

Functional Unit and Register Binding Methods
for Hierarchical Testability

Jun NISHIMAKI†, Toshinori HOSOKAWA‡ and Hideo FUJIWARA††

†Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino, Chiba 275-8575, Japan

‡College of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino, Chiba 275-8575, Japan
††Faculty of Informatics, Osaka Gakuin University, 2-36-1 Kishibe-Minami, Suita, Osaka 564-8511, Japan

E-mail: †cizy13016@g.nihon-u.ac.jp, ‡hosokawa.toshinori@nihon-u.ac.jp, ††fujiwara@ogu.ac.jp

Abstract Although several test generation algorithms have
been proposed for sequential circuits, high fault coverage is
difficult to achieve in a reasonable amount of time.
Hierarchical test generation methods using
functional-register transfer level circuits have been
proposed as efficient test generation methods for sequential
circuits. Hierarchical test generation methods generate test
sequences using functional-register transfer level circuits
before binding in behavioral synthesis. Therefore, fault
coverage for test sequences generated by hierarchical test
generation depends on the binding results. This paper
proposes a binding method for hierarchical testability that
uses the results of hierarchical test generation to achieve
high fault coverage. Experimental results reveal the
effectiveness of the proposed method.

Keywords: hierarchical test generation, test environment,
behavioral synthesis, binding, functional-register transfer
level

I. INTRODUCTION
 Recent advances in semiconductor technologies have
resulted in exponential increases in VLSI circuit density and
complexity, which has in turn increased the test generation
time. Efficient test generation algorithms for combinational
circuits have been proposed [1-5]. These algorithms can
achieve high fault coverage even for large circuits. Several
test generation algorithms for sequential circuits have been
also proposed. However, compared to that for
combinational circuits, the search space of test generation
for sequential circuits is enormous, and so it is very hard to
achieve high fault efficiency in a reasonable amount of

time.
 On the other hand, increases in VLSI circuit density and
complexity result in a decrease in design productivity. As a
result, VLSI design at the register-transfer level (RTL) is
becoming difficult. In order to resolve this problem,
behavioral synthesis [6] has been proposed in order to
improve design productivity.
 In general, behavioral synthesis consists of two steps,
namely, scheduling and binding [6]. In the scheduling step,
the operation execution time is determined for each
operation in the behavioral description. In the binding step,
functional units and registers are assigned to each operation
and each variable in the behavioral description, respectively.
Circuits synthesized after scheduling are referred to as
functional RTL circuits, and circuits synthesized after
scheduling and binding are referred to as structural RTL
circuits.
 Hierarchical test generation methods using functional RTL
circuits have been proposed as efficient test generation
methods for sequential circuits [7-9]. These hierarchical test
generation methods generate test sequences using
functional RTL circuits before binding in behavioral
synthesis. Therefore, the number of testable functional units
and the number of detectable faults for generated test
sequences depends on the binding results. In order to
achieve high fault coverage in hierarchical testing, it is
important to test as many functional units as possible using
the generated test sequences. As such, binding methods for
hierarchical testability to increase the number of testable
functional units have been proposed [10, 11].
 These methods [10, 11] perform functional unit binding
using hierarchical test generation results and synthesize

14th IEEE Workshop on RTL and High Level Testing (WRTLT'13), November 2013.

structural RTL circuits such that several synthesized
functional units become testable. However, depending on
the hierarchical test generation results, some synthesized
functional units become untestable. In [11], the authors did
not consider testing these untestable functional units. Hence,
if several untestable functional units are synthesized,
achieving high fault coverage is not guaranteed. In [10], if
some synthesized functional units are untestable, test
multiplexers are inserted into the RTL data path in order to
make these units testable. However, insertion of test
multiplexer increases the area overhead and degrades the
data path performance.
 In [10] and [11], testability is considered only for
functional unit binding, and not for register binding. It is
expected that higher fault coverage can be achieved by
considering testability not only in functional unit binding
but also in register binding.
 This paper proposes a functional unit and register binding
method for hierarchical testability that uses the hierarchical
test generation results to achieve high fault coverage in
hierarchical testing. The remainder of this paper is
organized as follows. Section II describes the hierarchical
test generation method using functional RTL circuits. A
binding method for hierarchical testability is proposed in
Section III. Section IV presents the experimental results.
Finally, Section V concludes the paper and discusses areas
for future research.

II. HIERARCHICAL TEST GENERATION
 This section describes a hierarchical test generation
method using functional RTL circuits. In hierarchical test
generation using functional RTL circuits, functional RTL
circuits are represented by a graph such as a control-data
flow graph (CDFG) [6] and an assignment decision diagram
(ADD) [12]. Hierarchical test generation is performed on
these graphs. Hierarchical test generation generates test
sequences for each functional element, such as operations
and variables, in functional RTL circuits. Hierarchical test
generation consists of two procedures: test environment
generation and test sequence generation.
 Hierarchical test generation for a functional element is
explained as follows. When a functional element N is being
tested, the testability of N is guaranteed if any value can be
propagated from a primary input to the input of N and the
value at the output of N can be propagated to a primary
output. The path allowing any value to be propagated from
a primary input to the input of N is referred to as a
justification path, and the path allowing the value at the
output of N to be propagated to a primary output is referred

to as the propagation path. A justification path, a
propagation path, and primary input values for each time to
enable these paths are referred to collectively as a test
environment. Test environment generation determines
whether it is possible to generate a test environment for
each functional element in functional RTL circuits. Test
environments for each functional element are generated
using test environment generation rules [7-9]. The test
environment generation rules consist of symbols that
represent the controllability and observability of functional
elements and their algebraic rules. In order to achieve high
fault coverage in hierarchical test generation, it is important
to generate as many test environments as possible. In this
paper, the test environment generation rule that extends the
rule proposed in [7] is used. Besides, test environments are
generated by using the results of analysis for control flows.
 For a given functional element under test, we first generate
a test environment for the element. We then generate a test
sequence by inserting a test pattern for the element into the
test environment, where the test pattern is extracted from
the test set library. Test sequences are generated for all
faults in the functional element under test. The test set
library is obtained beforehand by first taking a gate-level
circuit whose functionality is the same as that of the
functional element under test and then generating test
patterns for all faults in the circuit using a combinational
ATPG algorithm. After test sequence generation, fault
simulation is performed in order to calculate the fault
coverage for the test sequences.

III. BINDING FOR HIERARCHICAL TESTABILITY
 In this section, a binding method for hierarchical
testability is proposed. In both the functional unit and
register binding steps, the proposed method is performed
using hierarchical test generation results. The goal is to test
as many functional units as possible by generated test
sequences.

A. Hierarchically Testable Functional Units
 In this paper, a functional unit that satisfies the following
two properties is referred to as a hierarchically testable
functional unit.

1) Any test patterns on inputs of a functional unit can be
justified from primary inputs.
2) Any fault effects on the output of a functional unit can be
propagated to a primary output.

 On the other hand, a functional unit that can satisfy neither

property 1 nor property 2 is referred to as a hierarchically
untestable functional unit. A functional unit in which at
least one operation with a test environment is assigned is a
hierarchically testable functional unit. Hierarchically
testable functional units have test sequences generated by
hierarchical test generation. However, hierarchically
untestable functional units do not have test sequences.
Therefore, if numerous hierarchically untestable functional
units are synthesized, the number of undetected faults in
hierarchical testing increases. As a result, the fault coverage
decreases. Hence, in order to achieve high fault coverage in
hierarchical testing, it is important to increase the number
of hierarchically testable functional units. The proposed
binding method attempts to maximize the number of
hierarchically testable functional units under the constraint.

B. Problem Formulation
Inputs: A scheduled CDFG and the information regarding
which operation in the CDFG succeeded in test
environment generation.
Outputs: A CDFG to which functional unit binding and
register binding have been applied.
Optimization: Maximize the number of hierarchically
testable functional units.
Constraint: Number of available registers.

 In general, it is possible to make many synthesized
functional units hierarchically testable by increasing the
number of available registers. However, additional registers
cause the area overhead. In order to suppress the area
overhead, the number of available registers is set as the
constraint.

C. Functional Unit Binding
 Functional unit binding methods that attempt to increase
the number of hierarchically testable functional units have
been proposed [10, 11]. In functional unit binding, if only
operations without a test environment are assigned to a
functional unit, the functional unit becomes a hierarchically
untestable functional unit. In order to avoid this situation,
the binding methods proposed in [10, 11] assign one or
more operations with a test environment to each functional
unit if possible. The binding method proposed in [11]
preferentially assigns operations with a test environment to
functional units to which operations with a test environment
are not assigned. Thus, it is possible to prevent operations
with a test environment being intensively assigned to the
same functional unit. However, the functional unit binding
method [11] do not guarantee that all of the synthesized
functional units will be made testable.

Fig. 1 Scheduled CDFG

Fig. 2 Functional Unit Binding for Testability

Figure 1 shows an example of a scheduled CDFG. In Fig.

1, operations appearing in white are operations with a test
environment, and operations appearing in black are
operations without a test environment. In Fig. 1, three
multiplications are scheduled at the control step t+1. Hence,
this scheduling requires three multipliers. On the other hand,
the number of multiplications with a test environment is
two. If the number of functional units required is greater
than the number of operations with a test environment, then
hierarchically untestable functional units are synthesized.
Figure 2 shows an example of functional unit binding for

hierarchical testability. In Fig. 2, multiplications with a test
environment are assigned to multipliers M1 and M2.
Therefore, multipliers M1 and M2 are hierarchically
testable functional units. On the other hand, multiplier M3
is hierarchically untestable because no multiplication with a
test environment is assigned to M3.
The proposed binding method attempts to change

hierarchically untestable functional units to hierarchically
testable functional units by register binding. In order to
achieve this goal, it is important that as many registers as
possible can be assigned to the inputs and output of
hierarchically untestable functional units. The proposed
functional unit binding method intensively assigns
operations without a test environment to hierarchically

Circuit Elements

Circuit Elements

a b c

d e
f g

n

u

h

t

t+1

t+2

t+3

*1

*3*2 *4

*5
k m

Circuit Elements

Circuit Elements

a b c

d e
f g

k m

n

u

h

t

t+1

t+2

t+3

*1

*3*2 *4

*5

M1 M2 M3

untestable functional units. As a result, the number of
variables connected to hierarchically untestable functional
units increases. Therefore, the number of registers that can
be assigned to the inputs and output of hierarchically
untestable functional units increases. In Fig. 2, the
multiplication *5 without a test environment is able to be
assigned to any multiplier. The proposed functional unit
binding method intentionally assigns *5 to multiplier M3.
As a result, the variables f, g, k, m, and n are connected to
M3. Therefore, many variables are connected to M3, as
compared to the case in which only *4 is assigned to M3.

D. Register Binding
 The proposed register binding method attempts to change
hierarchically untestable functional units to hierarchically
testable functional units, which requires that the
hierarchically untestable functional units satisfy properties
1 and 2 described in Section III-A.
 In this paper, the input variables of an operation with a test
environment are referred to as test pattern variables. The
registers in which test pattern variables are assigned are
referred to as test pattern registers. As a result of
hierarchical test generation, it is guaranteed that any test
pattern of functional units can be assigned to test pattern
variables. In Fig. 2, variables a, b, d, and e are test pattern
variables of the multiplications. The registers to which these
variables are assigned are test pattern registers of the
multiplier. The proposed register binding method can
propagate test patterns to the inputs of hierarchically
untestable functional units by register sharing between test
pattern variables and the input variables of hierarchically
untestable functional units. Furthermore, the proposed
register binding method can detect fault effects at the output
of hierarchically untestable functional units by register
sharing between primary output variables and the output
variables of hierarchically untestable functional units.

Fig. 3 Register Binding for Testability

 Figure 3 shows an example of register binding for
hierarchical testability based on functional unit binding
results in Fig. 2. In Fig. 3, variables a and k are assigned to
test pattern register R1. Furthermore, variables b and m are
assigned to test pattern register R2. As a result, at control
step t, test patterns for multiplier M1 are set to R1 and R2,
and test patterns for M1 are also propagated to the inputs of
M3. In Fig. 3, the variable u and primary output variable n
are assigned to primary output register R3. As a result,
output responses corresponding to the test patterns that are
propagated to the inputs of M3 can be observed at the
primary output of control step t+1. Thus, the proposed
register binding method changes hierarchically untestable
functional units to hierarchically testable functional units.
However, if the multiplexers are connected to the inputs of
M3, it is necessary to select the signals from R1 and R2 at
control step t. Similarly, if the multiplexer is connected to
the input of R3, it is necessary to select the signal from M3
at control step t. Furthermore, if R3 is a hold register, it is
necessary for R3 to perform the load operation. Therefore,
control signals of a controller synthesized by behavioral
synthesis are modified.

IV. EXPERIMENTAL RESULTS
 The experiments were performed using two example
circuits to evaluate the effectiveness of the proposed
method. In the experiments, hierarchical test generation
using functional RTL circuits was performed for two
circuits. In order to clarify the effectiveness of the binding
method proposed herein, we compare two cases. In one case,
the circuit is synthesized using the proposed method, and in
the other case the circuit is synthesized without using the
proposed method. Gate-level ATPG was also performed for
the purpose of comparison with hierarchical test generation.
The PICTHY C-based behavioral synthesis system was
used for behavioral synthesis. Design CompilerTM from
Synopsys was used for logic synthesis, and TetraMAXTM
from Synopsys was used for fault simulation in hierarchical
test generation, combinational test generation for each
functional element, and sequential test generation at the
gate level. All of the faults in the data path and the
controller were evaluated in the experiments.
 Table I shows the information of behavioral description for
two example circuits. In Table I, the “Circuit” column
indicates the name of circuit. The “#mult” column, the
“#add” column, and the “#sub” column list the number of
multiplications, the number of additions, and the number of
subtractions, respectively. The “Control statement used?”
column indicates whether control statements are used in

M1 M2

Circuit Elements

Circuit Elements

a b
c

d e
f g

k m
n

u

h

t

t+1

t+2

t+3

*1

*3*2 *4

*5

M3

R1 R2

R1 R2

R3

R3

behavioral description.
 Table II shows the circuit synthesis results. In Table II, the
“Circuit” column indicates the name of the circuit, and the
“Proposed method used?” column indicates whether
proposed method was applied. The “#REG” column lists
the number of registers in the data path. The “#MUX”
column lists the total number of inputs of the multiplexer.
The “#FU” column lists the number of functional units. The
“#TESTABLE FU” column lists the number of
hierarchically testable functional units. Finally, the “Area”
column lists the circuit area after logic synthesis. In the
experiments, the bit width of the data path was set to 32
bits.
 The experimental results reveal that all functional units
became hierarchically testable if the proposed method was
used. In example 1, additional registers were needed to
change all hierarchically untestable functional units into
testable functional units, and hence the number of registers
increased. On the other hand, in example 2, no additional
registers were needed in order to change all hierarchically
untestable functional units into testable functional units, and
hence there is no increase in the number of registers. Table
III shows the test generation results. In Table III, the
“Circuit” column indicates the name of the circuit, and the
“Proposed method used?” column indicates whether
proposed method was applied. The “Hierarchical Test
Generation” column lists the results of hierarchical test
generation using functional RTL circuits. The “Gate-Level
ATPG” column lists the results of gate-level sequential
ATPG by TetraMAXTM. The “FC” column lists the fault
coverage. The “T-Length” column indicates the length of
the test sequence. Finally, the “T-Gen” column indicates the
test generation time.
 In hierarchical test generation, the proposed method
achieved highest fault coverage for examples 1 and 2.
Furthermore, when the proposed method was applied, the
fault coverage for test sequences generated by hierarchical
test generation was improved by approximately 11.81% on
average compared to the case in which the proposed method
was not applied.
 When the proposed method was applied, the fault
coverage for test sequences generated by gate-level ATPG
was improved by approximately 14.53% on average
compared to the case in which the proposed method was not
applied. Furthermore, test generation was approximately
2.04 times faster on average. Therefore, the proposed
method is also effective for gate-level ATPG.
 The hierarchical test generation method obtained test
sequences approximately 41.53 times faster on average than

gate-level ATPG. The test generation time of the
hierarchical test generation usually consists of the test
environment generation time, the test sequence generation
time, the functional elements ATPG time, and the fault
simulation time. In the experiments, test environment
generation and test sequence generation were applied
through hand calculation. Therefore, the test environment
generation time and the test sequence generation time were
not included in the test generation time of the hierarchical
test generation. However, these calculation times are
expected to be a few seconds.
 In hierarchical test generation, the proposed method
achieved the best results in terms of both test generation
time and fault coverage. Therefore, test design that
combines hierarchical test generation using functional RTL
circuits and the binding method for hierarchical testability
proposed in this paper is effective for both test generation
time and fault coverage.

V. CONCLUSION
 This paper proposes a binding method for hierarchical
testability using the hierarchical test generation results to
achieve high fault coverage. By performing the proposed
method, the fault coverage for test sequences generated by
hierarchical test generation was improved by approximately
11.81% on average. Areas for future research include
experiments involving large benchmark circuits and
implementation of a binding method for hierarchical
testability.

REFERENCES
[1] W. Kunz, and D. Pradhan, “Recursive Learning: An

Attractive Alternative to the Decision Tree for Test
Generation in Digital Circuits,” Proc. IEEE International Test
Conference on Discover the New World of Test and Design,
pp. 816-825, 1992.

[2] W. Kunz, and D. Pradhan, “Recursive Learning: An
Attractive Alternative to the Decision Tree for Test
Generation in Digital Circuits,” Proc. IEEE International Test
Conference on Discover the New World of Test and Design,
pp. 816-825, 1992.

[3] M. Henftling, H. C. Wittmann, and K. J. Antreich, “A
Single-Path-Oriented Fault Effect Propagation in Digital
Circuits Considering Multiple-Path Sensitization,” Proc. 1995
IEEE/ACM International Conference on Computer-Aided
Design, pp. 304-309, 1995.

[4] C. Wang, S. Reddy, I. Pomeranz, X. Lin, and J. Rajski,
“Conflict driven techniques for improving deterministic test
pattern generation,” Proc. IEEE International Conference on
Computer-Aided Design, pp. 87-93, 2002.

[5] E. Gizdarski, and H. Fujiwara, “SPIRIT: A Highly Robust
Combinational Test Generation Algorithm,” IEEE trans. on
Computer Aided Design for Integrated Circuits and Systems,
Vol. 21, No. 12, pp. 1446-1558, Dec. 2002.

[6] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin,
HIGH-LEVEL SYNTHESIS Introduction to Chip and

System Design, Kluwer Academic Publisher, 1992.
[7] I. Ghosh, and M. Fujita, “Automatic Test Pattern Generation

for Functional RTL Circuits Using Assignment Decision
Diagrams,” Proc. ACM/IEEE Design Automation Conference,
pp. 43-48, June 2000.

[8] L. Zhang, I. Gosh, and M. Hsiao, “Efficient Sequential ATPG
for Functional RTL Circuits,” Proc. International Test
Conference, pp. 290-298, Sept. 2003.

[9] H. Fujiwara, C. Y. Ooi, and Y. Shimizu, “Enhancement of
Test Environment Generation for Assignment Decision
Diagrams,” 9th IEEE Workshop on RTL and High Level
Testing (WRTLT’08), pp. 45-50, Nov. 2008.

[10] S. Bhatia, and N. K. Jha, “Integration of Hierarchical Test
Generation with Behavioral Synthesis of Controller and Data
Path Circuits,” IEEE trans. on Very Large Scale Integration
Systems, Vol. 6, No. 4, Dec. 1998.

[11] T. Hosokawa, H. Fujiwara, R. Inoue, and H. Fujiwara, “A
Binding Method for Hierarchical Testing Using Results of
Test Environment Generation,” 12th IEEE Workshop on RTL
and High Level Testing (WRTLT’11), pp. 16-22, Nov. 2011.

[12] V. Chaiyakul, D. D. Gajski, and L. Ramachandran,
“High-Level Transformations for Minimizing Syntactic
Variances,” proc. Design Automation Conference, pp.
413-428, June 1993.

Table I Circuit Information

Table II Circuit Synthesis Results

Table III Test Generation Results

Circuit #mult #add #sub Control statement used?

example1 7 0 3 No
example2 6 6 0 Yes (if-else)

Circuit Proposed method used? #REG #MUX #FU #TESTABLE FU Area

example 1
No 6 32 5 3 25,401
Yes 7 31 5 5 25,662

example 2
No 6 39 5 2 25,736
Yes 6 37 5 5 25,643

Circuit Proposed method used?
Hierarchical Test Generation Gate-Level ATPG

FC (%) T-Length T-Gen (s) FC (%) T-Length T-Gen (s)

example 1
No 95.86 819 156 96.02 236 6,364
Yes 99.95 819 147 97.12 327 4,530

example 2
No 79.98 936 260 69.11 207 16,384
Yes 99.51 936 195 97.07 438 6,136

