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Abstract The recent advances in semiconductor 
technology have resulted in an exponential increase in 
VLSI circuit density and complexity. Therefore, it is 
difficult to generate test sequences for sequential 
circuits using gate-level sequential ATPGs. Hierarchical 
test generation methods that generate test environments 
for each functional element at the functional register 
transfer level and test patterns for each combinational 
module at the gate level have been proposed to 
accelerate sequential test generation. In this paper, we 
propose a binding for testability method that 
preferentially assigns operations with test environments 
and operations without test environments to the same 
operational unit to reduce the number of hard-to-test 
operational units. The experimental results show the 
effectiveness of the proposed method. 
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1. Introduction 
The recent advances in semiconductor technology 

have resulted in an exponential increase in 
very-large-scale integration (VLSI) circuit density and 
complexity. Effective and efficient test generation 
algorithms for combinational circuits have been 
proposed. These algorithms can achieve high fault 
efficiency even for large circuits [1-5]. However, it is 
very difficult to achieve high fault efficiency for 
sequential circuits in a reasonable test generation time 
by a conventional gate-level sequential automatic test 
pattern generator (ATPG). 

Generally, the current large-scale integrated circuits 
(LSI) design flow starts from the register transfer level 

(RTL) design. Design productivity decreases as LSI 
design costs increase [6]. Therefore, a new design 
methodology that uses behavioral synthesis to describe 
the LSI behavior and synthesize RTL circuits is 
gathering attention. 

Because the amount of LSI behavioral descriptions is 
less than that of RTL descriptions, designing at the 
behavioral level can improve design productivity. 
Because behavioral synthesis assigns resources such as 
registers and operational units, the synthesis 
performance greatly influences the performance of the 
synthesized circuits [6]. 

Behavioral synthesis primarily performs scheduling 
[6] and binding [6]. Scheduling assigns execution times 
to operations and binding assigns registers and 
operation units to variables and operations. Synthesized 
cycle-accurate circuits after scheduling are said to be 
functional RTL circuits. Synthesized circuits after 
scheduling and binding are said to be structural RTL 
circuits. Functional RTL circuits and structural RTL 
circuits are synthesized to gate-level circuits by logic 
synthesis.   

Several design-for-testability (DFT) methods based 
on hierarchical test generation [7] for structural RTL 
circuits have been proposed [8-10]. In references [8-10], 
a structural RTL circuit consists of a data-path part and 
a controller part, both of which are isolated in the test 
modes. Separate DFT methods have been proposed for 
the data-path part and the controller part. Therefore, the 
area overhead for testing becomes larger. Hierarchical 
test generation methods for a stuck-at fault model for 
functional RTL circuits have been also proposed [11-13]. 
In these methods, a given functional RTL circuit is first 
described in an assignment decision diagram (ADD) 
[14]. Then, test environments are generated for each 
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operation. A test sequence is formed by substituting the 
corresponding test patterns of the gate-level circuit to 
the operation in the test environments. Compared with a 
gate-level ATPG, these methods can drastically reduce 
the test generation time without sacrificing fault 
coverage [11-13]. These methods perform binding by 
logic synthesis. Therefore, if the test environment 
coverage, which is the ratio of the number of nodes 
successfully generating test environments to the total 
number of nodes, is low, it is not guaranteed that the 
generated test sequences can achieve high fault 
coverage. In this paper, we propose a binding for 
testability method that preferentially assigns operations 
with test environments and operations without test 
environments to the same operational unit to reduce the 
number of hard-to-test operational module units. 

The outline of this paper is as follows. Section 2 
explains ADD. Section 3 describes behavioral synthesis. 
Section 4 describes hierarchical test generation. In 
Section 5, a binding for testability method is proposed. 
The experimental results are shown in Section 6. Finally, 
Section 7 concludes this paper. 

 
 
 
 
 
 
 
 
 
 

Fig. 1 Example of ADD 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Flow of behavioral synthesis 

 

2. Assignment Decision Diagram 

An ADD is an acyclic graph that consists of a set of 
nodes categorized into the following four types: read 
node, write node, operation node, and assignment 
decision node (ADN), as shown in Fig. 1. In addition, 
the ADD has a set of edges containing the connectivity 
information between two nodes. (Fig. 1).  The read 
node represents a primary input port, a storage unit, or a 
constant. The write node represents a primary output 
port or a storage unit. The operation node expresses an 
arithmetic operation unit or a logic operation unit, and 
the ADN selects a value from a set of values provided to 
it based on the conditions computed by the logic 
operation units. If one of the condition inputs becomes 
true, the value of the corresponding data input is 
selected. Although ADD was essentially introduced as 
an internal representation in the behavioral synthesis 
process, it can be used to describe a functional RTL 
circuit, the controller part and the data-path part, which 
are homogeneously represented. 

 
3. Behavioral Synthesis 

Behavioral synthesis generates RTL circuits using 
hardware description languages such as VHDL and 
Verilog-HDL from behavioral descriptions using, for 
example, C language and System C. Behavioral 
synthesis consists of four steps: graph generation, 
scheduling, binding, and RTL circuit generation, as 
shown in Fig. 2. In the graph generation step, graphs 
such as the ADD [14] or the Control/Data-Flow Graph 
(CDFG) [6] are generated from the given behavioral 
descriptions. In the scheduling step, each operation is 
assigned to a time slot corresponding to a clock cycle or 
time interval. In the binding step, operational units 
(hardware components) and registers are assigned to 
operations and variables, respectively. In the RTL 
circuit generation step, the data-path part and the 
controller part are generated. 

In behavioral synthesis using ADD, for example, 
scheduling and binding are implemented by 
transforming the graph structures. In this paper, an 
ADD after scheduling is said to be a functional ADD, 
and an ADD after binding is said to be a structural 
ADD. 
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Fig. 3 Flow of Test Generation 

4. Hierarchical Test Generation Based on a 
Functional ADD 

4.1. Test Environment Generation 
Hierarchical test generation for a functional ADD 

(i.e., after scheduling) is explained as follows. When a 

node N is being tested, the testability of the node is 

guaranteed if any value can be propagated from a read 

node corresponding to a primary input port to the input 

of N, and the value at the output of N can be propagated 

to a write node corresponding to a primary output port. 

The path allowing any value to be propagated from a 

read node corresponding to a primary input port to the 

input of N is called a justification path, and the path 

allowing the value at the output of N to be propagated to 

a write node corresponding to a primary output port is 

called the propagation path. In this paper, justification 

and propagation are done through symbolic processing 

that utilizes 9-valued algebra [11]. The series of 

symbols obtained from the symbolic processing that 

activates justification and propagation paths is known 

as the test environment for the node under test. For a 

given node under test, its test sequence is generated by 

first extracting a test pattern from the test set library 

and substituting the test pattern for the test environment. 

The test set library is obtained beforehand by first 

taking a gate-level circuit whose functionality is the 

same as that of the node under test, then generating the 

test patterns for all faults in the circuit using a 

combinational ATPG algorithm. In the case that the 

node is synthesized to a different circuit, fault 

simulation must be performed to check the fault 

efficiency of the test patterns. 

 

4.2. Problem of Hierarchical Test 
Generation Based on a Functional ADD 

If the test environment coverage [12-13], which is the 
ratio of the number of nodes successfully generating the 
test environments to the total number of nodes, is high, 
fault coverage at the gate level is also high. However, 
high fault coverage is not necessarily obtained 
compared to gate-level sequential ATPG methods, even 
if hierarchical test generation methods [11-13] are used. 
The reason is described as follows. In references 
[11-13], binding processing was not taken into account. 
The binding processing of logic synthesis may assign 
operation nodes with no test environments generated for 
the same operational unit. In this case, the operational 
unit does not have test environments. Therefore, we 
consider that because faults in the operational unit are 
not detected by the generated test sequences, fault 
coverage is not high. To resolve this problem, we 
propose a binding for testability method which 
preferentially assigns operations with test environments 
and operations without test environments to the same 
operational unit. 

 
5. Binding for Testability 
5.1. Test Design Flow 

The procedure of the proposed test generation is 
explained. The flow of the test generation is shown in 
Fig. 3. 
(STEP 1) Test environments are generated for a given 

functional ADD by the method shown in reference 
[11]. 

(STEP 2) The binding for testability is performed for a 
functional ADD under the constraint of the number of 
operational units. The binding for testability method is 
described in Section 5.3 in detail. A structural ADD is 
generated by the binding. 

(STEP 3) ADNs are inserted into an ADD when the 
binding is performed for a functional ADD. Therefore, 
test environments for the inserted ADNs are generated. 

(STEP 4) Test sequences are generated by first 
extracting test patterns from a test set library and by 
substituting these test patterns for the test 
environments. 

(STEP 5) Logic synthesis is performed for the structural 
ADD generated in STEP 2 and a gate-level circuit is 
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generated. 
(STEP 6) Fault simulation is performed for the 

gate-level circuit by the test sequences generated in 
STEP 4, and the fault coverage is calculated. 

 
5.2. Problem Formulation 

(Definition 1: Functional RTL test environment 
coverage) 

all

TE
F

N
NRTE

#
#

  

Functional RTL test environment coverage (RTEF) is 
defined as the ratio of the number of nodes successfully 
generating test environments (#NTE) to the total number 
of nodes under test in a functional ADD (#Nall). In this 
paper, the nodes under test are only the operation nodes. 

(Definition 2: Structural RTL test environment 
coverage) 

all

TE
S

M
MRTE

#
#

  

Structural RTL test environment coverage (RTES) is 
defined as the ratio of the number of modules 
successfully generating test environments (#MTE) to the 
total number of modules under test in a structural ADD 
(#Mall). In this paper, the modules under test are only 
the operational units. 

(Problem formulation) 
Inputs: Nodes under test in a functional ADD (e1, …, 
en), where n is the number of nodes under test and each 
node has the information of whether a test environment 
is generated. 
Outputs: The binding information for each module (B1, 
…, Bm), where m is the number of modules and each 
binding information has assigned nodes. 
Optimization: Maximize the structural test 
environment coverage. 
Constraint: The number of operational units. 

 

 

 

 

 

 

 

 

 
Fig. 4 An example of scheduling 

 
 
 
 
 
 
 
 
 

Fig. 5 The binding result (sharing +2 and +4) 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The binding result (sharing +2 and +7) 

 

Fig. 7 Binding for testability algorithm 
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5.3. Binding for Testability Algorithm 

The proposed binding algorithm for testability is 
explained using an example. Fig. 4 shows a scheduling 
example. Fig. 5 shows the binding results in which the 
add operation nodes +2 and +4 are assigned to the same 
adder unit for Fig. 4. Fig. 6 shows the binding results in 
which the add operation nodes +2 and +7 are assigned 
to the same adder unit for Fig. 4. In the test 
environment generations for +2 and +4 of Fig. 4, 
because the symbol for fault effects O [11] cannot be 
propagated to the outputs of the multiplier nodes *1 and 
*2, the test environments cannot be generated. The test 
environment for +7 can be generated. When +2 and +4 
are assigned to the same adder unit, the test 
environment of the adder unit does not exist and the 
adder unit cannot be tested (Fig. 5). In contrast, when 
+2 and +7 are assigned to the same adder unit, the test 
environment of the adder unit exists and the adder unit 
can be tested. In this paper, we propose a binding for 
testability method which preferentially assigns 
operations with test environments and operations 
without test environments to the same operational unit. 
Our goal is to improve structural test environment 
coverage while satisfying the resource constraints. 

Fig. 7 shows the algorithm of binding for testability. 
Explanations for each line of code are given in the 
following. 
(line 1) An operation set OP is given. The elements of 
the OP are operation nodes. Each operation node has 
the information of whether a test environment has been 
generated. 
(line 2) Lines 3 to 9 are iterated for each operation Ni 
with a test environment. 
(line 3) Lines 4 to 8 are iterated for each operation Nj 
without a test environment. 
(line 4) If Ni and Nj are able to be merged, lines 5 to 8 
are performed. 
(line 5) Ni and Nj are merged to a new operation Nnew. 
(line 6) Nnew is added to the OP. 
(line 7) Ni and Nj are deleted from the OP. 
(line 8) The algorithm returns to line 2. 
(line 12) Lines 13 to 19 are iterated for each operation 
Ni in the OP. 
(line 13) Lines 14 to 18 are iterated for each operation 
Nj except Ni. 
(line 14) If Ni and Nj are able to be merged, lines 15 to 
18 are performed. 
(line 15) Ni and Nj are merged to a new operation Nnew. 

(line 16) Nnew is added to the OP. 
(line 17) Ni and Nj are deleted from the OP. 
(line 18) The algorithm returns to line 12. 
(line 22) Each node in the OP is assigned to an 
operational unit. 

 
6. Experimental Results 

The test environments and the test sequences using 

the method shown in reference [11] were generated for 

Paulin, Diffeq, and DCT, which are functional RTL 

circuits. The binding for testability method proposed in 

this paper was applied to the circuits. For comparison, 

the left-edge algorithm (LEA) [15] was also applied to 

the circuits. 
Table 1 shows the results of the test environment 

generation. In Table 1, “Circuits” denotes the names of 
the circuits, “With TE” denotes the operation nodes 
with test environments, and “Without TE” denotes the 
operation nodes without test environments. Table 2 
shows the results of the two algorithms for binding the 
circuits. In Table 2, “Operations” denotes the types of 
operational units, “Proposed” denotes the names of the 
operation nodes assigned to the operational units using 
the proposed binding method, and “LEA” denotes the 
names of the operation nodes assigned to the 
operational units using the LEA. Table 3 shows the 
functional RTL test environment coverage (“RTEF”) and 
the structural RTL test environment coverage (“RTES”). 
In Table 3, “Proposed” denotes the structural test 
environment coverage using the proposed binding 
method, and “LEA” denotes the structural test 
environment coverage using the LEA. The functional 
RTL test environment coverage was 70% to 76%. The 
structural RTL test environment coverage using the 
proposed binding method was 100%. In contrast, the 
structural test environment coverage using the LEA was 
only 75% to 80%. 

After the test sequence generation and binding, the 
gate-level circuits were generated by logic synthesis. 
Fault simulations for single stuck-at faults in only the 
operational units were performed for the gate-level 
circuits by the generated test sequences. Table 4 shows 
the fault coverage, the execution time for the fault 
simulation, and the fault efficiency. In Table 4, “Bit 
width” denotes the bit widths of the data path in the 
circuits, and “Execution Time” denotes the execution 
time for the fault simulation. Untestable faults were 
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identified using the gate-level sequential test generation 
tool “TetraMAXTM” from Synopsys. Thus, the fault 
efficiencies were calculated. 

The fault coverage for the circuits generated by our 
proposed binding method increased by 4.22% on 
average compared with that generated by the LEA. The 
proposed binding for testability method effectively 
improved the structural test environment coverage and 
the fault coverage. 

The fault coverage for DCT was low compared with 
that of the other circuits. Because DCT has many 
multipliers with constant input, many untestable faults 
in the gate-level circuit were identified by the 
TetraMAX ATPG. 

 
Table 1 Experimental Results of Test Environment 

 Generation 
 
 

 
 
 
 

Table 2 Experimental Results of Binding 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Experimental Results of Test 
Environments Coverage 

 
 
 
 
 
 
 
 
 
 

Table 4 Experimental Results of Fault Coverage 
 
 
 
 
 

 
 
 

7. Conclusion 

In this paper, we proposed a binding for testability 
method which preferentially assigns operations with 
test environments and operations without test 
environments to the same operational unit to improve 
the structural test environment coverage. The 
experimental results showed that both the structural test 
environment coverage and the fault coverage of the 
proposed binding method increased compared with 
those of LEA without considering the test environment. 
In future work, register binding for hierarchical 
testability will be examined. 
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