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Abstract Although several test generation algorithms have 
been proposed for sequential circuits, high fault coverage is 
difficult to achieve in a reasonable amount of time. 
Hierarchical test generation methods using 
functional-register transfer level circuits have been 
proposed as efficient test generation methods for sequential 
circuits. Hierarchical test generation methods generate test 
sequences using functional-register transfer level circuits 
before binding in behavioral synthesis. Therefore, fault 
coverage for test sequences generated by hierarchical test 
generation depends on the binding results. This paper 
proposes a binding method for hierarchical testability that 
uses the results of hierarchical test generation to achieve 
high fault coverage. Experimental results reveal the 
effectiveness of the proposed method. 
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I. INTRODUCTION 
 Recent advances in semiconductor technologies have 
resulted in exponential increases in VLSI circuit density and 
complexity, which has in turn increased the test generation 
time. Efficient test generation algorithms for combinational 
circuits have been proposed [1-5]. These algorithms can 
achieve high fault coverage even for large circuits. Several 
test generation algorithms for sequential circuits have been 
also proposed. However, compared to that for 
combinational circuits, the search space of test generation 
for sequential circuits is enormous, and so it is very hard to 
achieve high fault efficiency in a reasonable amount of 

time. 
 On the other hand, increases in VLSI circuit density and 
complexity result in a decrease in design productivity. As a 
result, VLSI design at the register-transfer level (RTL) is 
becoming difficult. In order to resolve this problem, 
behavioral synthesis [6] has been proposed in order to 
improve design productivity. 
 In general, behavioral synthesis consists of two steps, 
namely, scheduling and binding [6]. In the scheduling step, 
the operation execution time is determined for each 
operation in the behavioral description. In the binding step, 
functional units and registers are assigned to each operation 
and each variable in the behavioral description, respectively. 
Circuits synthesized after scheduling are referred to as 
functional RTL circuits, and circuits synthesized after 
scheduling and binding are referred to as structural RTL 
circuits. 
 Hierarchical test generation methods using functional RTL 
circuits have been proposed as efficient test generation 
methods for sequential circuits [7-9]. These hierarchical test 
generation methods generate test sequences using 
functional RTL circuits before binding in behavioral 
synthesis. Therefore, the number of testable functional units 
and the number of detectable faults for generated test 
sequences depends on the binding results. In order to 
achieve high fault coverage in hierarchical testing, it is 
important to test as many functional units as possible using 
the generated test sequences. As such, binding methods for 
hierarchical testability to increase the number of testable 
functional units have been proposed [10, 11]. 
 These methods [10, 11] perform functional unit binding 
using hierarchical test generation results and synthesize 
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structural RTL circuits such that several synthesized 
functional units become testable. However, depending on 
the hierarchical test generation results, some synthesized 
functional units become untestable. In [11], the authors did 
not consider testing these untestable functional units. Hence, 
if several untestable functional units are synthesized, 
achieving high fault coverage is not guaranteed. In [10], if 
some synthesized functional units are untestable, test 
multiplexers are inserted into the RTL data path in order to 
make these units testable. However, insertion of test 
multiplexer increases the area overhead and degrades the 
data path performance. 
 In [10] and [11], testability is considered only for 
functional unit binding, and not for register binding. It is 
expected that higher fault coverage can be achieved by 
considering testability not only in functional unit binding 
but also in register binding. 
 This paper proposes a functional unit and register binding 
method for hierarchical testability that uses the hierarchical 
test generation results to achieve high fault coverage in 
hierarchical testing. The remainder of this paper is 
organized as follows. Section II describes the hierarchical 
test generation method using functional RTL circuits. A 
binding method for hierarchical testability is proposed in 
Section III. Section IV presents the experimental results. 
Finally, Section V concludes the paper and discusses areas 
for future research. 
 

II. HIERARCHICAL TEST GENERATION 
 This section describes a hierarchical test generation 
method using functional RTL circuits. In hierarchical test 
generation using functional RTL circuits, functional RTL 
circuits are represented by a graph such as a control-data 
flow graph (CDFG) [6] and an assignment decision diagram 
(ADD) [12]. Hierarchical test generation is performed on 
these graphs. Hierarchical test generation generates test 
sequences for each functional element, such as operations 
and variables, in functional RTL circuits. Hierarchical test 
generation consists of two procedures: test environment 
generation and test sequence generation. 
 Hierarchical test generation for a functional element is 
explained as follows. When a functional element N is being 
tested, the testability of N is guaranteed if any value can be 
propagated from a primary input to the input of N and the 
value at the output of N can be propagated to a primary 
output. The path allowing any value to be propagated from 
a primary input to the input of N is referred to as a 
justification path, and the path allowing the value at the 
output of N to be propagated to a primary output is referred 

to as the propagation path. A justification path, a 
propagation path, and primary input values for each time to 
enable these paths are referred to collectively as a test 
environment. Test environment generation determines 
whether it is possible to generate a test environment for 
each functional element in functional RTL circuits. Test 
environments for each functional element are generated 
using test environment generation rules [7-9]. The test 
environment generation rules consist of symbols that 
represent the controllability and observability of functional 
elements and their algebraic rules. In order to achieve high 
fault coverage in hierarchical test generation, it is important 
to generate as many test environments as possible. In this 
paper, the test environment generation rule that extends the 
rule proposed in [7] is used. Besides, test environments are 
generated by using the results of analysis for control flows. 
 For a given functional element under test, we first generate 
a test environment for the element. We then generate a test 
sequence by inserting a test pattern for the element into the 
test environment, where the test pattern is extracted from 
the test set library. Test sequences are generated for all 
faults in the functional element under test. The test set 
library is obtained beforehand by first taking a gate-level 
circuit whose functionality is the same as that of the 
functional element under test and then generating test 
patterns for all faults in the circuit using a combinational 
ATPG algorithm. After test sequence generation, fault 
simulation is performed in order to calculate the fault 
coverage for the test sequences. 
 

III. BINDING FOR HIERARCHICAL TESTABILITY 
 In this section, a binding method for hierarchical 
testability is proposed. In both the functional unit and 
register binding steps, the proposed method is performed 
using hierarchical test generation results. The goal is to test 
as many functional units as possible by generated test 
sequences. 
 
A.  Hierarchically Testable Functional Units 
 In this paper, a functional unit that satisfies the following 
two properties is referred to as a hierarchically testable 
functional unit. 
 
1) Any test patterns on inputs of a functional unit can be 
justified from primary inputs. 
2) Any fault effects on the output of a functional unit can be 
propagated to a primary output. 
 
 On the other hand, a functional unit that can satisfy neither 



property 1 nor property 2 is referred to as a hierarchically 
untestable functional unit. A functional unit in which at 
least one operation with a test environment is assigned is a 
hierarchically testable functional unit. Hierarchically 
testable functional units have test sequences generated by 
hierarchical test generation. However, hierarchically 
untestable functional units do not have test sequences. 
Therefore, if numerous hierarchically untestable functional 
units are synthesized, the number of undetected faults in 
hierarchical testing increases. As a result, the fault coverage 
decreases. Hence, in order to achieve high fault coverage in 
hierarchical testing, it is important to increase the number 
of hierarchically testable functional units. The proposed 
binding method attempts to maximize the number of 
hierarchically testable functional units under the constraint. 
 
B.  Problem Formulation 
Inputs: A scheduled CDFG and the information regarding 
which operation in the CDFG succeeded in test 
environment generation. 
Outputs: A CDFG to which functional unit binding and 
register binding have been applied. 
Optimization: Maximize the number of hierarchically 
testable functional units. 
Constraint: Number of available registers. 
 
 In general, it is possible to make many synthesized 
functional units hierarchically testable by increasing the 
number of available registers. However, additional registers 
cause the area overhead. In order to suppress the area 
overhead, the number of available registers is set as the 
constraint. 
 
C.  Functional Unit Binding 
 Functional unit binding methods that attempt to increase 
the number of hierarchically testable functional units have 
been proposed [10, 11]. In functional unit binding, if only 
operations without a test environment are assigned to a 
functional unit, the functional unit becomes a hierarchically 
untestable functional unit. In order to avoid this situation, 
the binding methods proposed in [10, 11] assign one or 
more operations with a test environment to each functional 
unit if possible. The binding method proposed in [11] 
preferentially assigns operations with a test environment to 
functional units to which operations with a test environment 
are not assigned. Thus, it is possible to prevent operations 
with a test environment being intensively assigned to the 
same functional unit. However, the functional unit binding 
method [11] do not guarantee that all of the synthesized 
functional units will be made testable. 

 

Fig. 1 Scheduled CDFG 
 

 
Fig. 2 Functional Unit Binding for Testability 

 
Figure 1 shows an example of a scheduled CDFG. In Fig. 

1, operations appearing in white are operations with a test 
environment, and operations appearing in black are 
operations without a test environment. In Fig. 1, three 
multiplications are scheduled at the control step t+1. Hence, 
this scheduling requires three multipliers. On the other hand, 
the number of multiplications with a test environment is 
two. If the number of functional units required is greater 
than the number of operations with a test environment, then 
hierarchically untestable functional units are synthesized. 
Figure 2 shows an example of functional unit binding for 

hierarchical testability. In Fig. 2, multiplications with a test 
environment are assigned to multipliers M1 and M2. 
Therefore, multipliers M1 and M2 are hierarchically 
testable functional units. On the other hand, multiplier M3 
is hierarchically untestable because no multiplication with a 
test environment is assigned to M3. 
The proposed binding method attempts to change 

hierarchically untestable functional units to hierarchically 
testable functional units by register binding. In order to 
achieve this goal, it is important that as many registers as 
possible can be assigned to the inputs and output of 
hierarchically untestable functional units. The proposed 
functional unit binding method intensively assigns 
operations without a test environment to hierarchically 
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untestable functional units. As a result, the number of 
variables connected to hierarchically untestable functional 
units increases. Therefore, the number of registers that can 
be assigned to the inputs and output of hierarchically 
untestable functional units increases. In Fig. 2, the 
multiplication *5 without a test environment is able to be 
assigned to any multiplier. The proposed functional unit 
binding method intentionally assigns *5 to multiplier M3. 
As a result, the variables f, g, k, m, and n are connected to 
M3. Therefore, many variables are connected to M3, as 
compared to the case in which only *4 is assigned to M3. 
 
D.  Register Binding 
 The proposed register binding method attempts to change 
hierarchically untestable functional units to hierarchically 
testable functional units, which requires that the 
hierarchically untestable functional units satisfy properties 
1 and 2 described in Section III-A. 
 In this paper, the input variables of an operation with a test 
environment are referred to as test pattern variables. The 
registers in which test pattern variables are assigned are 
referred to as test pattern registers. As a result of 
hierarchical test generation, it is guaranteed that any test 
pattern of functional units can be assigned to test pattern 
variables. In Fig. 2, variables a, b, d, and e are test pattern 
variables of the multiplications. The registers to which these 
variables are assigned are test pattern registers of the 
multiplier. The proposed register binding method can 
propagate test patterns to the inputs of hierarchically 
untestable functional units by register sharing between test 
pattern variables and the input variables of hierarchically 
untestable functional units. Furthermore, the proposed 
register binding method can detect fault effects at the output 
of hierarchically untestable functional units by register 
sharing between primary output variables and the output 
variables of hierarchically untestable functional units. 
 

 

Fig. 3 Register Binding for Testability 

 Figure 3 shows an example of register binding for 
hierarchical testability based on functional unit binding 
results in Fig. 2. In Fig. 3, variables a and k are assigned to 
test pattern register R1. Furthermore, variables b and m are 
assigned to test pattern register R2. As a result, at control 
step t, test patterns for multiplier M1 are set to R1 and R2, 
and test patterns for M1 are also propagated to the inputs of 
M3. In Fig. 3, the variable u and primary output variable n 
are assigned to primary output register R3. As a result, 
output responses corresponding to the test patterns that are 
propagated to the inputs of M3 can be observed at the 
primary output of control step t+1. Thus, the proposed 
register binding method changes hierarchically untestable 
functional units to hierarchically testable functional units. 
However, if the multiplexers are connected to the inputs of 
M3, it is necessary to select the signals from R1 and R2 at 
control step t. Similarly, if the multiplexer is connected to 
the input of R3, it is necessary to select the signal from M3 
at control step t. Furthermore, if R3 is a hold register, it is 
necessary for R3 to perform the load operation. Therefore, 
control signals of a controller synthesized by behavioral 
synthesis are modified. 
 

IV. EXPERIMENTAL RESULTS 
 The experiments were performed using two example 
circuits to evaluate the effectiveness of the proposed 
method. In the experiments, hierarchical test generation 
using functional RTL circuits was performed for two 
circuits. In order to clarify the effectiveness of the binding 
method proposed herein, we compare two cases. In one case, 
the circuit is synthesized using the proposed method, and in 
the other case the circuit is synthesized without using the 
proposed method. Gate-level ATPG was also performed for 
the purpose of comparison with hierarchical test generation. 
The PICTHY C-based behavioral synthesis system was 
used for behavioral synthesis. Design CompilerTM from 
Synopsys was used for logic synthesis, and TetraMAXTM 
from Synopsys was used for fault simulation in hierarchical 
test generation, combinational test generation for each 
functional element, and sequential test generation at the 
gate level. All of the faults in the data path and the 
controller were evaluated in the experiments. 
 Table I shows the information of behavioral description for 
two example circuits. In Table I, the “Circuit” column 
indicates the name of circuit. The “#mult” column, the 
“#add” column, and the “#sub” column list the number of 
multiplications, the number of additions, and the number of 
subtractions, respectively. The “Control statement used?” 
column indicates whether control statements are used in 
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behavioral description. 
 Table II shows the circuit synthesis results. In Table II, the 
“Circuit” column indicates the name of the circuit, and the 
“Proposed method used?” column indicates whether 
proposed method was applied. The “#REG” column lists 
the number of registers in the data path. The “#MUX” 
column lists the total number of inputs of the multiplexer. 
The “#FU” column lists the number of functional units. The 
“#TESTABLE FU” column lists the number of 
hierarchically testable functional units. Finally, the “Area” 
column lists the circuit area after logic synthesis. In the 
experiments, the bit width of the data path was set to 32 
bits. 
 The experimental results reveal that all functional units 
became hierarchically testable if the proposed method was 
used. In example 1, additional registers were needed to 
change all hierarchically untestable functional units into 
testable functional units, and hence the number of registers 
increased. On the other hand, in example 2, no additional 
registers were needed in order to change all hierarchically 
untestable functional units into testable functional units, and 
hence there is no increase in the number of registers. Table 
III shows the test generation results. In Table III, the 
“Circuit” column indicates the name of the circuit, and the 
“Proposed method used?” column indicates whether 
proposed method was applied. The “Hierarchical Test 
Generation” column lists the results of hierarchical test 
generation using functional RTL circuits. The “Gate-Level 
ATPG” column lists the results of gate-level sequential 
ATPG by TetraMAXTM. The “FC” column lists the fault 
coverage. The “T-Length” column indicates the length of 
the test sequence. Finally, the “T-Gen” column indicates the 
test generation time. 
 In hierarchical test generation, the proposed method 
achieved highest fault coverage for examples 1 and 2. 
Furthermore, when the proposed method was applied, the 
fault coverage for test sequences generated by hierarchical 
test generation was improved by approximately 11.81% on 
average compared to the case in which the proposed method 
was not applied. 
 When the proposed method was applied, the fault 
coverage for test sequences generated by gate-level ATPG 
was improved by approximately 14.53% on average 
compared to the case in which the proposed method was not 
applied. Furthermore, test generation was approximately 
2.04 times faster on average. Therefore, the proposed 
method is also effective for gate-level ATPG. 
 The hierarchical test generation method obtained test 
sequences approximately 41.53 times faster on average than 

gate-level ATPG. The test generation time of the 
hierarchical test generation usually consists of the test 
environment generation time, the test sequence generation 
time, the functional elements ATPG time, and the fault 
simulation time. In the experiments, test environment 
generation and test sequence generation were applied 
through hand calculation. Therefore, the test environment 
generation time and the test sequence generation time were 
not included in the test generation time of the hierarchical 
test generation. However, these calculation times are 
expected to be a few seconds. 
 In hierarchical test generation, the proposed method 
achieved the best results in terms of both test generation 
time and fault coverage. Therefore, test design that 
combines hierarchical test generation using functional RTL 
circuits and the binding method for hierarchical testability 
proposed in this paper is effective for both test generation 
time and fault coverage. 
 

V. CONCLUSION 
 This paper proposes a binding method for hierarchical 
testability using the hierarchical test generation results to 
achieve high fault coverage. By performing the proposed 
method, the fault coverage for test sequences generated by 
hierarchical test generation was improved by approximately 
11.81% on average. Areas for future research include 
experiments involving large benchmark circuits and 
implementation of a binding method for hierarchical 
testability.  
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Table I  Circuit Information 

 
 

Table II  Circuit Synthesis Results 

 

 
Table III  Test Generation Results  

 

Circuit #mult #add #sub Control statement used?

example1 7 0 3 No
example2 6 6 0 Yes (if-else)

Circuit Proposed method used? #REG #MUX #FU #TESTABLE FU Area

example 1
No 6 32 5 3 25,401
Yes 7 31 5 5 25,662

example 2
No 6 39 5 2 25,736
Yes 6 37 5 5 25,643

Circuit Proposed method used?
Hierarchical Test Generation Gate-Level ATPG

FC (%) T-Length T-Gen (s) FC (%) T-Length T-Gen (s)

example 1
No 95.86 819 156 96.02 236 6,364
Yes 99.95 819 147 97.12 327 4,530

example 2
No 79.98 936 260 69.11 207 16,384
Yes 99.51 936 195 97.07 438 6,136


