

1

A Binding Method for Hierarchical Testing
Using the Results of Test Environment Generation

Hiroaki FUJIWARA† Toshinori HOSOKAWA‡ Ryoichi INOUE† Hideo FUJIWARA††

†Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino, Chiba 275-8575, Japan

‡College of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino, Chiba 275-8575, Japan

††Faculty of Informatics, Osaka Gakuin University, 2-36-1 Kishibe-Minami, Suita-shi, Osaka, Japan
E-mail: †cihr10016@g.nihon-u.ac.jp, ††tukinokaze@nifty.com,

‡hosokawa.toshinori@nihon-u.ac.jp, ‡‡fujiwara@ogu.ac.jp

Abstract The recent advances in semiconductor
technology have resulted in an exponential increase in
VLSI circuit density and complexity. Therefore, it is
difficult to generate test sequences for sequential
circuits using gate-level sequential ATPGs. Hierarchical
test generation methods that generate test environments
for each functional element at the functional register
transfer level and test patterns for each combinational
module at the gate level have been proposed to
accelerate sequential test generation. In this paper, we
propose a binding for testability method that
preferentially assigns operations with test environments
and operations without test environments to the same
operational unit to reduce the number of hard-to-test
operational units. The experimental results show the
effectiveness of the proposed method.

Keywords hierarchical test generation, behavioral
synthesis, test environment, binding for testability,
functional register transfer level

1. Introduction
The recent advances in semiconductor technology

have resulted in an exponential increase in
very-large-scale integration (VLSI) circuit density and
complexity. Effective and efficient test generation
algorithms for combinational circuits have been
proposed. These algorithms can achieve high fault
efficiency even for large circuits [1-5]. However, it is
very difficult to achieve high fault efficiency for
sequential circuits in a reasonable test generation time
by a conventional gate-level sequential automatic test
pattern generator (ATPG).

Generally, the current large-scale integrated circuits
(LSI) design flow starts from the register transfer level

(RTL) design. Design productivity decreases as LSI
design costs increase [6]. Therefore, a new design
methodology that uses behavioral synthesis to describe
the LSI behavior and synthesize RTL circuits is
gathering attention.

Because the amount of LSI behavioral descriptions is
less than that of RTL descriptions, designing at the
behavioral level can improve design productivity.
Because behavioral synthesis assigns resources such as
registers and operational units, the synthesis
performance greatly influences the performance of the
synthesized circuits [6].

Behavioral synthesis primarily performs scheduling
[6] and binding [6]. Scheduling assigns execution times
to operations and binding assigns registers and
operation units to variables and operations. Synthesized
cycle-accurate circuits after scheduling are said to be
functional RTL circuits. Synthesized circuits after
scheduling and binding are said to be structural RTL
circuits. Functional RTL circuits and structural RTL
circuits are synthesized to gate-level circuits by logic
synthesis.

Several design-for-testability (DFT) methods based
on hierarchical test generation [7] for structural RTL
circuits have been proposed [8-10]. In references [8-10],
a structural RTL circuit consists of a data-path part and
a controller part, both of which are isolated in the test
modes. Separate DFT methods have been proposed for
the data-path part and the controller part. Therefore, the
area overhead for testing becomes larger. Hierarchical
test generation methods for a stuck-at fault model for
functional RTL circuits have been also proposed [11-13].
In these methods, a given functional RTL circuit is first
described in an assignment decision diagram (ADD)
[14]. Then, test environments are generated for each

12th IEEE Workshop on RTL and High Level Testing (WRTLT'11), pp. 16-22, Nov. 2011.

12th IEEE Workshop on RTL and High Level Testing (WRTLT'11), pp. 16-22, Nov. 2011.

h.fujiwara
タイプライターテキスト

h.fujiwara
タイプライターテキスト

h.fujiwara
スタンプ

h.fujiwara
スタンプ

2

operation. A test sequence is formed by substituting the
corresponding test patterns of the gate-level circuit to
the operation in the test environments. Compared with a
gate-level ATPG, these methods can drastically reduce
the test generation time without sacrificing fault
coverage [11-13]. These methods perform binding by
logic synthesis. Therefore, if the test environment
coverage, which is the ratio of the number of nodes
successfully generating test environments to the total
number of nodes, is low, it is not guaranteed that the
generated test sequences can achieve high fault
coverage. In this paper, we propose a binding for
testability method that preferentially assigns operations
with test environments and operations without test
environments to the same operational unit to reduce the
number of hard-to-test operational module units.

The outline of this paper is as follows. Section 2
explains ADD. Section 3 describes behavioral synthesis.
Section 4 describes hierarchical test generation. In
Section 5, a binding for testability method is proposed.
The experimental results are shown in Section 6. Finally,
Section 7 concludes this paper.

Fig. 1 Example of ADD

Fig. 2 Flow of behavioral synthesis

2. Assignment Decision Diagram

An ADD is an acyclic graph that consists of a set of
nodes categorized into the following four types: read
node, write node, operation node, and assignment
decision node (ADN), as shown in Fig. 1. In addition,
the ADD has a set of edges containing the connectivity
information between two nodes. (Fig. 1). The read
node represents a primary input port, a storage unit, or a
constant. The write node represents a primary output
port or a storage unit. The operation node expresses an
arithmetic operation unit or a logic operation unit, and
the ADN selects a value from a set of values provided to
it based on the conditions computed by the logic
operation units. If one of the condition inputs becomes
true, the value of the corresponding data input is
selected. Although ADD was essentially introduced as
an internal representation in the behavioral synthesis
process, it can be used to describe a functional RTL
circuit, the controller part and the data-path part, which
are homogeneously represented.

3. Behavioral Synthesis

Behavioral synthesis generates RTL circuits using
hardware description languages such as VHDL and
Verilog-HDL from behavioral descriptions using, for
example, C language and System C. Behavioral
synthesis consists of four steps: graph generation,
scheduling, binding, and RTL circuit generation, as
shown in Fig. 2. In the graph generation step, graphs
such as the ADD [14] or the Control/Data-Flow Graph
(CDFG) [6] are generated from the given behavioral
descriptions. In the scheduling step, each operation is
assigned to a time slot corresponding to a clock cycle or
time interval. In the binding step, operational units
(hardware components) and registers are assigned to
operations and variables, respectively. In the RTL
circuit generation step, the data-path part and the
controller part are generated.

In behavioral synthesis using ADD, for example,
scheduling and binding are implemented by
transforming the graph structures. In this paper, an
ADD after scheduling is said to be a functional ADD,
and an ADD after binding is said to be a structural
ADD.

3

Fig. 3 Flow of Test Generation

4. Hierarchical Test Generation Based on a
Functional ADD

4.1. Test Environment Generation
Hierarchical test generation for a functional ADD

(i.e., after scheduling) is explained as follows. When a

node N is being tested, the testability of the node is

guaranteed if any value can be propagated from a read

node corresponding to a primary input port to the input

of N, and the value at the output of N can be propagated

to a write node corresponding to a primary output port.

The path allowing any value to be propagated from a

read node corresponding to a primary input port to the

input of N is called a justification path, and the path

allowing the value at the output of N to be propagated to

a write node corresponding to a primary output port is

called the propagation path. In this paper, justification

and propagation are done through symbolic processing

that utilizes 9-valued algebra [11]. The series of

symbols obtained from the symbolic processing that

activates justification and propagation paths is known

as the test environment for the node under test. For a

given node under test, its test sequence is generated by

first extracting a test pattern from the test set library

and substituting the test pattern for the test environment.

The test set library is obtained beforehand by first

taking a gate-level circuit whose functionality is the

same as that of the node under test, then generating the

test patterns for all faults in the circuit using a

combinational ATPG algorithm. In the case that the

node is synthesized to a different circuit, fault

simulation must be performed to check the fault

efficiency of the test patterns.

4.2. Problem of Hierarchical Test
Generation Based on a Functional ADD

If the test environment coverage [12-13], which is the
ratio of the number of nodes successfully generating the
test environments to the total number of nodes, is high,
fault coverage at the gate level is also high. However,
high fault coverage is not necessarily obtained
compared to gate-level sequential ATPG methods, even
if hierarchical test generation methods [11-13] are used.
The reason is described as follows. In references
[11-13], binding processing was not taken into account.
The binding processing of logic synthesis may assign
operation nodes with no test environments generated for
the same operational unit. In this case, the operational
unit does not have test environments. Therefore, we
consider that because faults in the operational unit are
not detected by the generated test sequences, fault
coverage is not high. To resolve this problem, we
propose a binding for testability method which
preferentially assigns operations with test environments
and operations without test environments to the same
operational unit.

5. Binding for Testability
5.1. Test Design Flow

The procedure of the proposed test generation is
explained. The flow of the test generation is shown in
Fig. 3.
(STEP 1) Test environments are generated for a given

functional ADD by the method shown in reference
[11].

(STEP 2) The binding for testability is performed for a
functional ADD under the constraint of the number of
operational units. The binding for testability method is
described in Section 5.3 in detail. A structural ADD is
generated by the binding.

(STEP 3) ADNs are inserted into an ADD when the
binding is performed for a functional ADD. Therefore,
test environments for the inserted ADNs are generated.

(STEP 4) Test sequences are generated by first
extracting test patterns from a test set library and by
substituting these test patterns for the test
environments.

(STEP 5) Logic synthesis is performed for the structural
ADD generated in STEP 2 and a gate-level circuit is

4

generated.
(STEP 6) Fault simulation is performed for the

gate-level circuit by the test sequences generated in
STEP 4, and the fault coverage is calculated.

5.2. Problem Formulation

(Definition 1: Functional RTL test environment
coverage)

all

TE
F

N
NRTE

#
#

Functional RTL test environment coverage (RTEF) is
defined as the ratio of the number of nodes successfully
generating test environments (#NTE) to the total number
of nodes under test in a functional ADD (#Nall). In this
paper, the nodes under test are only the operation nodes.

(Definition 2: Structural RTL test environment
coverage)

all

TE
S

M
MRTE

#
#

Structural RTL test environment coverage (RTES) is
defined as the ratio of the number of modules
successfully generating test environments (#MTE) to the
total number of modules under test in a structural ADD
(#Mall). In this paper, the modules under test are only
the operational units.

(Problem formulation)
Inputs: Nodes under test in a functional ADD (e1, …,
en), where n is the number of nodes under test and each
node has the information of whether a test environment
is generated.
Outputs: The binding information for each module (B1,
…, Bm), where m is the number of modules and each
binding information has assigned nodes.
Optimization: Maximize the structural test
environment coverage.
Constraint: The number of operational units.

Fig. 4 An example of scheduling

Fig. 5 The binding result (sharing +2 and +4)

Fig. 6 The binding result (sharing +2 and +7)

Fig. 7 Binding for testability algorithm

5

5.3. Binding for Testability Algorithm

The proposed binding algorithm for testability is
explained using an example. Fig. 4 shows a scheduling
example. Fig. 5 shows the binding results in which the
add operation nodes +2 and +4 are assigned to the same
adder unit for Fig. 4. Fig. 6 shows the binding results in
which the add operation nodes +2 and +7 are assigned
to the same adder unit for Fig. 4. In the test
environment generations for +2 and +4 of Fig. 4,
because the symbol for fault effects O [11] cannot be
propagated to the outputs of the multiplier nodes *1 and
*2, the test environments cannot be generated. The test
environment for +7 can be generated. When +2 and +4
are assigned to the same adder unit, the test
environment of the adder unit does not exist and the
adder unit cannot be tested (Fig. 5). In contrast, when
+2 and +7 are assigned to the same adder unit, the test
environment of the adder unit exists and the adder unit
can be tested. In this paper, we propose a binding for
testability method which preferentially assigns
operations with test environments and operations
without test environments to the same operational unit.
Our goal is to improve structural test environment
coverage while satisfying the resource constraints.

Fig. 7 shows the algorithm of binding for testability.
Explanations for each line of code are given in the
following.
(line 1) An operation set OP is given. The elements of
the OP are operation nodes. Each operation node has
the information of whether a test environment has been
generated.
(line 2) Lines 3 to 9 are iterated for each operation Ni
with a test environment.
(line 3) Lines 4 to 8 are iterated for each operation Nj
without a test environment.
(line 4) If Ni and Nj are able to be merged, lines 5 to 8
are performed.
(line 5) Ni and Nj are merged to a new operation Nnew.
(line 6) Nnew is added to the OP.
(line 7) Ni and Nj are deleted from the OP.
(line 8) The algorithm returns to line 2.
(line 12) Lines 13 to 19 are iterated for each operation
Ni in the OP.
(line 13) Lines 14 to 18 are iterated for each operation
Nj except Ni.
(line 14) If Ni and Nj are able to be merged, lines 15 to
18 are performed.
(line 15) Ni and Nj are merged to a new operation Nnew.

(line 16) Nnew is added to the OP.
(line 17) Ni and Nj are deleted from the OP.
(line 18) The algorithm returns to line 12.
(line 22) Each node in the OP is assigned to an
operational unit.

6. Experimental Results

The test environments and the test sequences using

the method shown in reference [11] were generated for

Paulin, Diffeq, and DCT, which are functional RTL

circuits. The binding for testability method proposed in

this paper was applied to the circuits. For comparison,

the left-edge algorithm (LEA) [15] was also applied to

the circuits.
Table 1 shows the results of the test environment

generation. In Table 1, “Circuits” denotes the names of
the circuits, “With TE” denotes the operation nodes
with test environments, and “Without TE” denotes the
operation nodes without test environments. Table 2
shows the results of the two algorithms for binding the
circuits. In Table 2, “Operations” denotes the types of
operational units, “Proposed” denotes the names of the
operation nodes assigned to the operational units using
the proposed binding method, and “LEA” denotes the
names of the operation nodes assigned to the
operational units using the LEA. Table 3 shows the
functional RTL test environment coverage (“RTEF”) and
the structural RTL test environment coverage (“RTES”).
In Table 3, “Proposed” denotes the structural test
environment coverage using the proposed binding
method, and “LEA” denotes the structural test
environment coverage using the LEA. The functional
RTL test environment coverage was 70% to 76%. The
structural RTL test environment coverage using the
proposed binding method was 100%. In contrast, the
structural test environment coverage using the LEA was
only 75% to 80%.

After the test sequence generation and binding, the
gate-level circuits were generated by logic synthesis.
Fault simulations for single stuck-at faults in only the
operational units were performed for the gate-level
circuits by the generated test sequences. Table 4 shows
the fault coverage, the execution time for the fault
simulation, and the fault efficiency. In Table 4, “Bit
width” denotes the bit widths of the data path in the
circuits, and “Execution Time” denotes the execution
time for the fault simulation. Untestable faults were

6

identified using the gate-level sequential test generation
tool “TetraMAXTM” from Synopsys. Thus, the fault
efficiencies were calculated.

The fault coverage for the circuits generated by our
proposed binding method increased by 4.22% on
average compared with that generated by the LEA. The
proposed binding for testability method effectively
improved the structural test environment coverage and
the fault coverage.

The fault coverage for DCT was low compared with
that of the other circuits. Because DCT has many
multipliers with constant input, many untestable faults
in the gate-level circuit were identified by the
TetraMAX ATPG.

Table 1 Experimental Results of Test Environment

 Generation

Table 2 Experimental Results of Binding

Table 3 Experimental Results of Test
Environments Coverage

Table 4 Experimental Results of Fault Coverage

7. Conclusion

In this paper, we proposed a binding for testability
method which preferentially assigns operations with
test environments and operations without test
environments to the same operational unit to improve
the structural test environment coverage. The
experimental results showed that both the structural test
environment coverage and the fault coverage of the
proposed binding method increased compared with
those of LEA without considering the test environment.
In future work, register binding for hierarchical
testability will be examined.

References
[1] M. Schulz, E. Trischler and T. Sarfert, "SOCRATES: A

Highly Efficient Automatic Test Pattern Generation
System," IEEE Trans. on Computer-Aided Design, Vol.
7, No. 1, pp. 126-137, Jan. 1988.

[2] W. Kunz and D. Pradhan, "Recursive Learning: An
Attractive Alternative to the Decision Tree for Test
Generation in Digital Circuits," in Proc. IEEE
International Test Conference on Discover the New
World of Test and Design, pp. 816-825, 1992.

[3] M. Henftling, H. C. Wittmann and K. J. Antreich, "A
Single-Path-Oriented Fault-Effect Propagation in
Digital Circuits Considering Multiple-Path
Sensitization," in Proc. 1995 IEEE/ACM International
Conference on Computer-Aided Design, pp. 304-309,
1995.

[4] C. Wang, S. Reddy, I. Pomeranz, X. Lin and J. Rajski,
"Conflict Driven Techniques for Improving
Deterministic Test Pattern Generation," in Proc. IEEE
International Conference on Computer-Aided Design, pp.
87-93, 2002.

[5] E. Gizdarski and H. Fujiwara, "SPIRIT: A Highly
Robust Combinational Test Generation Algorithm,"
IEEE Trans. on Computer Aided Design for Integrated
Circuits and Systems, Vol. 21, No. 12, pp. 1446-1458,
Dec. 2002.

[6] D. D. Gajski, N. D. Dutt, A. C-H Wu and S. Y-L Lin,
HIGH-LEVEL SYNTHESIS: Introduction to Chip and
System Design, Kluwer Academic Publisher, 1992.

[7] B. T. Murray and J. P. Hayes, "Hierarchical Test
Generation Using Pre Computed Tests for Modules,"
IEEE Trans. Computer-Aided Design, Integrated
Circuits & Syst., Vol. 9, No. 6, pp. 594-603, Jun. 1990.

[8] I. Ghosh, A. Raghunathan and N. K. Jha, "Design for
Hierarchical Testability of RTL Circuits Obtained by

Circuits With TE Without TE

Paulin

Diffeq

DCT

+1, +2, -2, *1, *2, *4, *6

+1, +2, -2, *1, *2, *4, *6, <

+1, +2, +3, -1, -2, *1, *2, *3, *4, *5

-1, *3, *5

-1, *3, *5

+4, +5, +6

Circuits Operations Proposed LEA
MUL1 *3,*6 *3,*5
MUL2 *1,*2,*4,*5 *1,*2,*4,*6
ADD +1,+2 +1,+2
SUB -1,-2 -1,-2

MUL1 *4,*5 *3,*5
MUL2 *1,*2,*3,*5 *1,*2,*4,*6
ADD +1,+2 +1,+2
SUB -1,-2 -1,-2
LES < <

MUL1 *1,*2,*3 *1,*2,*3
MUL2 *4,*5 *4,*5
ADD1 +1,+3,+4,+6 +1,+3,+3,+5
ADD2 +2,+5 +4,+6

SUB -1,-2 -1,-2

Paulin

Diffeq

DCT

Proposed LEA
Paulin 70.00 (7/10) 100.00 (4/4) 75.00 (3/4)
Diffeq 72.73 (8/11) 100.00 (5/5) 80.00 (4/5)
DCT 76.92 (10/13) 100.00 (5/5) 80.00 (4/5)

Circuits RTEF (%)
RTES (%)

Proposed LEA Proposed LEA Proposed LEA
Paulin 100.00 89.65 100.00 89.65 0.03 0.02
Diffeq 96.58 96.58 96.85 96.58 0.04 0.03
DCT 65.17 62.85 95.68 95.51 0.03 0.04

Paulin 100.00 80.05 100.00 80.05 0.26 0.26
Diffeq 98.16 98.16 98.16 98.16 0.28 0.28
DCT 60.19 59.06 99.57 98.62 0.11 0.12

Paulin 99.17 94.97 99.17 94.97 3.91 3.80
Diffeq 98.96 98.96 98.96 98.96 5.27 5.12
DCT 51.26 51.26 99.73 99.56 0.64 0.75

Fault Efficiency (%)Fault Coverage (%) Execution Time (s)
Bit width Circuits

4

8

16

7

Behavioral Synthesis," IEEE Trans. Computer-Aided
Design for Integrated Circuits and Systems, Vol. 16, pp.
1001-1014, Sep. 1997.

[9] S. Ohtake, T. Masuzawa and H. Fujiwara, "A Non-scan
Approach to DFT for Controllers Achieving 100% Fault
Efficiency," Journal of Electronic Testing: Theory and
Applications (JETTA), Vol. 16, No. 5, pp. 553-566, Oct.
2000.

[10] H. Wada, T. Masuzawa, K. K. Saluja and H. Fujiwara,
"Design for Strong Testability of RTL Data Paths to
Provide Complete Fault Efficiency," in Proc. of 13th
International Conf. on VLSI Design, pp. 300-305, Jan.
2000.

[11] I. Ghosh and M. Fujita, "Automatic Test Pattern
Generation for Functional RTL Circuits Using
Assignment Decision Diagrams," in Proc. of ACM/IEEE
Design Automation Conference, pp. 43-48, Jun. 2000.

[12] L. Zhang, I. Gosh and M. Hsiao, "Efficient Sequential
ATPG for Functional RTL Circuits," in Proc.
International Test Conference, pp. 290-298, Sep. 2003.

[13] H. Fujiwara, C. Y. Ooi and Y. Shimizu, "Enhancement of
Test Environment Generation for Assignment Decision
Diagrams," 9th IEEE Workshop on RTL and High Level
Testing (WRTLT'08), pp. 45-50, Nov. 2008.

[14] V. Chaiyakul, D. D. Gajski and L. Ramachandran,
"High-Level Transformations for Minimizing Syntactic
Variances," in Proc. Design Automation Conference, pp.
413-428, Jun. 1993.

[15] F. J. Kurdahi and A. C. Parker, “REAL: A Program for
Register Allocation,” in Proc. Design Automation
Conference, pp. 210-215, Jun. 1987.

