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 Secure Scan Design Using Shift Register Equivalents  
against Differential Behavior Attack 

Abstract - There is a need for an efficient design-for-testability 
to satisfy both testability and security of digital circuits.  In 
our previous work, we reported a secure and testable scan 
design approach by using extended shift registers that are 
functionally equivalent but not structurally equivalent to shift 
registers, and showed a security level by clarifying the 
cardinality of those classes of shift register equivalents (SR 
equivalents).  However, SR equivalents are not always secure 
for scan-based side-channel attacks.  In this paper, we 
consider a scan-based side-channel attack called 
differential-behavior attack and propose several classes of 
SR-equivalent scan circuits using dummy flip-flops in order to 
protect the scan-based differential-behavior attack.  To show 
the security level of those extended scan circuits, we introduce 
differential-behavior equivalent relation, and clarify the 
number of SR-equivalent extended scan circuits, the number of 
differential-behavior equivalent classes and the cardinality of 
those equivalent classes. 

I. Introduction 
Scan registers or scan chains are proven to be effective in 
improving the testability of digital circuits [1], [2].  However, its 
effect on the circuit, which makes its registers easily accessible 
from primary inputs and outputs, allows attackers to exploit this 
opportunity to extract key streams, copy intellectual property (IP), 
and even manipulate the circuit.  This makes it difficult for scan 
chains to be used especially in special cryptographic circuits where 
secret key streams are stored in internal registers.  However, 
sacrificing testability for security will degrade/affect product 
quality of these circuits, which conflicts with the high demand of 
reliable secure systems [3].  Fundamentally, the problem lies on 
the inherent contradiction between testability and security for 
digital circuits.  Hence, there’s a need for an efficient solution 
such that both testability and security are satisfied.  

To solve this challenging problem, different approaches have 
been proposed.  In [4], [5], a scan-chain design based on 
scrambling was proposed, where flip-flops are dynamically 
reordered in a scan chain.  An alternative is given in [6], [7].  In 
this method, a secure scan-chain architecture with mirror key 
register (MKR) was introduced.  Any crypto chip with the 
proposed architecture can be switched between test/normal mode 
(insecure) and normal mode only (secure).  A similar scheme using 
insecure and secure modes is the lock & key security technique 
proposed in [8], [9]. It uses a test security controller (TSC) to 
switch between secure and insecure modes.  This method divides 
the scan chain into smaller subchains of equal length.  Moreover, 
Paul et al. in [10] claims to provide a superior technique compared 
to the ones mentioned.  It is a Vlm-Scan that utilizes some 
flip-flops in a scan chain for authentication to move to test 
mode.  The circuit can proceed to test mode only if the proper 
sequence of test keys are scanned in to the used flip-flops.  The 
test controller can be tested, which is an advantage compared to the 

others, however, a long test key sequence is still needed. All of the 
proposed techniques [4 – 12] add extra hardware outside of the 
scan chain.  This entails several disadvantages such as high area 
overhead, timing overhead or performance degradation, increased 
complexity of testing, and limited security for the registers part 
among others.  

Sengar et al. discussed a model called secured flipped- 
scan-chain in [13], which works as conventional scan chains do 
except that it uses inverters in the scan path to flip part of the 
register content for protection. There are no additional test keys or 
clock cycles in the method. Testing the architecture can be done 
the same way with scan chains, only with additional NOT 
gates.  However, Sengar’s approach [13] has not considered the 
possibility of resetting (to zero) of all flip-flops in the scan 
chain.  In this case, the positions of all inverters, despite a 
sufficient number, can still be determined by simply scanning out 
after reset.  Thus, the internal state can be identified and the 
security is breached.   

In [14], we proposed a secure and testable scan design approach 
by using extended shift registers that are functionally equivalent 
but not structurally equivalent to shift registers.  The proposed 
approach is only to replace the original scan register with a 
modified scan register that requires little area overhead and no 
performance overhead with respect to normal operation.  To show 
the security level for the proposed approach, we clarified the 
cardinality of those classes of shift register equivalents 
(SR-equivalents) [15].  However, SR-equivalents are not always 
secure for scan-based side-channel attacks.  In this paper, we 
consider a scan-based side-channel attack called 
differential-behavior attack and propose several classes of 
SR-equivalent scan circuits using dummy flip-flops in order to 
protect the scan-based differential-behavior attack.  To show the 
security level of those extended scan circuits, we introduce 
differential-behavior equivalent relation, and clarify the number of 
SR-equivalent extended scan circuits, the number of 
differential-behavior equivalent classes and the cardinality of those 
equivalent classes for several linear structure circuits.   

II. Extended Shift Registers 
Figure 1 illustrates a 3-stage shift register and the state transition 
graph.  Based from this, we define extended shift registers and 
shift register equivalent circuits (SR-equivalents) as follows. 

Extended Shift Register.  A circuit whose state transition 
graph is isomorphic to that of k-stage shift register is called a 
k-stage extended shift register. 

Shift Register Equivalent.  A circuit C is called functionally 
equivalent to a k-stage shift register (or SR-equivalent) if the state 
transition graph of C is isomorphic to that of the shift register and 
the input/output assignment is the same as that of the shift register.  
The state assignment is not necessarily the same as that of the shift 
register.  
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Figure 2(a)-(b) illustrates examples of 3-stage extended shift 
registers; an extended shift register which is not SR-equivalent and 
an extended shift register which is SR-equivalent.  Underlined 
symbols indicate differences from the state transition graph shown 
in Figure 1.  Here, we consider the following five types of linear 
circuits that can realize extended shift registers; inversion-inserted 
shift registers (I2SR), linear feed-forward shift registers (LF2SR), 
linear feedback shift registers (LFSR), inversion-inserted linear 
feed-forward shift registers (I2 LF2SR), and inversion-inserted 
linear feedback shift registers (I2LFSR).  Figure 3 shows those 
examples. 

 

 
Figure 1.  Shift register 

     

       
 (a) Not SR-equivalent       (b) SR-equivalent 

Figure 2.  Extended shift registers 

     
(a) I2SR 

        
 (b) LF2SR             (c) LFSR 

    
 (d) I2LF2SR           (e) I2LFSR 

Figure 3.  Five types of linear circuits 

A. How to Design SR-Equivalents 

Let us consider how to adapt the design of proposed 
SR-equivalents in DFT flow that generally needs to conform to 
some requirements and constraints.  Let the constraint be the 
power consumption during scan operation.  First, we insert NOT 
and feed-forward XOR gates into a scan chain to minimize power 
consumption during scan operation by using the method of [16].  
Next, we check if the augmented scan register or extended shift 
register is SR-equivalent or not.   If not, we augment it to 
SR-equivalent with minimal modification. 

We have presented how to modify a given extended SR into 
SR-equivalent in [14],  [15].  A k-stage LF2SR given in Figure 
4(a) is used as an example to demonstrate how a modification to 
SR equivalent is done.  Here, k=3. By symbolic simulation 
illustrated in Figure 4(c), the output z at time k+1=4 becomes a2+a3 
after applying an input sequence a3 a2 a1 to x, where x(1)= a3, x(2)= 
a2, and x(3)= a1.  To change a2+a3 into a3, we add another value a2 

to the output z, i.e., a2+a3+a2= a3.  To do so, we modify the circuit 
by adding a feed-forward from y2 to z as shown in Figure 4(b).  
Then the modified circuit becomes SR-equivalent.  In this way, 
for a k-stage LF2SR, the additional feed-forward line is uniquely 
determined from the output expression at time k+1 obtained by 
symbolic simulation. 

Symbolic simulation is very fast, and hence it is not so hard to 
construct a long stage of SR-equivalent by modification shown in 
Figure 4.   However, the additional hardware might increase as 
the stage k increases.   

          
 (a) Given LF2SR           (b) Modified SR equivalent LF2SR 

 
(c) Symbolic simulation 

Figure 4.  Modification to SR-equivalent 

 
(a) Given LF2SR 

 
(b) Obtain state-justification sequence from final state 

 
(c) Determine initial state from output sequence 

Figure 5.  State-justification and state-observation 

B. How to Control/Observe SR-Equivalents 

For a synthesized SR-equivalent circuit, the following two 
problems are important in order to utilize the SR-equivalent circuit 
as a scan shift register in testing.  One problem is to generate an 
input sequence to transfer the circuit into a given desired state. This 
is called state-justification problem.  The other problem is to 
determine the initial state by observing the output sequence from 
the state.  This is called state-observation problem.  In [14], we 
showed that for any SR-equivalent circuit, those problems can be 
solved uniquely similar to SR.  That is, for any desired state, a 
transfer sequence to the state can be uniquely generated, 
independently of the initial state, and any present state (initial 
state) can be uniquely identified only from the output sequence. 

Consider a 3-stage  LF2SR given in Figure 5(a).  This LF2SR 
is SR-equivalent.  By using symbolic simulation, we can obtain 
an input sequence (x(t-3), x(t-2), x(t-1)) that transfers the circuit 
from any state to the desired final state (y1(t), y2 (t), y3 (t)) as 
illustrated in Figure 5(b).   Similarly, as illustrated in Figure 5(c), 
we can determine the initial state (y1(t), y2 (t), y3 (t)) from the 
output sequence (z(t), z(t+1), z(t+2)).  For other type of 
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SR-equivalent structures, we can obtain those equations similarly 
and easily from symbolic simulation. 

 
(a) Extended shift register R1 

  
(b) Extended scan register S1 

      

 
  (c) Kernel with extended scan register 

Figure 6.  Scan design with extended scan register 

 
Figure 7.  Long secure scan chain 

      

 
Figure 8.    Extended scan circuits with dummy FF 

  
Figure 9.   Scan design with extended scan circuit 

III.  Extended Scan Circuits 
A scan-designed circuit consists of a single or multiple scan 
registers or scan chains and the remaining combinational logic 
circuit (kernel).  A scan register is regarded as a shift register with 
multiplexers that select the normal data from the combinational 
logic circuit and the shifting data from the preceding flip-flop.  
Here, we replace the shift register with an extended shift register.  
The scan register with the extended shift register as shown in 
Figure 6 is called the extended scan register (ESR).   

In the proposed secure scan design, not all scan registers are 
replaced with ESRs.  As shown in Figure 7, only the scan 
registers necessary to be secure are replaced with ESRs that cover 
the secrete registers and the size of ESRs is large enough to make 
them secure. So, the area overhead can be low.  The delay 
overhead due to additional XOR gates influences only scan 
operation, and hence there is no delay overhead for normal 
operation. 

In the following section, we consider a differential behavior 
attack as a scan-based side-channel attack.  To protect the attack, 
we introduce a dummy flip-flop as shown in Figure 8.  A circuit 

consisting of an extended shift register and a dummy FF is called 
an extended scan circuit.  Figure 8 illustrates three extended scan 
circuits with three types of dummy flip-flops. Figure 9 shows scan 
design with the extended scan circuit.   

 
Figure 10.   Fundamental d-behaviors for S1  

 

 
Figure 11.  XOR-superposition of fundamental d-behaviors 

IV.  Differential Behavior 
Let us consider the following scan-based attack. First, the circuit 
under test is reset and then run in normal mode. Next, it is switched 
to scan mode to scan out the contents of scan registers. These steps 
are repeated using another input sequence that is slightly different 
from the first input sequence. By applying such two input 
sequences that are slightly different from each other, the contents 
of scan registers have a single bit or multiple bit difference 
between two input sequences, i.e., one can insert different values 
(referred to differential value) into a single or multiple flip-flops 
between two input sequences (or a pair of input sequences) and 
observe the differences between the pair of output sequences by 
scan operation.  Such a pair of two scan-out sequences including 
differential values is called a differential behavior (or d-behavior, 
for short). Figure 10 shows four d-behaviors for the extended scan 
register S1 of Figure 6 (b).  A single differential value is inserted 
into x, y1, y2, y3, and y4, respectively.   

Differential-behavior attack.  The attack that inserts 
differential values into extended scan registers in normal mode and 
observes the differential behaviors in scan mode is called a 
differential-behavior attack.  For the differential-behavior attack, 
we consider the possibility of the worst case such that arbitrary 
number of differential values can be inserted into any flip-flops 
except dummy flip-flops though the inserted positions are 
unknown, and that differential values can also be inserted 
simultaneously from scan-input at any time again and again. 

Differential-behavior set.  A set of all d-behaviors for an 
extended scan circuit S is called the differential-behavior set of S 
(or d-behavior set of S, for short).   A set of all single-bit 
d-behaviors for S is called the fundamental differential-behavior 
set of S (or fundamental d-behavior set of S, for short).  Figure 10 
shows the fundamental d-behavior set of S1 of Figure 6 (b). 

Differential-behavior equivalent relation.  Let S1 and S2 be 
extended scan circuits. S1 and S2 are said to be 
differential-behavior equivalent (or d-behavior equivalent, for 
short) if the d-behavior sets of S1 and S2 are the same.   
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XOR operation of differential value (d) and constant (-) is as 
follows.  (d)+(d)=(-), (d)+(-)=(d), (-)+(-)=(-).  Then, the 
following theorem holds. 

Theorem 1: Any differential behavior can be uniquely 
expressed by XOR-superposition of fundamental d-behaviors only. 

Figure 11 illustrates two examples of Theorem 1.  From 
Theorem 1, we see that two extended scan circuits can be identified 
to be d-behavior equivalent or not, only by checking their 
fundamental behavior sets are the same. 
 Theorem 2:  Let S1 and S2 be extended scan circuits. S1 and S2 
are d-behavior equivalent if and only if fundamental d-behavior 
sets of S1 and S2 are the same. 

V.  Identification of Scan Structure 
The extended shift register R1 of Figure 6(a) is SR-equivalent.  
The total number of SR-equivalent circuits with 3 flip-flops is 
N(3)=23!/3! – 1 = 6,719.  Since they are all functionally 
equivalent to the 3-stage shift register, their input/output relations 
are the same for all of them.  Therefore, the probability that an 
attacker can identify it to be R1 by guessing is 1/6719.  The 
number of 3-stage SR-equivalent LF2SR-type circuits is 2k(k-1)/2–1 = 
7, and hence the guessing probability is one seventh.  However, 
the guessing probability approaches to zero as the number of 
flip-flops increases.  In the above discussion, we considered only 
attacks via scan operation for extended scan registers.  However, 
if we target extended scan circuits, we need to consider 
differential-behavior attacks. 

Suppose the extended scan register R1 and the scan circuit S1 in 
Figure 6.  S1 consists of R1.   The fundamental d-behavior set of 
S1 is shown in Figure 10.  As explained later in Section VI.B, 
every class of differential behavior equivalents for LF2SR-type 
extended scan circuits consists of one element or singleton, i.e., the 
cardinality of every d-behavior equivalent class is 1.  Hence, we 
can see any extended scan circuit that has the same fundamental 
d-behavior set as that of S1 is only S1 itself.  Therefore, we can 
uniquely identify S1 from the d-behavior set, and hence the 
structure of S1 is identified and S1 is not secure. 

The probability that an attacker can identify the configuration of 
an extended scan circuit S approximates to the reciprocal of the 
cardinality of the class of extended scan circuits that are d-behavior 
equivalent to S.  To evaluate the security level against d-behavior 
attacks, for each type of extended scan circuits we clarify the total 
number of SR-equivalent extended scan circuits in the class, the 
number of d-equivalent classes, and the cardinality of those 
equivalent classes in the following sections. 

VI.  Cardinality of Differential Behavior Equivalents 
From Theorem 2, we see that two extended scan circuits can be 
identified to be d-behavior equivalent or not, only by checking 
their fundamental behavior sets are the same.  Therefore, we 
consider only fundamental behaviors from now on. 

A.  I2SR without Dummy FF 
Consider an SR-equivalent k-stage I2SR-type scan circuit without 
dummy FF.  If a differential value is inserted into the j-th FF yj, 
the d-behavior becomes (- , …. , - , d , - , … , -) of length k+1.  
Therefore, the following k+1 d-behaviors are obtained. 
      (- , … , - , d), (-, … , - , d, -), … , (d , - , … , -) 
Therefore, the total number of SR-equivalent k-stage I2SR-type 
scan circuits is 2k – 1.   

They are all d-behavior equivalent each other.  Hence, the 
number of d-behavior equivalent classes is 1.   The cardinality of 

the unique equivalent class is 2k – 1. 

B.  LF2SR and LFSR without Dummy FF 

Consider an SR-equivalent k-stage LF2SR-type scan circuit without 
dummy FF.  If a differential value is inserted into the j-th FF yj, 
the d-behavior becomes (z1 , z2, ... , zk-1 , d , - , … , -) of length k+1 
where z1 , z2, ... , zk-1 are either (-) or (d).   The number of total 
such different patterns are 2k-j. 

Since a differential value can be inserted in y1 , y2, ... , and yk , 
the number of different d-behavior sets (the number of equivalent 
classes) including SR becomes 

 
 
 
The total number of SR-equivalent k-stage LF2SR-type scan 
circuits including SR is 2k(k-1)/2 – 1.  Hence, the cardinality of 
every equivalent class is 1, i.e., singleton. 

As for SR-equivalent k-stage LFSR-type scan circuits, we can 
obtain similarly, i.e., the number of extended scan circuits, the 
number of d-behavior equivalent classes, and the cardinality of 
those equivalent classes are the same as those of LF2SR-type scan 
circuits. 

C. I2LF2SR and I2LFSR without Dummy FF 

Consider an SR-equivalent k-stage I2LF2SR-type scan circuit 
without dummy FF.  By considering the superposition of I2SR and 
LF2SR, the total number of SR-equivalent k-stage I2LF2SR-type 
scan circuits is 
 
 

The total number of d-equivalent classes is 2k(k-1)/2 – 1.  Hence, 
there exists an equivalent class whose cardinality is at least 2k – 1.   

As for SR-equivalent k-stage I2LFSR-type scan circuits without 
dummy FF, we can obtain similarly, i.e., the number of extended 
scan circuits, the number of d-behavior equivalent classes, and the 
cardinality of those equivalent classes are the same as those of 
I2LF2SR-type scan circuits without dummy FF. 

 
Figure 12.  Total number of patterns with one dummy FF 

D. I2SR with One Dummy FF  

Consider SR-equivalent k-stage I2SR-type scan circuits with one 
dummy FF.  The total number of SR-equivalent k-stage I2SRs is 
2k – 1. 

For each SR-equivalent k-stage I2SR,  there exist the following 
number of different patterns of placing one dummy FF as shown in 
Figure 12.  In the case that a constant 0 or 1 is connected to the 
normal input of one dummy FF, there are 2k cases.  In the case 
that a normal input of other FF is connected to the normal input of 
one dummy FF, there are 3k(k-1)/2 cases.  Therefore, the total 
number of SR-equivalent k-stage I2SR-type scan circuits with one 
dummy FF is 
 
 

Inserting a differential value becomes either inserting a 
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differential value into a FF or inserting two differential values into 
two FFs.  Therefore, the total number of d-equivalent classes is  
 
 
 
Hence, there exists an equivalent class whose cardinality is at least   
 
 
 
 

E. LF2SR and LFSR with One Dummy FF  

Consider SR-equivalent k-stage LF2SR-type scan circuits with one 
dummy FF.  The total number of SR-equivalent k-stage LF2SRs is 
2k(k-1)/2 – 1. 

For each SR-equivalent k-stage I2SR,  there exist the following 
number of different patterns of placing one dummy FF as shown in 
Figure 12.  In the case that a constant 0 or 1 is connected to the 
normal input of one dummy FF, there are 2k cases.  In the case 
that a normal input of other FF is connected to the normal input of 
one dummy FF, there are 3k(k-1)/2 cases.  Therefore, the total 
number of SR-equivalent k-stage LF2SR-type scan circuits with 
one dummy FF is 

 
 
 

Similar to the discussion of Section VI.D, inserting a differential 
value becomes either inserting a differential value into a FF or 
inserting two differential values into two FFs.  Therefore, the total 
number of d-equivalent classes is 
 
 
 
 
On the other hand, the number of scan circuits is 
 
 
 
Therefore, there exists an equivalent class whose cardinality is at 
least 
 
 
 
 

F. I2LF2SR and I2LFSR with One Dummy FF  

Consider an SR-equivalent k-stage I2LF2SR-type scan circuit with 
one dummy FF.  By considering the superposition of I2SR and 
LF2SR, the total number of SR-equivalent k-stage I2LF2SR-type 
scan circuits is 
 
 
The total number of d-equivalent classes is 
 
Therefore, there exists an equivalent class whose 
cardinality is at least 
 
 
 
 
 

As for SR-equivalent k-stage I2LFSR-type scan circuits with one 
dummy FF, we can obtain similarly, i.e., the number of extended 
scan circuits, the number of d-behavior equivalent classes, and the 
cardinality of those equivalent classes are the same as those of 
I2LF2SR-type scan circuits with one dummy FF. 

Table I.  Cardinality of d-behavior equivalent classes  
(without dummy FF)  

 # of SR-Equivalent 
Scan Circuits 

# of  Equivalent 
Classes 

Guaranteed 
Cardinality 

I2SR 2k – 1 1 2k – 1 
LF2SR 
(LFSR) 

2k(k-1)/2 – 1 2k(k-1)/2 – 1 1 

I2LF2SR 
(I2LFSR) 

(2k(k-1)/2–1)(2k-1) 2k(k-1)/2 – 1 2k – 1 

 
Table II.  Cardinality of d-behavior equivalent classes  

(with one dummy FF)  
 # of SR-Equivalent 

Scan Circuits 
# of  Equivalent 
Classes 

Guaranteed 
Cardinality 

I2SR (3k2+k)( 2k – 1)/2 k(k+1)/2 3(2k – 1) 
LF2SR 
(LFSR) 

(3k2+k)( 2k(k-1)/2-1)/2 (2(k-1)(k-2)/2)(2k-1) O(k2) 

I2LF2SR 
(I2LFSR) 

(3k2+k)( 2k(k-1)/2-1)( 2k 
– 1)/2 

(2(k-1)(k-2)/2)(2k-1) O(k22k) 

 
Table III.  Cardinality of d-behavior equivalent classes  

      (without dummy FF) by SREEP-2 
 #  

FFs 
# of 
Scan 
Circuits 

# of   
Equivalent 
Classes 

Guaranteed 
Cardinality 

Range of 
Cardinality 

I2SR k=3 
k=4 
k=5 

7 
15 
31 

1 
1 
1 

7 
15 
31 

7~7 
15~15 
31~31 

LF2SR 
(LFSR) 

k=3 
k=4 
k=5 

7 
63 
1023 

7 
63 
1023 

1 
1 
1 

1~1 
1~1 
1~1 

I2LF2SR 
(I2LFSR) 

k=3 
k=4 
k=5 

49 
945 
31713 

7 
63 
1023 

7 
15 
31 

7~7 
15~15 
31~31 

 
Table IV.  Cardinality of d-behavior equivalent classes  

      (with one dummy FF) by SREEP-2 
 #  

FFs 
# of Scan 
Circuits 

# of   
Equivalent 
Classes 

Guaranteed 
Cardinality 

Range of 
Cardinality 

I2SR k=3 
k=4 
k=5 

105 
390 
1240 

6 
10 
15 

17 
39 
82 

14~21 
30~45 
62~93 

LF2SR 
(LFSR) 

k=3 
k=4 
k=5 

105 
1638 
40920 

14 
120 
1984 

7 
13 
20 

5~10 
8~20 
11~40 

I2LF2SR 
(I2LFSR) 

k=3 
k=4 
k=5 

735 
24570 
1268520 

14 
120 
1984 

52 
204 
639 

35~70 
120~300 
341~1240 

 

VI.  Enumeration Results by SREEP-2 
In the previous sections, for each type of extended scan circuits 

with/without dummy FF, we have clarified the total number of 
SR-equivalent extended scan circuits in the class, the number of 
d-equivalent classes, and the cardinality of those equivalent classes.  
Regarding the cardinality of d-equivalent classes, we showed the 
existence of an equivalent class whose cardinality is at least of the 
size.  Table I and II show the summary.  From Table I, two 
classes of LF2SR and LFSR are not secure because their guaranteed 
cardinality is 1.  However, all other classes in Table I and Table II 
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are secure.  Especially the classes of I2LF2SR and I2LFSR with 
dummy FF are the most secure thanks to high cardinality. 
     To examine the actual cardinalities of d-equivalent classes 
for each type of extended scan circuits, we made a program called 
SREEP-2 (Shift Register Equivalents Enumeration and Synthesis 
Program -2 ).   

The enumeration results for extended scan circuits without and 
with dummy FF are shown in Table III and Table IV, respectively.  
The third column shows the number of SR-equivalent scan circuits 
in each class of extended scan circuits.  The fourth column shows 
the number of d-equivalent classes.  The fifth column shows the 
guaranteed cardinality, i.e., there exists an equivalent class whose 
cardinality is at least the guaranteed one.  The sixth column shows 
the range of cardinality, i.e., the minimal cardinality to the maximal 
cardinality. 

As for the number of SR-equivalent scan circuits and the 
number of d-equivalent classes, theoretical values computed from 
the expressions in Section VI coincide with the actual values 
obtained from SREEP-2.  As for the guaranteed cardinalities, they 
are all exactly within the range of cardinality.  Hence, it is indeed 
guaranteed that there exist equivalent classes whose cardinality is 
larger than the guaranteed cardinality. 

Next, let us consider the overhead of SR-equivalent scan circuits.  
The performance or delay overhead for normal operation is zero.  
The delay overhead due to extra XOR gates influences only scan 
operation.  Regarding the area overhead, as mentioned in Section 
III, not all scan registers are replaced with extended scan registers 
but only the registers necessary to be secure are replaced with 
extended scan registers, as shown in Figure 7.  So, the area 
overhead of whole scan circuits is expected to be low.  Further, 
the area overhead of each extended scan register can be very low.  
Figure 13 shows an example of the outcome of an SR-equivalent 
16-stage I2LF2SR-type extended scan register without dummy FF 
obtained by SREEP-2 under the constraint of at most two XOR 
gates.  Hence, the area overhead is very low. 

VII.  Conclusions 
In this paper, we considered a scan-based differential-behavior 
attack and proposed several classes of SR-equivalent scan circuits 
using dummy flip-flops in order to protect the scan-based 
differential-behavior attack.  In order to show the security level of 
those extended scan circuits, we introduced differential-behavior 
equivalent relation, and clarified the number of SR-equivalent 
extended scan circuits, the number of differential-behavior 
equivalent classes and the cardinality of those equivalent classes.  
It is shown that the proposed extended scan design is very secure as 
well as easily testable, the normal delay or performance overhead is 
zero, and the area overhead can be very low. 
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