
Constraint-Based Hierarchical Untestability
Identification for Synchronous Sequential Circuits

Jaan Raik, Anna Rannaste, Maksim Jenihhin,
Taavi Viilukas, Raimund Ubar

Department of Computer Engineering
Tallinn University of Technology, Estonia

E–mail: jaan@pld.ttu.ee

Hideo Fujiwara
Graduate School of Information Science, Nara Institute of

Science and Technology
Kansai Science City, 630–0192, Japan

E–mail: fujiwara@is.naist.jp

Abstract— The paper proposes a new hierarchical untestable
stuck-at fault identification method for non-scan sequential
circuits containing feedback loops. The method is based on
deriving, minimizing and solving test path activation constraints
for modules embedded into Register-Transfer Level (RTL)
designs. First, an RTL test pattern generator is applied in order
to extract the set of all possible test path activation constraints for
a module under test. Then, the constraints are minimized and a
constraint-driven deterministic test pattern generator is run
providing hierarchical test generation and untestability proof in
sequential circuits. We show by experiments that the tool is
capable of quickly proving a large number of untestable faults
obtaining high fault efficiency. As a side effect, our study shows
that traditional bottom-up test generation based on symbolic test
environment generation at RTL is too optimistic due to the fact
that propagation constraints are ignored.

I. INTRODUCTION
 Test generation for sequential synchronous designs is a
time-consuming task. Automated Test Pattern Generation
(ATPG) tools spend a lot of effort not only for deriving test
vectors for testable faults but also for proving that there exist
no tests for the untestable faults. Because of this reason, the
identification of untestable faults has been an important aspect
in speeding up the sequential ATPG.

 For combinational circuits, untestable faults occur due to
the redundant logic in the circuit, while for sequential circuits,
untestable faults (i.e. sequentially untestable faults) may also
result due to unreachable states or due to impossible state
transitions. A number of works have been proposed in order to
tackle the problem of identifying sequentially untestable faults.
The first methods [1] were fault-oriented and based on
applying combinational ATPG to the expanded time-frame
model of the sequential circuit. However, such approach does
not scale because of the size-explosion of the unrolled
sequential models. Thus, the fault independent method was
introduced by Iyer et al. in [2]. The new algorithm was called
FIRES and it implemented illegal state information to
complement redundancy analysis. This was followed by a
number of fault independent methods including MUST [3],
FUNI [4], FILL [4] and others. Liang [5] proposed a
simulation based approach for sequential untestable fault

identification. However, it was shown in [4] that this method
may result in ‘false positives’, i.e. a fault may be declared
untestable when there actually exists a test for it. The common
limitation of the above methods is that they operate at the
logic-level representation of the design. Thus a considerable
amount of effort is put on the implication process carried out at
the level of logic netlists.

 In their previous work [6], the authors introduced a specific
subclass of sequentially untestable faults, called register enable
stuck-on faults and a method for proving them untestable using
a model checker. In this paper we propose a hierarchical
untestability identification method. The new method allows
detecting sequential untestability in combinational modules
(functional units, multiplexers) embedded into a hierarchical
circuit and is based on path activation constraints extracted by
a Register-Transfer Level (RTL) ATPG.

 In hierarchical RTL test generation, top-down and bottom-
up strategies are known. In the bottom-up approach, tests
generated at the low-level will be later assembled at the higher
abstraction level. Such algorithms yield short run-times but
ignore the incompleteness problem: constraints imposed by
other modules and/or the network structure may prevent test
vectors from being assembled. In the top-down approach,
constraints are extracted at the higher level as a goal to be
considered when deriving tests for modules at the lower level.
This approach allows testing modules embedded deep into the
RTL structure. However, as modules are often tested through
highly complex constraints, their fault coverage may be
compromised.

 Early methods on bottom-up RTL testing relied on the
assembly of module tests and were applicable of the simplest
systems only [7]. A more solid basis for the bottom-up
paradigm was laid by Ghosh et al. in [8]. In their work, test
environments are generated for each functional module of a
given functional RTL circuit described in an Assignment
Decision Diagram (ADD) [9] using symbolic
justification/propagation rules using a nine-valued algebra. In
this method, a test sequence is then formed by substituting the
corresponding test patterns into the test environment.
However, regardless of the existence of some test
environments, the proposed nine-valued algebra cannot always

Sixteenth IEEE European Test Symposium

1530-1877/11 $26.00 © 2011 IEEE

DOI 10.1109/ETS.2011.38

147

generate the test environments. To overcome this drawback,
Zhang et al. upgraded the nine-valued algebra to a ten-valued
algebra by taking the signal line value range into consideration.
This algebra is able to generate much more test environments
[10]. In [11], Zhang’s approach has been further improved by
introducing additional propagation rules.

 Lee and Patel introduced top-down constraint-based test
pattern generation for microprocessors in [12]. Several
constraint-based top-down approaches followed, including [13,
14]. [15] proposed a bottom-up approach based on a High-
Level Decision Diagram (HLDD) engine and a commercial
SICStus constraint solver. As experiments show, the tool
achieves lower fault coverage in comparison to a commercial
logic-level Automated Test Pattern Generator (ATPG). In [16],
a top-down approach including a constraint solving package
ECLiPSe [17] has been proposed.

 None of the previous methods apply RTL constraints in
order to prove logic-level untestable faults. Thus, the fault
efficiency reported by the approaches [12-16] is often low,
which decreases the test engineer’s confidence in the test.
(Fault efficiency refers to the ratio of the number of tested
faults to the number of testable faults). In addition, as we will
show in this paper, in many cases, fault coverage obtained for
the modules in RTL test generation may considerably decrease
if path activation constraints are being ignored.

In this paper we propose a new hierarchical untestability
identification method for non-scan sequential circuits
containing feedback loops. To the best of our knowledge this is
the first method that can prove sequentially untestable stuck-at
faults starting from the RTL. The method is based on deriving,
minimizing and solving test path constraints for modules
embedded into RTL designs. First, an RTL test pattern
generator is applied in order to extract the set of all possible
test path activation constraints for a module under test within a
certain clock cycle limit. Then, the constraints are minimized
and a constraint-driven deterministic test pattern generator is
run providing a time-limit-bounded hierarchical test generation
and untestability proof for sequential circuits. We show by
experiments that the tool is capable of quickly proving a large
number of untestable faults obtaining high fault efficiency. As
a side effect, our study shows that traditional bottom-up test
generation based on symbolic test environment generation at
RTL is too optimistic due to the fact that propagation
constraints are ignored.

 The paper is organized as follows. Section 2 presents the
definition of ADD models, which is used as the basis of
presenting the untestability identification method. In Section 3,
the new untestability indentification setup is presented and a
motivating example showing the limitations of existing
bottom-up approaches is presented. Section 4 explains the
process of obtaining the set of RTL constraints for proving
sequential untestability. Section 5 discusses the core benefits
of the proposed method. Section 6 provides experimental
results. The paper ends with Conclusions.

II. TEST ENVIRONMENT GENERATION WITH ADDS
Assignment decision diagram (ADD) [9] is an acyclic graph

that consists of a set of nodes that can be categorized into four
types: read node, write node, operation node and assignment
decision node (ADN), and a set of edges which contain the
connectivity information between two nodes (Figure 1). A read
node represents a primary input port, a storage unit or a
constant while a write node represents a primary output port or
a storage unit. An operation node expresses an arithmetic
operation unit or a logic operation unit while an ADN selects a
value from a set of values that are provided to it based on the
conditions computed by the logic operation units. If one of the
condition inputs becomes true, the value of the corresponding
data input will be selected.

Figure 1. Assignment Decision Diagram (ADD)

When a node N is under test, the testability of the node is
guaranteed if (a) any value can propagate from a read node
corresponding to a primary input port to the input of N, and (b)
the value at the output of N can propagate to a write node
corresponding to a primary output port. The paths which allow
(a) and (b) to occur are called justification path and
propagation path, respectively. Justification and propagation
can be done through symbolic processing that utilizes nine-
valued algebra. The series of symbols obtained from the
symbolic processing that activates justification and
propagation paths is known as the test environment for the
node under test.

For a given node under test, its test sequence is generated
by first extracting a test pattern from the test set library and by
substituting the test pattern for the test environment. The test
set library is obtained beforehand by first simply taking a
logic-level circuit of the node under test, then generating the
test patterns for all faults in the circuit using a combinational
ATPG algorithm. In the case where the node is synthesized
into a circuit which is different, fault simulation must be
performed to check the fault efficiency of the test patterns.

The symbols of Ghosh’s nine-valued algebra [10], each of
which can be assigned true or false, are as follows:

• Cg(v): variable v can be set to any value.
• C0(v): variable v can be set to 0.
• C1(v): variable v can be set to 1.
• Ca1(v): all bits of variable v can be set to 1’s.
• Cq(v): variable v can be set to a constant.

148

Decider:
RTL test path

activation
Synopsys DC:
Logic synthesis

RTL
network
(VHDL)

Modules
library

(VHDL)

Test path
constraints Test

environm.
(EDIF)

Constraint-driven
deterministic ATPG

Test
patterns

Fault
coverage

Untestable
faults

Minimized
constraints (VHDL)

Constraint
minimization

• Cz(v): variable v can be set to high impedance Z.
• Cs(v): state variable v can be set to a specific state.
• O(v): any fault effect at variable v can be observed.
• O’(v): fault effect of D’ can be observed for a single bit
variable v.

To generate a test environment, first an objective has to be
set. In order to achieve the test environment objective, the test
sequence for each ADD can be generated through the
following two phases using justification/propagation rules
[10]:

Phase 1: Generate the test environment of the node under test.

Phase 2: Generate the test sequence of the node under test by
substituting the test patterns of the logic-level circuit
corresponding to the node under test for the test environment.

 Without going into details of the symbol propagating rules,
consider Figure 2 presenting backward propagation
(justification) of two symbols Cq and Cg that converge in a
fanout read node. In the strict interpretation of the propagation
rules of [10] the two symbols when converging in the fanout
result in a conflict. In the weak interpretation the symbols will
resolve in assigning Cg to the read node.

a) b)

Figure 2. Handling of fanouts during justification

Thus, the strict interpretation of Ghosh’s algebra [10] lead
to overly pessimistic results because tests for some Modules
Under Test (MUTs) are aborted due to justification conflicts.
On the other hand, the weak interpretation is too optimistic and
can also lead to loss of fault coverage because some of the test
patterns that are expected to cover faults in the MUT do not
propagate. Experiments in this paper show that this loss may
be as high as 8-14 percent of the stuck-at fault coverage.

Figure 3. Test environment generation example. An unrolled view.

Consider as an example, a simplification of the ADD for the
Greatest Common Division (GCD) benchmark presented in
Figure 3. Without loss of generality in this ADD the control
state information and the data registers have been removed and
the circuit has been unrolled by applying time-frame expansion
in order to improve the readability of the diagram. (Note, that
the original GCD benchmark still contains a data dependent
loop, which has been unrolled in Figure 3).

 Assume that our task is generating a test environment for
the subtraction module (MUT) in Figure 3. The output value of
MUT will be propagated to the primary output OUT only if the
first value input of the corresponding assignment decision is 1.
Therefore we set the corresponding condition input of the
ADN to C1. When we justify this particular condition input
and the symbols at the MUT inputs according to the
propagation rules presented in [10], then the strict
interpretation of these rules would lead into a contradiction
(See Figure 2a). However, the weak interpretation (also used in
[11]) would still allow the following test environment: IN1=Cg
and IN2=Cg. Note, that in current situation the weak rules are
preferable since they at least allow testing part of the MUT
while the strict rules would not generate any test environment
at all.

III. CONSTRAINT-BASED UNTESTABILITY PROOF FLOW
As opposed to the bottom-up test environment generation

presented in Section 2, the constraint-driven deterministic
untestability identification method proposed in current paper is
based on the top-down approach. The method contains three
main phases. During the first phase, the full set of constraints
for setting up a test path to test an RTL module are extracted at
the high-level. During the second phase this set of constraints
is minimized. The third phase generates deterministic tests to
the low-level module taking into account the path constraints.

Figure 4. Constraint-based untestability proof flow

Cq Cg

?

conflict in the strict
interpretation

Cq Cg

Cg

resolves in the weak
interpretation

Cq
Cq

─ MUT :

OUT

=
>

IN1=Cg IN2=Cg

O

O

 !
 !

C1

C0

Cg Cg
C1

C1

Cg Cg

Cq Cq

149

Figure 4 presents the corresponding test flow. We apply
RTL ATPG Decider [16] in order to extract the constraints for
accessing the MUT. Decider activates as many sets of
constraints as there are test paths for that module in a bounded
limit of clock-cycles. In [16], test constraints were utilized to
propagate test patterns to and from the MUT. However, in this
paper the purpose is to process the set of constraints in order to
derive conditions for a dedicated logic-level ATPG in proving
untestability. The constraints are minimized as shown in the
next Section, translated into VHDL and synthesized to logic-
level using Synopsys Design Compiler. Subsequently, the
constraint-driven logic-level ATPG is run. As a result we obtain
the list of sequentially untestable faults in the MUT as well as
test patterns for the entire design.

IV. CONSTRAINT-BASED TEST ENVIRONMENT
In this Section we explain minimization of the test path

constraints for a MUT. We show how to compute the
constraint-based test environment from the set of test
constraints. For the sake of completeness we briefly
summarize the concept of test generation constraints below.

In order to extract the RTL constraints for a MUT, an RTL
ATPG tool Decider [16] is applied. The high-level test
generation constraints considered by Decider are divided into
three categories. These are path activation constraints,
transformation constraints and propagation constraints. Path
activation constraints correspond to the logic conditions in the
control flow graph that have to be satisfied in order to perform
propagation and value justification through the circuit.
Transformation constraints, in turn, reflect the value changes
along the paths from the inputs of the high-level MUT to the
primary inputs of the whole circuit. These constraints are
needed in order to derive the local test patterns for the module
under test. Propagation constraints show how the value
propagated from the output of the MUT to a primary output is
depending on the values of the signals in the system. The main
idea here is to guarantee that fault effect will not be masked
when propagated.

 All the above categories of constraints are represented by
common data structures and manipulated by common
procedures for creation, update, modeling and simulation.

Note, that the extracted constraints consist of operations on
primary inputs and constants. Furthermore, the exponential
size complexity of the constraints is avoided by uniting
multiple occurrences of the same variable (i.e. the literals) in
the constraints at each time step into one single fanout
variable. The size requirements for the constraints are linear
with respect to justification time-frames and they represent a
subset of the expanded time-frame model of the circuit.

Consider Figure 5, which gives the ADD of the full set of
constraints for the MUT from the example of Figure 3. In other
words, the MUT can only be tested using one of the two test
paths presented in Figure 5a and 5b. The two paths are identical
except for the fact that the primary inputs IN1, IN2 are swapped
in them.

a) b)

Figure 5. Full set of test path constraints for MUT

 Note, that from the point of view of accessing the MUT
these two environments are equivalent. It is irrelevant which
primary input is used in applying the test patterns when
representing the constraint-based test environment for proving
untestability. Therefore, we denote the value justified from the
i-th input of the MUT by xk and the value propagated from the
MUT output by y.

 The constraints C1 and C2 both consist of two sub-
constraints C1,1, C1,2 and C2,1, C2,2, respectively. C1,1 (which is
equivalent to C2,1) states that x1 must not be equal to x2. C1,2
(equivalent to C2,2) states that x1 must be greater than x2. Since
all the sub-constraints within a constraint should hold
simultaneously they be combined using the conjunction
operator. In turn, all the constraints are combined using the
disjunction operation because any one of the test paths may be
used for accessing the MUT. In general case for constraints Ci
each consisting of sub-constraints Ci,j the constraint-
environment for proving sequential untestability is calculated
using the following formula:

 (1)

Subsequent to combining the test path constraints constraint
minimization is performed. For the example in Figure 5 we
obtain:

.)()()()(2121212121 xxxxxxxxxx >=>∧≠∨>∧≠

 Figure 6 shows the ADD for the minimized constraint-
based environment resulting for testing the MUT of the
example presented in Figure 3. The constraint shows that the
MUT (a subtractor) may only be accessed when the first input
of it, i.e. x1 is greater than the second one, x2.

Figure 6. Constraint-based test environment for MUT

−
MUT

 y

>

 x1 x2

Constraint

., ji
ji

C∧∨

−

MUT:

OUT

>

IN2 IN1

=

 !

&

x1 x2

y

C2:

−

MUT:

OUT

>

IN1 IN2

=

 !

&

x1 x2

y

C1:

C1,1: C1,2: C2,1: C2,2:

150

V. DISCUSSION ON THE EFFECT OF THE TOP-DOWN PROOF
Existing high-level ATPG methods do not allow proof of

sequentially untestable stuck-at faults. An exception is a
previous work by the authors where a specific class of
untestable register control faults were proven untestable by
applying model-checking at the RTL [6]. The current work
considers the general case of sequentially untestable stuck-at
faults within RTL modules.

As a side-effect of our study, we show that the top-down
test environment generation is more accurate than the bottom-
up one. In particular, the strict interpretation of Ghosh’s
algebra leads to overly pessimistic results because tests for
some MUTs are aborted due to justification conflicts. On the
other hand, the weak interpretation is too optimistic and can
also lead to loss of fault coverage because some of the test
patterns that are expected to cover faults in the MUT do not
propagate.
 Consider the case where in a bottom-up scenario we have a
deterministic test Tq generated for the MUT reaching the
maximum fault coverage Wq for the module. Then, we
generate the test environment for the module and substitute Tq
into the test environment. Due to the test path constraints the
actual fault coverage that can be achieved for the MUT inside
the network is Wa, which is generally lower than the fault
coverage Wq. However, when we fault simulate Tq substituted
into the test environment we obtain a fault coverage Wr, where
Wr ≤ Wa≤ Wq.

In other words, the bottom-up approach may lose some
fault coverage with respect to the top-down one because the set
of the tests to choose from is restricted to Tq. If the local test
generation algorithm for the MUT had had knowledge about
the test path constraints it would have generated a different test
Ta, whose fault coverage would have been equal to Wa.
Furthermore, the remaining faults inside the MUT would have
been proven untestable. Thus, a deterministic ATPG taking
into account the test path constraints is necessary in order to
achieve maximum fault coverage and also to prove
untestability within sequential circuits. Experiments with the
constraint-driven deterministic ATPG presented in Section 6
show that the difference between the coverages Wr and Wa
may be even as high as 8-14 per cent of stuck-at coverage.

VI. EXPERIMENTAL RESULTS
In order to evaluate the hierarchical untestability identification
and test generation method, experiments on HLSynth92 and
HLSynth95 benchmarks were run. In addition, to compare the
solution with the traditional bottom-up approach (e.g. [10]) and
assess its fault efficiency, a detailed case-study was carried
out.

Table 1 presents the characteristics of the example circuits
used in test pattern generation experiments in this paper. The
following benchmarks were included to the test experiment: a
Greatest Common Divisor (GCD), an 8-bit sequential
multiplier (MULT8x8), and a Differential Equation (DIFFEQ).
In the Table, the number of single stuck-at faults, the number
of primary input and primary output bits, and the number of

registers, multiplexers and functional units in the RTL code are
reported, respectively. The final column presents the limit for
control part FSM cycles (i.e. the maximum times the same
control state is traversed) as the bound for the untestability
proof. This bound is dependent on the design functionality and
can be set by the test engineer.

TABLE I. BENCHMARK CHARACTERISTICS

In Table 2, comparison of test generation results of three
ATPG tools on the hierarchical benchmark designs are
presented. This comparison was carried out in order to show
the time needed for extracting the constraint-based
environment as explained in Section 4. The tools include a
logic-level deterministic ATPG Hitec [18], a genetic algorithm
based Gatest [19], hierarchical ATPG Decider applied in
current paper. Columns ‘F.C., %’ give the single stuck-at fault
coverages of the test patterns generated. Columns ‘time, s’
stand for test generation run-times in seconds. As it can be
seen the three sequential designs analyzed introduce a serious
challenge to the deterministic and genetic algorithm-based
ATPG tools. For the former, the search space becomes too
large and many faults have to be dropped after a time-out value
has been encountered. For the latter, the genetically engineered
vectors are unable to create tests for faults that require specific
sequences for activation and propagation.

TABLE II. COMPARISON OF SEQUENTIAL ATPG

circuit HITEC GATEST Decider
 F.C., % time, s F.C., % time, s F.C., % time, s

gcd 59.11 365 86.13 190.7 90.95 677.4
mult8x8 65.9 1243 69.2 821.6 74.7 93.7
diffeq 96.2 13,320 96.40 3000 97.09 453.7

Table 3 shows experiments of the constraint-driven ATPG

developed in this paper. The experiments present comparison
of the proposed method to the bottom-up paradigm [10]. For
creating the test library for the bottom-up approach, the
modules were first tested by the ATPG in a stand-alone mode.
As a result a test sequence Tq yielding 100 % stuck-at fault
coverage Wq was obtained. The proposed top-down constraint-
driven ATPG reached fault coverage Wa which was less than
Wq because of the constraints when accessing the module
under test that was embedded into the network. However, the
fault efficiency of the proposed approach was always 100 %
for all the modules.

When test Tq was substituted to the test environment in a
bottom-up manner then fault coverage Wr was reached, which
was always lower than Wa because some of the tests were
invalidated by sequential dependencies. In fact, Wr was
considerably lower (by 8-14 %) for all the four modules
analyzed. Thus, the proposed top-down method was capable of

circuit # faults PI bits PO bits # reg. # mux # FU
gcd

mult8x8
diffeq

472
2356

10326

33
17
81

16
16
48

3
7
7

4
4
9

3
9
5

limit
5
8
7

151

reaching maximum fault coverage for the analyzed module and
proving all of the sequentially untestable faults in them.

The test environment synthesis from VHDL to logic-level
using Synopsys Design Compiler remained almost constant
and was around 5 to 10 s per module while the deterministic
constraint-based ATPG spent less than 0.02 s per module
under test. The synthesis and test experiments were carried out
on a Sun-Fire-V250 station with 1.28 GHz sparcv9 processor
under Solaris 2.9 OS.

TABLE III. CONSTRAINT-DRIVEN TOP-DOWN ATPG VERSUS BOTTOM-UP
ATPG RESULTS FOR CIRCUIT MODULES

circuit: gcd mult8x8 diffeq
module: SUB ADD2 ADD3 SUB2 MUX3 MUX4

Wq, % 100 100 100 100 100 100
Wa, % 95.74 86.64 55.88 85.33 75.00 75.00
Wr, % 85.11 72.49 47.06 74.07 64.71 64.71

ATPG, s 0.01 0.01 < 0.01 0.02 < 0.01 < 0.01
synthesis, s 5.38 5.33 9.52 5.25 5.10 5.10

 Table 4 presents detailed statistics of the circuits analyzed.
The Table lists the total number of stuck-at faults in the whole
circuit, the number of tested faults, number of
unobservable/uncontrollable faults, the number of faults
proven sequentially untestable by the proposed constraint-
based approach and finally the number of all the remaining
faults. The experiments show the efficiency of the constraint-
driven engine in untestability identification. Though the
method quickly classifies untestable faults caused by
sequential untestability in the considered modules with 100 %
fault efficiency, there remains a number of faults which are
still neither tested nor proven untestable. Some of these
remaining faults can be tested or proven untestable by
traditional approaches at the logic-level.

TABLE IV. DISTRIBUTION OF FAULTS

 gcd mult8x8 diffeq
total faults 472 2356 10326

tested faults 439 1737 9867
unobs./uncontr. 28 195 252

seq. untestable flts 4 156 68
remaining faults 1 268 139

VII. CONCLUSIONS
The paper introduces a new method and tool for hierarchical
untestable stuck-at fault analysis of non-scan sequential
circuits. The method is based on extracting and minimizing
RTL test path activation constraints that drive a dedicated
logic-level deterministic ATPG. Experiments show that the
tool is capable of generating tests yielding maximum fault
efficiency for the embedded modules under test. To the best of
the authors’ knowledge this is the first method that can prove
sequential untestability starting from the RTL.

In addition, our study shows that traditional test generation
at RTL based on symbolic test environment generation is too
optimistic due to the fact that constraints in accessing the
modules under test have been ignored. Experiments presented

in this paper showed that bottom-up strategies caused a
decrease of stuck-at fault coverage up to the range of 8-14 % in
the modules tested when compared to the proposed approach.
This short-coming is now overcome by the proposed
constraint-based method which obtains 100 per cent stuck-at
fault efficiency for all the modules considered.

ACKNOWLEDGMENTS
The work has been supported by European Commission FP

7 project DIAMOND, by Research Centre CEBE funded by
European Union through the European Structural Funds and by
Estonian Science Foundation grants 7068 and 7483.

REFERENCES
[1] V. D. Agrawal and S. T. Chakradhar, “Combinational ATPG theorems

for identifying untestable faults in sequential circuits,” IEEE Trans
Comput.-Aided Des., vol. 14, no. 9, pp. 1155–1160, Sep. 1995.

[2] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying sequential
redundancies without search,” in Proc. 33rd Annu. Conf. DAC,
LasVegas, NV, Jun. 1996, pp. 457–462.

[3] Q. Peng, M. Abramovici, and J. Savir, “MUST:Multiple stem analysis
for identifying sequential untestable faults,” in Proc. Int. Test Conf.,
Atlantic City, NJ, Oct. 2000, pp. 839–846.

[4] D. E. Long, M. A. Iyer, M. Abramovici, “FILL and FUNI: Algorithms to
identify illegal states and sequentially untestable faults,” ACM Trans.
Des. Automat. Electron. Syst., vol. 5, no. 3, pp. 631–657, Jul. 2000.

[5] H.-C. Liang, C. L. Lee, and E. J. Chen, “Identifying untestable faults in
sequential circuits,” IEEE Des. Test. Comput., vol. 12, no. 3, pp. 14–23,
Sep. 1995.

[6] J. Raik, H. Fujiwara, R. Ubar, A. Krivenko. “Untestable fault
identification in sequential circuits using model-checking”. ATS, pp. 667-
672, 2008.

[7] B. T. Murray, J. P. Hayes, "Hierarchical test generation using
precomputed tests for modules", Proc. ITC, pp.221-229, 1988.

[8] I. Ghosh, M. Fujita, “Automatic test pattern generation for functional
RTL circuits using assignment decision diagrams”, Proc. DAC, pp. 43-
48, 2000.

[9] V. Chayakul, D. D. Gajski, L. Ramachandran, “High-Level
Transformations for Minimizing Syntactic Variances”, DAC, pp. 413-
418, 1993.

[10] L. Zhang, I. Ghosh, M. Hsiao, “Efficient Sequential ATPG for
Functional RTL Circuits”, Int. Test Conf., pp.290-298, 2003.

[11] H. Fujiwara, C. Y. Ooi, Y Shimizu, “Enhancement of Test Environment
Generation for Assignment Decision Diagrams”, 9th IEEE Workshop on
RTL and High Level Testing, Nov. 27-28, 2008.

[12] J. Lee, J.H. Patel, "Architectural level test generation for
microprocessors", IEEE Trans. CAD, pp. 1288-1300, Oct. 1994.

[13] J. Raik, R. Ubar. Sequential Circuit Test Generation Using Decision
Diagram Models, Proc. of the DATE Conference, pp. 736-740, 1999.

[14] V. Vedula, J. Abraham, "FACTOR: A Hierarchical Methodology for
Functional Test Generation and Testability Analysis," DATE Conf.,
2002.

[15] G. Jervan et al., "High-Level and Hierarchical Test Sequence
Generation", IEEE HLDVT, Cannes, 2002.

[16] T. Viilukas, J. Raik, M. Jenihhin, R. Ubar, A. Krivenko, "Constraint-
based test pattern generation at the register-transfer level", 13th IEEE
DDECS Symposium, 2010, pp. 352-357.

[17] The ECLiPSe Constraint Programming System http://eclipse-clp.org/
[18] T. M. Niermann, J. H. Patel, "HITEC: A test generation package for

sequential circuits", Proc. EDAC, pp. 214-218, 1991.
[19] E. M. Rudnick, et al. "Sequential circuit test generation in a genetic

algorithm framework", Proc. DAC, pp. 698-704, 1994.

152

