an untested
module is selected and for this module propagation
and justification is performed. In addition, constraints
for the test path are extracted. The goal of the second
phase is to satisfy the constraints by using a constraint
solver and to compile the test patterns by assigning the
values obtained by the constraint solver to the primary
input signals. For this purpose an open source
ECLiPSe constraint solver [14] is used.

The high-level test generation constraints are
divided into three categories. These are path activation
constraints, transformation constraints and
propagation constraints. Path activation constraints

correspond to the logic conditions in the control flow
graph that have to be satisfied in order to perform
propagation and value justification through the circuit.
Transformation constraints, in turn, reflect the value
changes along the paths from the inputs of the high-
level Module Under Test (MUT) to the primary inputs
of the whole circuit. These constraints are needed in
order to derive the local test patterns for the module
under test. Propagation constraints show how the
value propagated from the output of the MUT to a
primary output is depending on the values of the
signals in the system. The main idea here is to
guarantee that fault signals will not be masked when
propagated.

All the above categories of constraints are
represented by common data structures and
manipulated by common procedures for creation,
update, modeling and simulation.

Module
Under
Test

Circuit

Propagation
path

PIs POs
Path activation constraints

Transformation constraints

Conditions in
algorithm

graph false = f (x 2 ,x 3)

true = f (x 1 ,x 2)

D 1 = f (x 3 ,x 4)

D 2 = f (x 4 ,x 5)

D 1

D 2

x 1

x 2

x 3

x 4

x 5

y 1

y 2

y 3

y 4

x 6
Propagation constraints:

 f5(Dout,x6)≠ f5(Dout_faulty,x6)

D out

1

2

3

4

Let us explain the role of these constraints in test

generation on an example test path activation for a
circuit module shown in Figure 2. In the Figure there
are two path activation constraints: true = f1(x1,x2) and
false = f2(x2,x3). The first one is necessary to
propagate the value from the output of the module to
the primary output y3 of the circuit. The latter is
required for justification of the first input (D1) of the
module under test. Both these constraints are extracted
from the conditional nodes traversed in the control
flow graph of the circuit during high-level path
activation. The figure also presents two transformation
constraints. These constraints are applied for
computing the value of the corresponding module
input depending on the values of primary inputs of the
circuit. Finally, there is a propagation constraint,
which states that the value propagated from the
module to the primary output y3 is dependent on the
primary input x6. Thus, in order to avoid fault masking
the value of x6 must be chosen such that the fault free
and faulty values of Dout would differ. Note, that the

Figure 2. Test generation constraints in DECIDER

subsets of the primary input variables included into
the different types of constraints may overlap.

Table 1. Characteristics of the benchmark circuits

circuit

faults
FSM
states PI bits

PO
bits

of
reg.

of
mux

of
FU

gcd16 1754 8 33 16 3 4 3
mult8x8 2036 8 17 16 7 4 9

ellipf 5388 28 130 113 17 7 3
risc 6434 4 26 16 8 4 4

diffeq 10,008 6 81 48 7 9 5

Table 2. Comparison of sequential circuit test
generation tools

circuit HITEC GATEST DECIDER
 F.C., % time, s F.C., % time, s F.C., % time, s

gcd16 59.11 365 86.13 190.7 90.95 677.4
mult8x8 65.9 1243 69.2 821.6 74.7 93.7

ellipf 87.9 2090 94.7 6229 95.04 1258.9
risc 52.8 49,020 96.0 2459 96.5 150.5

diffeq 96.2 13,320 96.40 3000 97.09 453.7
aver. F.C.: 72.4 88.4 90.9

In our previous works we have proven the

DECIDER to be an efficient tool for RTL circuits
TPG. Table 1 [19] presents the characteristics of the
example circuits used in test pattern generation
experiments in this paper. The following benchmarks
were included to the test experiment: a Greatest
Common Divisor (GCD), an 8-bit multiplier
(MULT8x8), an Elliptic Filter (ELLIPF), an ALU
based processor (RISC) and a Differential Equation
(DIFFEQ). The VHDL versions of GCD and DIFFEQ
were obtained from high-level synthesis benchmark
suites [16],[17] and the designs of MULT8x8 and
RISC from functional test generation (FUTEG)
benchmarks [18]. The second column „# faults“ shows
the number of single stuck-at faults in the circuits, the
third column „# FSM states“ shows the number of
states in the control part FSM, and the columns „PI
bits“ and „PO bits“ present the number of primary
input and primary output bits, respectively. Finally,
the 6th, 7th and 8th columns show the number of
registers, multiplexers and functional units
respectively.

In Table 2 [19], comparison of test generation
results of three sequential ATPG tools on the
hierarchical benchmark designs are presented. These
include a gate-level deterministic ATPG HITEC [7], a
genetic algorithm based GATEST [8], and DECIDER
[19]. Columns „F.C., %“ give the single stuck-at fault
coverages of the test patterns generated measured by
the fault simulator from TURBO TESTER system
[15], created at Tallinn University of Technology.
Columns „time, s“ stand for test generation run-times
achieved on a 366 MHz SUN UltraSPARC 60 server
with 512 MB RAM under SOLARIS 2.8 operating
system. The results show that DECIDER is very
efficient for testing sequential designs. It achieves in

average 2.5 % higher fault coverage than the genetic
tool GATEST on the given benchmark set.

3. Test generation for FSMs using
assertions

DECIDER relies on HLDD representations [19] of
the design under test in order to generate the test
patterns. The tool is capable of modeling FSMs,
however, it is unable to target nodes in the FSM itself.
This is due to the fact that the concept of testing FSMs
is very different from datapath testing. When targeting
datapaths, then the steps of fault manifestation, fault
effect propagation and value justification are
performed. Values are propagated through the
datapath and FSM is taken into account only to keep
track of the control state sequence.

However, when targeting FSMs and control
dominated circuits then the approach differs. Here we
need to:
Step A: activate a state sequence to the control state
(or state transition) under test.
Step B: differentiate the fault-free and faulty control
states (or state transition).
Step C: activate a sequence propagating this
difference to observable outputs.

Consider the following motivational example

based on the ITC99 benchmark circuit b02 [20]
presented in Figure 3 shows the state diagram of the
circuit and in Figure 4 its corresponding high-level
decision diagram (HLDD) is given. The circuit has
one input signal called input, one output signal called
output, and one internal variable state. In the state
diagram, the diagram nodes are labeled by FSM states
{A, B, C, D, E, F, G} the edges are labeled by the

!

A

!

B

!

F

!

C

!

G

!

D

!

E

1 / 0

!
X / 0

!0 / 0

!

0 / 0

!

1 / 0

!

X / 0

!
0 / 0

!

X / 1

!

X / 0

!

input / output

!

1 / 0

!

Figure 3. The FSM of the case-study circuit b02

values of inputs, which activate the corresponding
transition and the output values at that transition. The
input and output values are separated by a slash
symbol. In the HLDD presented in Figure 4 the non-
terminal nodes are labeled by inputs and current state
and the terminal nodes are labeled by output and next
state values, respectively. The HLDD computes values
to a vector of design variables {state, output} during
each clock cycle.

The fault models targeted during the test
generation process by DECIDER for both FSM and
datapath are expressed [19] using HLDDs.

Consider an incomplete set of verification

assertions written in PSL language:

p1: assert always ({(state=A); [*3]; !input; }|=>{ output });
p2: assert always (input and !(state=D) -> next !output);

These two assertions represent checks for

functional correctness of the FSM implementing the
b02 design. The first assertion p1 states that if we have
the following sequence of signal values: first we are in
state A, and then after a three don’t-care clock cycles
we have input set to zero then on the next clock cycle
(|=> is a non-overlapping implication operator) the
output will be set to 1. The second assertion p2 is
interpreted as follows. If input is one and we are not in
state D then at the next clock cycle output must be
zero.

In a real design flow the verification engineer
writes a longer set of assertions that represents
properties specifying the behavior of the circuit. Such
information, although created for verification purposes,
could be used by the automated test generation
algorithm because it contains some high-level
knowledge about the functionality of the design.

For example, property p1 can be beneficial in
activating the test sequence for value justification
(step A of the FSM test generation, mentioned above).
Assume that we need to justify state E, which is the
only state where output is one, by backtracing a state
sequence to the initial state A (See Figure 3). The
information that is transferred to the ATPG by p1 is
that when we justify, it is necessary to set input to zero
after a three arbitrary values to reach E from A.
Therefore, the justification sequence is easily derived
just by moving to A, holding input equal to zero and
waiting for 4 clock-cycles. Unnecessary backtracks
and entering of loops during the systematic search will
be avoided.

Similarly, the same assertion could be applied in
propagation to state E from an arbitrary state of the
FSM (Step C of FSM test generation).

Property p2 may be utilized in distinguishing the
fault-free and faulty control states (Step B). For
example, if we are in state D then we need to set input
to one in order to distinguish it from other states.

In a similar manner the information from
verification assertions can be reused for datapath TPG.
Generally assertions consist of two parts: precondition
and implication separated by the one of the
implication operators (e.g. ->). Let’s denote the set of
signals in the precondition part by SPand the set of
signals in the implication part by SP.

Let’s consider a circuit under test containing two

modules (Figure 5). And an abstract assertion W
which both SP and SI are some of the signals crossed
by the curved line in Figure 5.

W: fPrecondition (SP) -> fImplication (SI);

Then for a fault F1 in Module 1 both SP and SI can

be used as a monitoring constraint, which allows to
reduce the propagation time (Figure 6a) required for

Figure 6. Assertion applicability for TPG a)fault
propagation b) fault justification.

a) b)

Module 1
F1

justification propagation

!
Module 2

F2

justification propagation

!

Figure 5. A circuit under test with two modules

Module 1

Module 2 F2

F1

Circuit under test

P
rim

ar
y

in
pu

ts

P
rim

ar
y

ou
tp

ut
s

w

Figure 4. The HLDD for the case-study circuit b02

! {state,
output}

!

reset

!

{A, X}

!

state

!

{B, 0}

!

0

!
1

!

A

!
B

!
input

!

{C, 0}

!
{F, 0}

!

input

!

0

!
1

!

{B, 1}

!

E

!

{E, 0}

!

D

!

C

!
input

!

{D, 0}

!
{G, 0}

!

input

!

0

!
1

!

{G, 1}

!

F

!
G

!
input

!

{E, 0}

!
{A, 0}

input

!

0

!
1

!

Step C. In case of a fault F2 in Module 2 the signals
set SP can be controlled depending on the monitoring
results of SI and thus can be used to reduce the
justification time (Figure 6b) required for Step A.

The knowledge from assertions may be forwarded
to the ATPG algorithm in the form of implications,
similar to combinational gate-level ATPG algorithms
taking advantage of implications and learning
[22],[23],[24]. In order to allow the transfer of
knowledge from verification assertions into the ATPG
algorithm, both, representation of assertions and
derivation of implications from them have to be
formalized.

In Section 2 we have discussed constraints for test
generation that are derived automatically from the
circuit structure. An approach for the assertion
information for TPG formalization can be their use to
provide for additional constraints. The constraints
from assertions allow avoiding unnecessary
backtracks and thus can speed-up test generation
process and increase the fault coverage.

4. Conclusions and future work

 The paper has proposed an approach for design
functional verification assertions reuse for
manufacturing test pattern generation at Register-
Transfer Level (RTL) for non-scan designs. The
proposed assertions reuse allows our previously
proposed constraint-based automated test pattern
generator to increase fault coverage and speed-up test
generation process. The discussed case-study
demonstrates the feasibility and effectiveness of the
proposed idea.

Acknowledgements

 This work has been supported in part by Estonian
Science Foundation through grants 8478 and 7068, by
European Commission projects FP7-2009-IST-4-
248613 DIAMOND and FP7-REGPOT-2008-1
CREDES, by Research Centre CEBE funded by EU
Structural Funds.

References

[1] J. Raik, R. Ubar, "Fast test pattern generation for
sequential circuits using decision diagram representations",
JETTA, Kluwer, 16(3), 2000.
[2] T. Viilukas, J. Raik, M. Jenihhin, R. Ubar, A.
Krivenko, “Constraint-based Test Pattern Generation at the
Register-Transfer Level”, Proc. of IEEE International
Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS’10), 2010
[3] H.D.Foster, A.C.Krolnik, “Creating Assertion-Based
IP”, Springer, New York, 2008

[4] IEEE-Commission, IEEE standard for Property
Specification Language (PSL), IEEE Std 1850-2005/2010,
April 6, 2010
[5] IEEE Computer Society, IEEE standard for
SystemVerilog-Unified Hardware Design, Specification, and
Verification Language, IEEE Std 1800-2005/2009,
December 11, 2009
[6] M. Jenihhin, J. Raik, R. Ubar, A. Chepurov, “On
reusability of verification assertions for testing”, Proc. of
IEEE Biennial Baltic Electronics Conference (BEC’08),
Tallinn, Estonia, October 2008, pp. 151-154
[7] T. M. Niermann, J. H. Patel, "HITEC: A test
generation package for sequential circuits", Proc. of
European Conf. Design Automation (EDAC), pp.214-218,
1991.
[8] E. M. Rudnick, et al. "Sequential circuit test
generation in a genetic algorithm framework", Proc. of DAC,
pp. 698-704, 1994.
[9] D. Brahme, J. A. Abraham, "Functional Testing of
Micro-processors", IEEE Trans. Comput., vol. C-33, 1984.
[10] B. T. Murray, J. P. Hayes, "Hierarchical test
generation using precomputed tests for modules", Proc. ITC,
pp.221-229, 1988.
[11] H. Fujiwara, C. Y. Ooi, Y. Shimizu, "Enhancement of
Test Environment Generation for Assignment Decision
Diagrams", WRTLT, 2008
[12] M. R. Kakoee, M. Riazati, S. Mohammadi,
“Enhancing the Testability of RTL Designs Using
Efficiently Synthesized Assertions”, Proc. of ISQED 2008,
pp.230 - 235
[13] M. Boule, J.-S. Chenard, Z. Zilic, “Assertion
Checkers in Verification, Silicon Debug and In-Field
Diagnosis”, Proc. of ISQED 2007, pp. 613 – 620
[14] ECLiPSe Constraint Programming System, URL:
http://eclipseclp.org/
[15] Turbo Tester Tools. URL: http://www.pld.ttu.ee/tt
[16] HLSynth92 benchmarks.
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth92/
[17] HLSynth95 benchmarks.
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/HLSynth95/
[18] E. Gramatova, M. Gulbins, M. Marzouki, A. Pataricza,
R. Sheinauskas, R. Ubar, “FUTEG Benchmarks,” Technical
Report of project COPERNICUS JEP 9624 FUTEG
No9/1995.
[19] Jaan Raik, Raimund Ubar, Taavi Viilukas, Maksim
Jenihhin. Mixed Hierarchical-Functional Fault Models for
Targeting Sequential Cores. Elsevier Journal of Systems
Architecture, Vol. 54, Issue 3-4, pp. 465-477, Elsevier,
March-April 2008.
[20] F.Corno, M.S.Reorda, G.Squillero, “RT-level ITC'99
benchmarks and first ATPG results”, Journal, Design & Test
of Computers, IEEE, 17(3), July - Sept. 2000, pp. 44 – 53
[21] Pomeranz, I. and Reddy, S. M., Application of
Homing Sequences to Synchronous Sequential Circuit
Testing. IEEE Trans. Comput., vol. 43, number 5, pp. 569-
580, 1994.
[22] Paul Tafertshofer , Andreas Ganz , Manfred
Henftling, A SAT-Based Implication Engine for Efficient

ATPG, Equivalence Checking, and Optimization of Netlists.
Int. Conf. CAD, 1997.
[23] R. Mukherjee, J. Jain, M. Fujita, J. A. Abraham, D. S.
Fussell, "On More Efficient Combinational ATPG Using
Functional Learning," vlsid, pp.107, 9th International
Conference on VLSI Design: VLSI in Mobile
Communication, 1996.
[24] Bommu, S. Chandrasekar, K. Kundu, R. Sengupta,
S., CONCAT: CONflict Driven Learning in ATPG for
Industrial designs. International Test Conference, 2008.

