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Abstract— The paper proposes a new hierarchical untestable 
stuck-at fault identification method for non-scan sequential 
circuits containing feedback loops. The method is based on 
deriving, minimizing and solving test path activation constraints 
for modules embedded into Register-Transfer Level (RTL) 
designs. First, an RTL test pattern generator is applied in order 
to extract the set of all possible test path activation constraints for 
a module under test. Then, the constraints are minimized and a 
constraint-driven deterministic test pattern generator is run 
providing hierarchical test generation and untestability proof in 
sequential circuits. We show by experiments that the tool is 
capable of quickly proving a large number of untestable faults 
obtaining high fault efficiency. As a side effect, our study shows 
that traditional bottom-up test generation based on symbolic test 
environment generation at RTL is too optimistic due to the fact 
that propagation constraints are ignored. 

I. INTRODUCTION 
 Test generation for sequential synchronous designs is a 
time-consuming task. Automated Test Pattern Generation 
(ATPG) tools spend a lot of effort not only for deriving test 
vectors for testable faults but also for proving that there exist 
no tests for the untestable faults. Because of this reason, the 
identification of untestable faults has been an important aspect 
in speeding up the sequential ATPG.  

 For combinational circuits, untestable faults occur due to 
the redundant logic in the circuit, while for sequential circuits, 
untestable faults (i.e. sequentially untestable faults) may also 
result due to unreachable states or due to impossible state 
transitions. A number of works have been proposed in order to 
tackle the problem of identifying sequentially untestable faults. 
The first methods [1] were fault-oriented and based on 
applying combinational ATPG to the expanded time-frame 
model of the sequential circuit. However, such approach does 
not scale because of the size-explosion of the unrolled 
sequential models. Thus, the fault independent method was 
introduced by Iyer et al. in [2]. The new algorithm was called 
FIRES and it implemented illegal state information to 
complement redundancy analysis. This was followed by a 
number of fault independent methods including MUST [3], 
FUNI [4], FILL [4] and others. Liang [5] proposed a 
simulation based approach for sequential untestable fault 

identification. However, it was shown in [4] that this method 
may result in ‘false positives’, i.e. a fault may be declared 
untestable when there actually exists a test for it. The common 
limitation of the above methods is that they operate at the 
logic-level representation of the design. Thus a considerable 
amount of effort is put on the implication process carried out at 
the level of logic netlists.  

 In their previous work [6], the authors introduced a specific 
subclass of sequentially untestable faults, called register enable 
stuck-on faults and a method for proving them untestable using 
a model checker. In this paper we propose a hierarchical 
untestability identification method. The new method allows 
detecting sequential untestability in combinational modules 
(functional units, multiplexers) embedded into a hierarchical 
circuit and is based on path activation constraints extracted by 
a Register-Transfer Level (RTL) ATPG.  

 In hierarchical RTL test generation, top-down and bottom-
up strategies are known. In the bottom-up approach, tests 
generated at the low-level will be later assembled at the higher 
abstraction level. Such algorithms yield short run-times but 
ignore the incompleteness problem: constraints imposed by 
other modules and/or the network structure may prevent test 
vectors from being assembled. In the top-down approach, 
constraints are extracted at the higher level as a goal to be 
considered when deriving tests for modules at the lower level. 
This approach allows testing modules embedded deep into the 
RTL structure. However, as modules are often tested through 
highly complex constraints, their fault coverage may be 
compromised. 

 Early methods on bottom-up RTL testing relied on the 
assembly of module tests and were applicable of the simplest 
systems only [7]. A more solid basis for the bottom-up 
paradigm was laid by Ghosh et al. in [8]. In their work, test 
environments are generated for each functional module of a 
given functional RTL circuit described in an Assignment 
Decision Diagram (ADD) [9] using symbolic 
justification/propagation rules using a nine-valued algebra. In 
this method, a test sequence is then formed by substituting the 
corresponding test patterns into the test environment. 
However, regardless of the existence of some test 
environments, the proposed nine-valued algebra cannot always 
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generate the test environments. To overcome this drawback, 
Zhang et al. upgraded the nine-valued algebra to a ten-valued 
algebra by taking the signal line value range into consideration. 
This algebra is able to generate much more test environments 
[10]. In [11], Zhang’s approach has been further improved by 
introducing additional propagation rules. 

 Lee and Patel introduced top-down constraint-based test 
pattern generation for microprocessors in [12]. Several 
constraint-based top-down approaches followed, including [13, 
14]. [15] proposed a bottom-up approach based on a High-
Level Decision Diagram (HLDD) engine and a commercial 
SICStus constraint solver. As experiments show, the tool 
achieves lower fault coverage in comparison to a commercial 
logic-level Automated Test Pattern Generator (ATPG). In [16], 
a top-down approach including a constraint solving package 
ECLiPSe [17] has been proposed. 

 None of the previous methods apply RTL constraints in 
order to prove logic-level untestable faults. Thus, the fault 
efficiency reported by the approaches [12-16] is often low, 
which decreases the test engineer’s confidence in the test. 
(Fault efficiency refers to the ratio of the number of tested 
faults to the number of testable faults). In addition, as we will 
show in this paper, in many cases, fault coverage obtained for 
the modules in RTL test generation may considerably decrease 
if path activation constraints are being ignored.  

In this paper we propose a new hierarchical untestability 
identification method for non-scan sequential circuits 
containing feedback loops. To the best of our knowledge this is 
the first method that can prove sequentially untestable stuck-at 
faults starting from the RTL. The method is based on deriving, 
minimizing and solving test path constraints for modules 
embedded into RTL designs. First, an RTL test pattern 
generator is applied in order to extract the set of all possible 
test path activation constraints for a module under test within a 
certain clock cycle limit. Then, the constraints are minimized 
and a constraint-driven deterministic test pattern generator is 
run providing a time-limit-bounded hierarchical test generation 
and untestability proof for sequential circuits. We show by 
experiments that the tool is capable of quickly proving a large 
number of untestable faults obtaining high fault efficiency. As 
a side effect, our study shows that traditional bottom-up test 
generation based on symbolic test environment generation at 
RTL is too optimistic due to the fact that propagation 
constraints are ignored.  

 The paper is organized as follows. Section 2 presents the 
definition of ADD models, which is used as the basis of 
presenting the untestability identification method. In Section 3, 
the new untestability indentification setup is presented and a 
motivating example showing the limitations of existing 
bottom-up approaches is presented. Section 4 explains the 
process of obtaining the set of RTL constraints for proving 
sequential untestability. Section 5 discusses the core benefits 
of the proposed method. Section 6 provides experimental 
results. The paper ends with Conclusions. 

II. TEST ENVIRONMENT GENERATION WITH ADDS 
Assignment decision diagram (ADD) [9] is an acyclic graph 

that consists of a set of nodes that can be categorized into four 
types: read node, write node, operation node and assignment 
decision node (ADN), and a set of edges which contain the 
connectivity information between two nodes (Figure 1). A read 
node represents a primary input port, a storage unit or a 
constant while a write node represents a primary output port or 
a storage unit. An operation node expresses an arithmetic 
operation unit or a logic operation unit while an ADN selects a 
value from a set of values that are provided to it based on the 
conditions computed by the logic operation units. If one of the 
condition inputs becomes true, the value of the corresponding 
data input will be selected. 

 

 

 

 

 

 

 
Figure 1. Assignment Decision Diagram (ADD) 

When a node N is under test, the testability of the node is 
guaranteed if (a) any value can propagate from a read node 
corresponding to a primary input port to the input of N, and (b) 
the value at the output of N can propagate to a write node 
corresponding to a primary output port. The paths which allow 
(a) and (b) to occur are called justification path and 
propagation path, respectively. Justification and propagation 
can be done through symbolic processing that utilizes nine-
valued algebra. The series of symbols obtained from the 
symbolic processing that activates justification and 
propagation paths is known as the test environment for the 
node under test. 

For a given node under test, its test sequence is generated 
by first extracting a test pattern from the test set library and by 
substituting the test pattern for the test environment. The test 
set library is obtained beforehand by first simply taking a 
logic-level circuit of the node under test, then generating the 
test patterns for all faults in the circuit using a combinational 
ATPG algorithm. In the case where the node is synthesized 
into a circuit which is different, fault simulation must be 
performed to check the fault efficiency of the test patterns. 

The symbols of Ghosh’s nine-valued algebra [10], each of 
which can be assigned true or false, are as follows: 

• Cg(v): variable v can be set to any value. 
• C0(v): variable v can be set to 0. 
• C1(v): variable v can be set to 1. 
• Ca1(v): all bits of variable v can be set to 1’s. 
• Cq(v): variable v can be set to a constant. 
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• Cz(v): variable v can be set to high impedance Z. 
• Cs(v): state variable v can be set to a specific state. 
• O(v): any fault effect at variable v can be observed. 
• O’(v): fault effect of D’ can be observed for a single bit 
variable v. 

To generate a test environment, first an objective has to be 
set. In order to achieve the test environment objective, the test 
sequence for each ADD can be generated through the 
following two phases using justification/propagation rules 
[10]: 

Phase 1: Generate the test environment of the node under test. 

Phase 2: Generate the test sequence of the node under test by 
substituting the test patterns of the logic-level circuit 
corresponding to the node under test for the test environment. 

 Without going into details of the symbol propagating rules, 
consider Figure 2 presenting backward propagation 
(justification) of two symbols Cq and Cg that converge in a 
fanout read node. In the strict interpretation of the propagation 
rules of [10] the two symbols when converging in the fanout 
result in a conflict. In the weak interpretation the symbols will 
resolve in assigning Cg to the read node. 

 
 
 
 
a)    b) 
 

Figure 2. Handling of fanouts during justification 

Thus, the strict interpretation of Ghosh’s algebra [10] lead 
to overly pessimistic results because tests for some Modules 
Under Test (MUTs) are aborted due to justification conflicts. 
On the other hand, the weak interpretation is too optimistic and 
can also lead to loss of fault coverage because some of the test 
patterns that are expected to cover faults in the MUT do not 
propagate. Experiments in this paper show that this loss may 
be as high as 8-14 percent of the stuck-at fault coverage. 

 
 

 
 
 
       
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Test environment generation example. An unrolled view. 

Consider as an example, a simplification of the ADD for the 
Greatest Common Division (GCD) benchmark presented in 
Figure 3. Without loss of generality in this ADD the control 
state information and the data registers have been removed and 
the circuit has been unrolled by applying time-frame expansion 
in order to improve the readability of the diagram. (Note, that 
the original GCD benchmark still contains a data dependent 
loop, which has been unrolled in Figure 3). 

 Assume that our task is generating a test environment for 
the subtraction module (MUT) in Figure 3. The output value of 
MUT will be propagated to the primary output OUT only if the 
first value input of the corresponding assignment decision is 1. 
Therefore we set the corresponding condition input of the 
ADN to C1. When we justify this particular condition input 
and the symbols at the MUT inputs according to the 
propagation rules presented in [10], then the strict 
interpretation of these rules would lead into a contradiction 
(See Figure 2a). However, the weak interpretation (also used in 
[11]) would still allow the following test environment: IN1=Cg 
and IN2=Cg. Note, that in current situation the weak rules are 
preferable since they at least allow testing part of the MUT 
while the strict rules would not generate any test environment 
at all. 

III. CONSTRAINT-BASED UNTESTABILITY PROOF FLOW 
As opposed to the bottom-up test environment generation 

presented in Section 2, the constraint-driven deterministic 
untestability identification method proposed in current paper is 
based on the top-down approach. The method contains three 
main phases. During the first phase, the full set of constraints 
for setting up a test path to test an RTL module are extracted at 
the high-level. During the second phase this set of constraints 
is minimized. The third phase generates deterministic tests to 
the low-level module taking into account the path constraints.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Constraint-based untestability proof flow 
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Figure 4 presents the corresponding test flow. We apply 
RTL ATPG Decider [16] in order to extract the constraints for 
accessing the MUT. Decider activates as many sets of 
constraints as there are test paths for that module in a bounded 
limit of clock-cycles. In [16], test constraints were utilized to 
propagate test patterns to and from the MUT. However, in this 
paper the purpose is to process the set of constraints in order to 
derive conditions for a dedicated logic-level ATPG in proving 
untestability. The constraints are minimized as shown in the 
next Section, translated into VHDL and synthesized to logic-
level using Synopsys Design Compiler. Subsequently, the 
constraint-driven logic-level ATPG is run. As a result we obtain 
the list of sequentially untestable faults in the MUT as well as 
test patterns for the entire design. 

IV. CONSTRAINT-BASED TEST ENVIRONMENT 
In this Section we explain minimization of the test path 

constraints for a MUT. We show how to compute the 
constraint-based test environment from the set of test 
constraints. For the sake of completeness we briefly 
summarize the concept of test generation constraints below.  

In order to extract the RTL constraints for a MUT, an RTL 
ATPG tool Decider [16] is applied. The high-level test 
generation constraints considered by Decider are divided into 
three categories. These are path activation constraints, 
transformation constraints and propagation constraints. Path 
activation constraints correspond to the logic conditions in the 
control flow graph that have to be satisfied in order to perform 
propagation and value justification through the circuit. 
Transformation constraints, in turn, reflect the value changes 
along the paths from the inputs of the high-level MUT to the 
primary inputs of the whole circuit. These constraints are 
needed in order to derive the local test patterns for the module 
under test. Propagation constraints show how the value 
propagated from the output of the MUT to a primary output is 
depending on the values of the signals in the system. The main 
idea here is to guarantee that fault effect will not be masked 
when propagated.  

 All the above categories of constraints are represented by 
common data structures and manipulated by common 
procedures for creation, update, modeling and simulation. 

Note, that the extracted constraints consist of operations on 
primary inputs and constants. Furthermore, the exponential 
size complexity of the constraints is avoided by uniting 
multiple occurrences of the same variable (i.e. the literals) in 
the constraints at each time step into one single fanout 
variable. The size requirements for the constraints are linear 
with respect to justification time-frames and they represent a 
subset of the expanded time-frame model of the circuit.  

Consider Figure 5, which gives the ADD of the full set of 
constraints for the MUT from the example of Figure 3. In other 
words, the MUT can only be tested using one of the two test 
paths presented in Figure 5a and 5b. The two paths are identical 
except for the fact that the primary inputs IN1, IN2 are swapped 
in them. 

  
 
 
 
 
 
 
 
 
 
 
 
  
a)      b) 
 

Figure 5. Full set of test path constraints for MUT 

 Note, that from the point of view of accessing the MUT 
these two environments are equivalent. It is irrelevant which 
primary input is used in applying the test patterns when 
representing the constraint-based test environment for proving 
untestability. Therefore, we denote the value justified from the 
i-th input of the MUT by xk and the value propagated from the 
MUT output by y. 

 The constraints C1 and C2 both consist of two sub-
constraints C1,1, C1,2 and C2,1, C2,2, respectively. C1,1 (which is 
equivalent to C2,1) states that x1 must not be equal to x2. C1,2 
(equivalent to C2,2) states that x1 must be greater than x2. Since 
all the sub-constraints within a constraint should hold 
simultaneously they be combined using the conjunction 
operator. In turn, all the constraints are combined using the 
disjunction operation because any one of the test paths may be 
used for accessing the MUT. In general case for constraints Ci 
each consisting of sub-constraints Ci,j the constraint-
environment for proving sequential untestability is calculated 
using the following formula: 

       
    (1) 

Subsequent to combining the test path constraints constraint 
minimization is performed. For the example in Figure 5 we 
obtain: 

.)()()()( 2121212121 xxxxxxxxxx >=>∧≠∨>∧≠  

 Figure 6 shows the ADD for the minimized constraint-
based environment resulting for testing the MUT of the 
example presented in Figure 3. The constraint shows that the 
MUT (a subtractor) may only be accessed when the first input 
of it, i.e. x1 is greater than the second one, x2. 

 
 
 
 
 

 
 

Figure 6. Constraint-based test environment for MUT 
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V. DISCUSSION ON THE EFFECT OF THE TOP-DOWN PROOF 
Existing high-level ATPG methods do not allow proof of 

sequentially untestable stuck-at faults. An exception is a 
previous work by the authors where a specific class of 
untestable register control faults were proven untestable by 
applying model-checking at the RTL [6]. The current work 
considers the general case of sequentially untestable stuck-at 
faults within RTL modules. 

As a side-effect of our study, we show that the top-down 
test environment generation is more accurate than the bottom-
up one. In particular, the strict interpretation of Ghosh’s 
algebra leads to overly pessimistic results because tests for 
some MUTs are aborted due to justification conflicts. On the 
other hand, the weak interpretation is too optimistic and can 
also lead to loss of fault coverage because some of the test 
patterns that are expected to cover faults in the MUT do not 
propagate. 
 Consider the case where in a bottom-up scenario we have a 
deterministic test Tq generated for the MUT reaching the 
maximum fault coverage Wq for the module. Then, we 
generate the test environment for the module and substitute Tq 
into the test environment. Due to the test path constraints the 
actual fault coverage that can be achieved for the MUT inside 
the network is Wa, which is generally lower than the fault 
coverage Wq. However, when we fault simulate Tq substituted 
into the test environment we obtain a fault coverage Wr, where 
Wr ≤ Wa≤ Wq.  

In other words, the bottom-up approach may lose some 
fault coverage with respect to the top-down one because the set 
of the tests to choose from is restricted to Tq. If the local test 
generation algorithm for the MUT had had knowledge about 
the test path constraints it would have generated a different test 
Ta, whose fault coverage would have been equal to Wa. 
Furthermore, the remaining faults inside the MUT would have 
been proven untestable. Thus, a deterministic ATPG taking 
into account the test path constraints is necessary in order to 
achieve maximum fault coverage and also to prove 
untestability within sequential circuits. Experiments with the 
constraint-driven deterministic ATPG presented in Section 6 
show that the difference between the coverages Wr and Wa 
may be even as high as 8-14 per cent of stuck-at coverage.  

VI. EXPERIMENTAL RESULTS 
In order to evaluate the hierarchical untestability identification 
and test generation method, experiments on HLSynth92 and 
HLSynth95 benchmarks were run. In addition, to compare the 
solution with the traditional bottom-up approach (e.g. [10]) and 
assess its fault efficiency, a detailed case-study was carried 
out.  

Table 1 presents the characteristics of the example circuits 
used in test pattern generation experiments in this paper. The 
following benchmarks were included to the test experiment: a 
Greatest Common Divisor (GCD), an 8-bit sequential 
multiplier (MULT8x8), and a Differential Equation (DIFFEQ). 
In the Table, the number of single stuck-at faults, the number 
of primary input and primary output bits, and the number of 

registers, multiplexers and functional units in the RTL code are 
reported, respectively. The final column presents the limit for 
control part FSM cycles (i.e. the maximum times the same 
control state is traversed) as the bound for the untestability 
proof. This bound is dependent on the design functionality and 
can be set by the test engineer. 

TABLE I.  BENCHMARK CHARACTERISTICS 

In Table 2, comparison of test generation results of three 
ATPG tools on the hierarchical benchmark designs are 
presented. This comparison was carried out in order to show 
the time needed for extracting the constraint-based 
environment as explained in Section 4. The tools include a 
logic-level deterministic ATPG Hitec [18], a genetic algorithm 
based Gatest [19], hierarchical ATPG Decider applied in 
current paper. Columns ‘F.C., %’ give the single stuck-at fault 
coverages of the test patterns generated. Columns ‘time, s’ 
stand for test generation run-times in seconds. As it can be 
seen the three sequential designs analyzed introduce a serious 
challenge to the deterministic and genetic algorithm-based 
ATPG tools. For the former, the search space becomes too 
large and many faults have to be dropped after a time-out value 
has been encountered. For the latter, the genetically engineered 
vectors are unable to create tests for faults that require specific 
sequences for activation and propagation. 

TABLE II.  COMPARISON OF SEQUENTIAL ATPG 

circuit HITEC GATEST Decider 
 F.C., % time, s F.C., % time, s F.C., % time, s

gcd 59.11 365 86.13 190.7 90.95 677.4
mult8x8 65.9 1243 69.2 821.6 74.7 93.7 
diffeq 96.2 13,320 96.40 3000 97.09 453.7

 
Table 3 shows experiments of the constraint-driven ATPG 

developed in this paper. The experiments present comparison 
of the proposed method to the bottom-up paradigm [10]. For 
creating the test library for the bottom-up approach, the 
modules were first tested by the ATPG in a stand-alone mode. 
As a result a test sequence Tq yielding 100 % stuck-at fault 
coverage Wq was obtained. The proposed top-down constraint-
driven ATPG reached fault coverage Wa which was less than 
Wq because of the constraints when accessing the module 
under test that was embedded into the network. However, the 
fault efficiency of the proposed approach was always 100 % 
for all the modules. 

When test Tq was substituted to the test environment in a 
bottom-up manner then fault coverage Wr was reached, which 
was always lower than Wa because some of the tests were 
invalidated by sequential dependencies. In fact, Wr was 
considerably lower (by 8-14 %) for all the four modules 
analyzed. Thus, the proposed top-down method was capable of 

circuit # faults PI bits PO bits # reg. # mux # FU
gcd

mult8x8
diffeq

472
2356

10326

33
17
81

16  
16  
48  

3 
7 
7 

4  
4  
9  

3
9
5

limit
5
8
7
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reaching maximum fault coverage for the analyzed module and 
proving all of the sequentially untestable faults in them. 

The test environment synthesis from VHDL to logic-level 
using Synopsys Design Compiler remained almost constant 
and was around 5 to 10 s per module while the deterministic 
constraint-based ATPG spent less than 0.02 s per module 
under test. The synthesis and test experiments were carried out 
on a Sun-Fire-V250 station with 1.28 GHz sparcv9 processor 
under Solaris 2.9 OS.  

TABLE III.  CONSTRAINT-DRIVEN TOP-DOWN ATPG VERSUS BOTTOM-UP 
ATPG RESULTS FOR CIRCUIT MODULES  

circuit: gcd mult8x8 diffeq 
module: SUB ADD2 ADD3 SUB2 MUX3 MUX4 

Wq, % 100 100 100 100 100 100 
Wa, % 95.74 86.64 55.88 85.33 75.00 75.00 
Wr, % 85.11 72.49 47.06 74.07 64.71 64.71 

ATPG, s 0.01 0.01 < 0.01 0.02 < 0.01 < 0.01
synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10 

 
 Table 4 presents detailed statistics of the circuits analyzed. 
The Table lists the total number of stuck-at faults in the whole 
circuit, the number of tested faults, number of 
unobservable/uncontrollable faults, the number of faults 
proven sequentially untestable by the proposed constraint-
based approach and finally the number of all the remaining 
faults. The experiments show the efficiency of the constraint-
driven engine in untestability identification. Though the 
method quickly classifies untestable faults caused by 
sequential untestability in the considered modules with 100 % 
fault efficiency, there remains a number of faults which are 
still neither tested nor proven untestable. Some of these 
remaining faults can be tested or proven untestable by 
traditional approaches at the logic-level. 

TABLE IV.  DISTRIBUTION OF FAULTS 

 gcd mult8x8 diffeq 
# total faults 472 2356 10326 

# tested faults 439 1737 9867 
# unobs./uncontr. 28 195 252 

# seq. untestable flts 4 156 68 
# remaining faults 1 268 139 

VII. CONCLUSIONS 
The paper introduces a new method and tool for hierarchical 
untestable stuck-at fault analysis of non-scan sequential 
circuits. The method is based on extracting and minimizing 
RTL test path activation constraints that drive a dedicated 
logic-level deterministic ATPG. Experiments show that the 
tool is capable of generating tests yielding maximum fault 
efficiency for the embedded modules under test. To the best of 
the authors’ knowledge this is the first method that can prove 
sequential untestability starting from the RTL.   

In addition, our study shows that traditional test generation 
at RTL based on symbolic test environment generation is too 
optimistic due to the fact that constraints in accessing the 
modules under test have been ignored. Experiments presented 

in this paper showed that bottom-up strategies caused a 
decrease of stuck-at fault coverage up to the range of 8-14 % in 
the modules tested when compared to the proposed approach. 
This short-coming is now overcome by the proposed 
constraint-based method which obtains 100 per cent stuck-at 
fault efficiency for all the modules considered. 
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