
A Controller Augmentation Method to Generate
Easily Testable Functional k-Time Expansion

Models for Data Path Circuits
Yusuke KODAMA† Jun NISHIMAKI† Tetsuya MASUDA‡

Toshinori HOSOKAWA‡ and Hideo FUJIWARA††

†Graduate School of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino, Chiba 275-8575, Japan
‡College of Industrial Technology, Nihon University, 1-2-1, Izumicho, Narashino, Chiba 275-8575, Japan

††Faculty of Informatics, Osaka Gakuin University, 2-36-1, Kishibe-Minami, Suita-shi, Osaka 564-8511, Japan

E-mail: †ciys12006@g.nihon-u.ac.jp, cizy13016@g.nihon-u.ac.jp, ‡cite10146@g.nihon-u.ac.jp,
hosokawa.toshinori@nihon-u.ac.jp, ††fujiwara@ogu.ac.jp

Abstract In recent years, various high-level test synthesis
methods for LSIs have been proposed for the improvement
in design productivity and test cost reduction. Most of the
approaches assumed that controllers and data paths are
isolated from each other, and hence the hardware overhead
becomes large. On the other hand, the approach without
separation of a controller and a data path usually decreases
the testability. To resolve this problem, an approach that
augments a controller by adding extra control functions to
make a data path easily testable was proposed. However,
the approach cannot always succeed in generating test
sequences with high fault coverage if a general ATPG tool
is used without knowing any information of augmented
control functions. In this paper, we introduce “easily
testable functional k-time expansion models for data paths” ,
and propose a method for augmenting a controller such that
easily testable functional k-time expansion models for the
data path are controllable. Experimental results show the
effectiveness of the proposed method for high level
synthesis benchmark circuits.
Keywords: non-scan testing, easily testable functional
k-time expansion models, controller augmentation,
sequential test generation

I. INTRODUCTION
 With the progress of semiconductor technology, the
density and complexity for large scale integrated circuits
(LSIs) drastically increase. Therefore, LSI design becomes
difficult. The improvement of design productivity for LSIs
is required to resolve this problem, and design at behavioral
level whose abstraction is higher have been proposed [1].
Register transfer level (RTL) circuits are generated from
behavioral descriptions using behavioral synthesis [1].

With the progress of semiconductor technology, testing
of LSIs also becomes more difficult, and the cost has been
increasing. The most widely used design for testability
(DFT) for LSIs is the full scan approach, which can achieve
high fault efficiency for single stuck-at faults. However, it
requires long test application time and a large hardware
overhead. To avoid these disadvantages, behavioral
synthesis for testability methods based on non-scan testing
have been proposed [2,3,4]. [2,3,4] was proposed
scheduling and binding algorithms to generate RTL data
path circuits with testability so that controllability and
observability for registers is enhanced and sequential depth
and the number of cycles are reduced. These methods
assumed that controllers and data paths are isolated from
each other. A large hardware overhead may be required to
isolate controllers and data paths.

On the other hand, DFT methods for RTL circuits which
do not need to isolate the controller and the data path from
each other have been also proposed. Even if an easily
testable RTL data path is synthesized by behavioral
synthesis for testability methods [2,3,4], its testability may
strongly decrease once it is connected to its controller. In
[5], a controller augmentation method to make easily
testable data path circuits controllable was proposed.
General sequential test generation algorithms [6,7] model
sequential circuits in an iterative logic array called the time
expansion model (TEM). When general sequential test
generation algorithms are applied to whole circuits
including easily testable data paths and augmented
controllers, high fault efficiency may not be able to be
achieved since test generators do not know the function of
augmented controllers to control easily testable data paths.

14th IEEE Workshop on RTL and High Level Testing (WRTLT'13), November 2013.

In [8], a cycle-unrollable RTL circuit [8] is defined, and a
DFT method was proposed to make RTL circuits cycle
unrollable. A test generation method was also proposed for
cycle-unrollable RTL circuits and effective experimental
results were shown [8]. The DFT inserts additional test
circuits into data paths and embeds an extra test controller.

In [9, 10], functional TEMs for data paths are generated
by analyzing controllers, and a test generation method for
data paths using functional TEMS were proposed. However,
the number of time expansions may be large since
functional TEMs is generated based on controller functions.

In this paper, we introduce easily testable functional
k-time expansion models (k-TEMs) for data paths and
propose a method for augmenting a controller such that
easily testable functional k-TEMs for the data path are
controllable.

II. Controller Augmentation
 A controller augmentation method to control data paths
with testability was proposed [5]. This method does not
need to isolate a controller and a data path from each other
at testing. Even if an easily testable RTL data path is
synthesized by behavioral synthesis for testability methods,
a controller may not be able to control the behavior of the
easily testable data path. In [5], a controller is augmented
by adding extra states, extra state transitions, and extra
inputs to make an easily testable data path controllable.
General sequential test generation algorithms use a TEM to
obtain test sequences. The TEM has only the information of
circuit structure. Thus, in this paper, TEMs are called
structural TEMs [9, 10]. When sequential test generation
algorithms using structural TEMs are applied to whole
circuits including easily testable data paths and augmented
controllers, high fault efficiency may not be able to be
achieved since structural TEMs do not have the information
of augmented controllers.

III. Test Generation Using Functional TEMs
In this paper, functional information consists of the

latency, the input sequences for control signal lines from a
controller to a data path, and the output sequences for status
signal lines from a data path to a controller. In [9,10], the
latency is decided, and the input sequences for control
signal lines and the output sequences for status signal lines
of data paths are able to be obtained using the functional
verification patterns and analyzing controller functions. A
TEM with the number of time expansions which is equal to
the latency is generated. The input sequences of the control
signal lines and the output sequences of the status signal
lines are given to the TEM as constraints. This model is

defined as a functional TEM [9,10]. A constrained test
generation is applied to the functional TEM. Test sequences
are generated based on the functional operation by the test
generation.

However, the number of time expansions may be large
since functional TEMs are generated based on controller
functions. Thus, test generation for such large functional
TEMs may not be easy.

IV. Controller Augmentation to Control Easily Testable
Functional k-TEMs

 A functional TEM whose number of time expansions is k
is defined as an easily testable functional k-TEM. If the
value of k is not so large, we consider that test generation
for functional k-TEMs is easily testable. In this paper, easily
testable functional k-TEMs for data paths are generated
from RTL data path structure and controller functions, and a
controller augmentation method to make a data path operate
based on the models is proposed. We consider that most of
faults in a data path are testable by generating test
sequences for easily testable functional k-TEMs including
all registers and operational units. In this method, DFT is
not applied to data paths in order to avoid the performance
degradation of data paths.

A controller augmentation method to generate easily
testable functional TEMs is formulated to optimize the
trade-offs between the number of time expansions and
hardware overhead for controller augmentation.

A. Preliminary Definitions
<Definition 1: Data path behavioral graph>
The behavior of an RTL data path is represented by a data
path behavioral graph. A data path behavioral graph is a
directed graph G(V, E, o, r, p, l, h, s, t), where a vertex
v ∈ V denotes a terminal of a module, and an edge
ሺv, uሻ ∈	Eሺv, u	 ∈ V) denotes a data flow from v to u. Each
edge has a label o: E → ሼ0, 1ሽ, a label r: E → ܼା ∪ ሼ0ሽ, a
label p: E → ሼ0, 1, 2, 3, 4ሽ, a label ݈: E → ܼା ∪ ሼ0ሽ, and a
label h:E relation ܼା ∪ ሼ0ሽ . o(e) ሺe ∈ E) represents
whether e is a data flow for a functional operation or not. If
o(e) = 1, e is a data flow for only testing. Otherwise, e is a
data flow for a functional operation. r(e) ሺe ∈ E) represents
a register ID of e. ܼା ∪ ሼ0ሽ denotes the set of non-negative
integers. If there does not exist a register in a data flow
corresponding to e, r(e) = 0. p(e) ሺe ∈ E) represents a
register type of e. When p(e) = 1, 2, 3, and 4, register types
of e are a primary input register, a primary output register, a
primary input and output register, and an intermediate
register, respectively. If there does not exist a register in a
data flow corresponding to e, p(e) = 0. l((v, u)) ሺሺv, uሻ ∈ E,

v, u	 ∈ V) represents time that a register between v and u
keeps the values. If there does not exist a register in a data
flow corresponding to (v, u), l((v, u)) = 0. h(e) ሺe ∈ E)
represents a set of register IDs which r(e) can be replaced
with. It means that the registers corresponding to r(e), and
all elements in h(e) are connected with the inputs of the
same multiplexer. If there does not exist a register in a data
flow corresponding to e, h(e) = {}. Each vertex has a label
q: V → ܼା , a label s: V → ሼ1, 2, 3, 4, 5ሽ , and a label
t: V → ܼା . q(v) ሺv ∈ Vሻ represents the ID of a module
whose terminal corresponds to v. ܼା denotes the set of
positive integers. s(v) ሺv ∈ V) represents the type of a
module terminal v. When s(v) = 1, 2, 3, 4, and 5, the type of
a module terminal v are a primary input, the left input
terminal of an operational unit, the right input terminal of
an operational unit, the output terminal of an operational
unit, and a constant, respectively. t(v) ሺv ∈ V) represents
the time when the module operates whose terminal
corresponds to v. If there exists (v, u) ሺሺv, uሻ ∈ E, v, u	 ∈
V), tሺvሻ tሺuሻ.

<Definition 2: State transition graph>
The behavior of an RTL controller is represented by a state
transition graph. A state transition graph is a directed graph
G(V, E, s, t, p), where a vertex v ∈ V denotes a state, and
an edge ሺv, uሻ ∈	Eሺv, u	 ∈ V) denotes a state transition
from v to u. Each edge has a label p: E → ሼ0, 1ሽ. p(e)
ሺe ∈ E) represents whether e is a state transition for a
functional operation or not. If p(e) = 1, e is a state transition
for only testing. Otherwise, e is a state transition for a
functional operation. Each vertex has a label s: V → ܼା,
and a label t: V → ܼା. s(v) ሺv ∈ V) represents a state ID.
t(v) ሺv ∈ V) represents the time when the state v is
executed.

Example 1: The scheduled and allocated data flow graph of
ex2 [11] is shown in Fig. 1. The data path behavioral graph
G and the state transition graph H are shown in Fig. 2.

<Definition 3: Ignoring of a vertex set>
In a data path behavioral graph G, the ignoring of a vertex
set W which is between v and u ൫v, u ∈ V, tሺvሻ ൏ tሺuሻ൯ is
to delete all vertices ∈ W	and all edges connected with the
vertices are deleted and to insert an edge (v, u). e ∈ E is an
output edge of v and f ∈ E is an input edge of u. If r(e) =
r(f) ് 0, W can be ignored. r((v, u))=r(e)=r(f), p((v,
u))=p(e)=p(f), l((v, u))=1, and h((v, u))={}.

Fig. 1 Example of scheduled and allocated DFG

<Definition 4: Concatenation between vertices>
 In a data path behavioral graph G, the concatenation
between v and u ሺv, u ∈ V, tሺvሻ ൏ tሺuሻሻ which are not
reachable each other is to delete an output edge e of v and
an input edge f of u ሺe, f ∈ E, rሺeሻ ൌ rሺfሻ ് 0ሻ and to
insert an edge (v, u). r((v, u))=r(e)=r(f), p((v, u))=p(e)=p(f),
l((v, u))=1, and h((v, u))={}.

<Definition 5: Shortening of an edge>
In a data path behavioral graph G, the shortening of an edge
e ሺe ∈ E, rሺeሻ ് 0, ݈ሺeሻ ് 0	and	݈ሺeሻ ് 1	ሻ	is to make l(e)
smaller.

<Definition 6: Replacement of an edge>
In a data path behavioral graph G, the replacement of an
edgeሺv, uሻ to an edge ሺvᇱ, uሻ ሺሺv, uሻ, ሺvᇱ, uᇱሻ, ሺvᇱ, uሻ ∈ E,
v, vᇱ, u, u′	 ∈ V, rሺሺvᇱ, uᇱሻ)∈ hሺሺv, uሻሻ) is to delete an edge
(u, v) and to insert an edge ሺvᇱ, uሻ. r൫ሺvᇱ, uሻ൯ ൌ r൫ሺvᇱ, uᇱሻ൯,
	p൫ሺvᇱ, uሻ൯ ൌ p൫ሺvᇱ, uᇱሻ൯, 		݈ሺሺvᇱ, uሻሻ ൌ 1, hሺሺvᇱ, uሻሻ ൌ ሼሽ.

<Definition 7: Insertion of a vertex>
In a data path behavioral graph G, the insertion of a vertex
w ሺw ∉ Vሻ between v and u ሺv, u, w ∈ V, tሺvሻ ൏ tሺwሻ ൏
tሺuሻሻ is to delete an edge (v, u)		and to insert a vertex w and
an edge (w, u). If there does not exist a vertex x ሺx ∈ V)
such that q(w)=q(x) and t(w)=t(x), a vertex w can be
inserted. r((w, v)) = r((v, u)), h((w, v))={}, q(w) = q(v), and
s(w)=s(v).

<Definition 8: Update of the time of a vertex>
In a data path behavioral graph G, the update of the time for
a vertex v (v∈ Vሻ is to change t(v).

<Definition 9: Easily testable functional k-time
expansion models>
A directed graph pair ሺGᇱ, Hᇱሻ generated in the following
procedures is defined as an easily testable functional k-time
expansion model derived from ሺG, Hሻ.
GᇱሺV, E, o, r, p, ݈, h, q, s, tሻ	is a directed graph generated by
performing the procedures (from pd1 to pd8) for
GሺV, E, o, r, p, ݈, h, q, s, tሻ to satisfy c1, c2, and c3.

S1

S2

S3

S4

S5

S6

u dz

b

3 y5z

a

dc

u1

2

1

3

4

5

REG2 REG3 REG4REG5

REG1 REG5

REG1 REG4

REG1REG2e f

Mul0 Mul1

Mul1 Mul0

Mul0Sub0

Sub0

REG1 6

Fig.2 Example of G and H

(pd1) For ∀e ∈ E such that p(e)=2 or p(e)=3, edges are
selected as detection registers, and the output vertices
connected with the selected edges are deleted. Here,
detection registers are ones that are connected with primary
outputs which can observe fault effects.
(pd2) Ignoring of vertex sets
(pd3) Concatenation of vertices
(pd4) Replacement of edges
(pd5) Shortening of edges
(pd6) Insertion of vertices
(pd7) Vertices and edges which are not reachable in input
direction to primary inputs or constants are deleted. Vertices
and edges which are not reachable in output direction to
detection registers are deleted.
(pd8) Update the times of vertices

(c1) For ∀v ∈ V such that s(v) = 2 or s(v) = 3, an input
edge of v is reachable to vertices corresponding to primary
inputs or constants.
(c2) (The number of ∀tሺvሻ for ∀v ∈ Vሻ 1 k
(c3) In following two conditions, at least one is satisfied.
(a) There does not exist w such that tሺvሻ ൏ tሺwሻ ൏

tሺuሻ	for	∀ሺv, uሻ ് 0ሺv,w, u ∈ V, ሺv, uሻ ∈ Eሻ.

(a) (G’1, H’1)

(b) (G’2, H’2)
Fig. 3 Example of easily testable functional 4-TEMs

(b) If there exists w such that
tሺvሻ ൏ tሺwሻ ൏ tሺuሻ	for	∀ሺv, uሻ ് 0 , (the number of
∀tሺwሻ for ∀w) +1 = l((v, u)).

HᇱሺV, E, o, r, p, ݈, h, q, s, tሻ	is a directed graph generated by
performing the procedures (from pc1 to pc4) for
HሺV, E, s, t, pሻ and GሺV, E, o, r, p, ݈, h, q, s, tሻ.

(pc1) v ∈ V	in	G′ is the input vertex of the edge
corresponding to a detection register, and u ∈ V	in	H′ is
the vertex corresponding to a state such that t(v) =
t(u).	w ∈ V	in	H′ is the output vertex of u and the vertex
corresponding to a state such that primary outputs in G′ are
observed.
(pc2) For ∀v ∈ V	in	G′ and ∀u ∈ V	in	H, if ∄v such that
tሺvሻ ൌ tሺuሻ, u and the input edge and the output edge of u
are deleted. However, if u is the state which primary outputs
in G′ are observed, u is not deleted.
(pc3) In H′, let us consider ∀ሺw, xሻ such that ሺw, xሻ ∈
E,w, x, y ∈ V, and	pሺሺw, xሻሻ ൌ 0. In Gᇱ, let us consider
∀ሺv, uሻ such that ሺv, uሻ ∈ E, v, w ∈ V, tሺwሻ ൌ tሺvሻ, and
tሺxሻ ൌ tሺuሻ . If 	oሺሺv, uሻሻ ൌ 0 for ∀ሺv, uሻ , (w, x) is
preserved. If ∃oሺሺv, uሻሻ ൌ 1	for	∀ሺv, uሻ , an edge ሺy, xሻ
such that tሺyሻ ൌ max	ሺtሺvሻ) is inserted in H′ and (w, x) is
deleted.
(pc4) In H′, assuming that u ∈ V is the destination state of
v∈ V, t(u) is updated such that t(u)=t(v)+1. If v ∈ V does
not have an input edge, t(v)=1.
Example 2: Fig. 3 is the example of the two easily testable
functional 4-TEMs derived from Fig. 2. ܩ′ଵ of Fig.3 (a) is
generated as follows. In G, the output edge of the vertex
with (9, 4, 5) is selected as the detection register at pd1, the
vertex set which consists of (9, 2, 4) and (9, 4, 4) between
(1, 1, 1) and (9, 2, 5) is ignored at pd2, and (7, 4, 2) and (9,
3, 5) are concatenated at pd3. Next, the edge between (1, 1,
1) and (7, 2, 2) is replaced with the edge between (2, 1, 1)
and (7, 2, 2), and the edge between (2, 1, 1) and (7, 3, 2) is

(0,0,0,0, {})

(2,1,1,0, {3})

(0,0,0,0, {})

(3,1,1,0, {2})
(3,1,3,0, {2})

(1,2,1,0, {})

(0,0,0,0, {}) (5,1,1,0, {}) (4,1,2,0, {3})

(0,0,0,0, {})

(0,0,0,0, {})(0,0,0,0, {})

(0,0,0,0, {}) (0,0,0,0, {})

(5,1,1,0, {})

(0,0,0,0, {})(0,0,0,0, {})

(1,2,1,0, {}) (4,1,1,0, {3})

(0,0,0,0, {}) (0,0,0,0, {})(0,0,0,0, {})(0,0,0,0, {})

(2,1,1,0, {})
(1,2,1,0, {})

(0,0,0,0, {}) (0,0,0,0, {})

(1,2,1,0, {})

(2,1,3,0, {})

(1,1)

(2,2)

(3,3)

(4,4)

(5,5)

(6,6)

0

0

0

0

0
p(r,p,l,o,h)

(2,1,1)(1,1,1) (3,5,2) (4,1,1) (5,5,3) (6,1,1)

(8,2,2)(7,2,2) (7,3,2) (8,3,2)

(7,4,2) (8,4,2)

(7,2,3) (7,3,3)
(8,2,3) (8,3,3)

(7,4,3)
(8,4,3)

(9,2,4) (9,3,4) (7,2,4) (7,3,4)

(9,4,4) (7,4,4)

(9,2,5) (9,3,5)

(9,4,5)

(q,s,t) (s,t)

(0,0,0,0, {}) (0,0,0,0, {})

(2,1,1,0, {})
(1,2,1,0, {})

(0,0,0,0, {}) (0,0,0,0, {})

(1,2,1,0, {})

(1,1)

(2,2)

(5,3)

(6,4)

1

1

0

(3,1,1,1, {}) (4,1,1,1, {})

G’1：Data path behavioral graph H’1: State transition graph

(2,1,1) (6,1,1)

(7,2,2) (7,3,2)

(7,4,2)

(9,2,5) (9,3,5)

(9,4,5)

(1,1,2)

(0,0,0,0, {})

(2,1,1,0, {3})

(0,0,0,0, {})

(3,1,1,0, {2})

(1,2,1,0, {}) (5,1,1,1, {})

(0,0,0,0, {})(0,0,0,0, {})

(1,2,1,0, {})

(1,1)

(2,2)

(3,3)

(4,4)

0

1

0

G’2：Data path behavioral graph H’2: State transition graph

(2,1,1)(1,1,1)

(4,1,2)(7,2,2) (7,3,2)

(8,2,3) (8,3,3)

(8,4,3)

(7,4,2)

replaced with the edge between (6, 1, 1) and (7, 3, 2) at pd4.
Finally, the unnecessary vertices and edges are deleted at
pd7, the time when (1, 1, 1) is executed is changed from 1
to 2 and (1, 1, 1) is updated (1, 1, 2) at pd8, and ܩ′ଵ is
generated. ܪ′ଵ is generated from ܩ′ଵ and ܪ. Since the
additional edges are inserted at pd2, pd3, and pd4 in ܩ′ଵ,
the edge from (1, 1) to (2, 2) is deleted and the additional
edges from (1, 1) to (2, 2) and from (2, 2) to (5,3) are
inserted for testing at pc3. ܩ′ଶ of Fig.3 (b) is generated as
follows. In G, the output edge of the vertex with (8, 4, 3) is
selected as the detection register at pd1, and the vertex set
which consists of (8, 3, 2) and (8, 4, 2) between (4, 1, 1)
and (8, 3, 3) is ignored at pd2. Finally, the unnecessary
vertices and edges are deleted at pd7, the time when (4, 1,
1) is executed is changed from 1 to 2 and (4, 1, 1) is
updated (4, 1, 2) at pd8, and ܩ′ଶ is generated. ܪ′ଶ is
generated from ܩ′ଶ and ܪ. Since the additional edges are
inserted at pd2 in ܩ′ଵ, the edge from (2, 2) to (3, 3) is
deleted and the additional edge from (2, 2) to (3, 3) is
inserted for testing at pc3.

B. Problem Formulation

Inputs: A set of data path behavioral graphs: ሼܩଵ,
⋯,ଶܩ , ሽܩ

A set of state transition graphs: ሼܪଵ, ⋯,ଶܪ ሽܪ,
The number of time expansions: k
The number of easily testable functional k-TEMs: m

Outputs: A set of easily testable functional k-TEMs:

M ൌ ሼ൫ܩᇱଵ, ,ᇱଵሻܪ ሺܩᇱଶ, ⋯,ᇱଶ൯ܪ , ሺܩᇱ, ሻሽ′ܪ derived from

a set of data path behavioral graphs, ሼܩଵ, ⋯,ଶܩ , ሽܩ
Constraint: Three following constraints have to be
satisfied.
(1) |M| ൌ ݊ ݉
(2) For ∀v ∈ V, MAXሺtሺvሻሻ ݇ in ܪ′ሺ1 ݅ ݊)
(3) Let ܱ be a set of any vertices in ܩ′ corresponding

to output terminals for operational units, and let ܴ be
a set of any edges in ܩ′ corresponding to registers.
All operational units in a data path are included in
⋃ ܱ

ୀଵ . All registers in a data path are included in

⋃ ܴ
ୀଵ .

Optimization: Maximize COST= ∑ ′ܩሺ݈ܽݒܧ
ୀଵ , ሻ′ܪ

Evalሺܩᇱ, ᇱሻܪ ൌ α ቀ ଵ
ଵା்

ቁ ൈ ߚ ቀ ଵ
ൈሺఋൈሺାோሻାଵሻ

ቁ ൈ ሺܴߛ ܱሻ ,

where ߙ, ,ߚ are coefficients, ܶ is the number of ߜ	and	ߛ
additional state transitions for controller augmentation, ܥ
is the number of operational units controlled by constants,

and ܴܥ is the number of operational units in
re-convergence structures. The clause of coefficient ߙ
expresses the cost of the area overhead for controller
augmentation. The clause of coefficient ߚ expresses the
cost of test generation time. The clause of coefficient ߛ
expresses the cost of the number of the additional controller
inputs for controller augmentation. The clause of coefficient
 expresses the penalty of testability degradation due to ߜ
constraints and re-convergence structures.

V. EXPERIMENTAL RESULTS
We evaluated the effectiveness of the proposed method

by experiments. High level synthesis benchmark circuits
used for experiments are data flow graph (DFG) based
circuits named ex2 [11], ex4 [11], and DFCT [12], and
control data flow graph (CDFG) based circuits named
Sehwa [11], Maha [11], and Kim [11]. Scheduling and
binding were performed for high level synthesis benchmark
circuits using our in-house behavioral synthesis tool,
PICTHY. After that, The RTL circuits which consist of data
path and controller were synthesized. The easily testable
functional k-TEMs for data paths were generated from state
transition graphs and data path behavioral graphs. The
controllers were augmented to make the easily testable
k-TEMs controllable by adding state transitions and inputs
of controllers. The logical circuits were synthesized from
the RTL circuits with controller augmentation. Test
generation was performed for the logical circuits using
STAGY [9] which is our in-house test generation tool using
structural TEMs or functional TEMs. Single stuck-at faults
were set in the operational units. The proposed method was
compared with the three following methods (t1, t2, and t3).
(t1) The test generation method using structural TEMs
based on original controller functions
(t2) The test generation method using structural TEMs
based on original and augmented controller functions
(t3) The test generation method using functional TEMs
based on original controller functions
(Proposed) The test generation method using functional
TEMs based on original and augmented controller functions

In t1 and t2, the number of time expansions was 20 for DFG
based circuits and was 30 for CDFG-based circuits. In t3
and the proposed method, functional TEMs and easily
testable functional k-TEMs were generated such that all
state transitions in controllers were executed. Thus, in t3,
the numbers of functional TEMs were 1 for ex2, ex4, and
DFCT, were 3 for Kim, and were 4 for Sehwa, and Maha.
The limit of backtracking was set to 100 for each fault.

The results of the generated easily testable functional

TEMs and the area overhead are shown in Table I. In Table
I, “j”, “L”, “m”, “k”, “AST”, and “AOH” denote the
number of the data path behavioral graphs, the maximum
latency of the functional operations (the number of cycles),
the number of the easily testable functional TEMs, the
maximum number of the time expansions, the number of
the additional state transitions, and the ratio of the area
overhead to the whole circuit area, respectively. In Sehwa,
the number of time expansions was drastically reduced
from 17 to 4 compared with t3. The area overhead for the
controller augmentation was as small as 0.9%. The average
area overhead for all circuits was as small as 0.62%.

The results of the test generation are shown in Table II. In
ex2, only the proposed method obtained 100% fault
coverage. In ex4 and DFCT, the fault coverage of t2 and t3
was higher than that of the proposed method. Since the
proposed method used many constraints in test generation,
the functional operation was restricted. Thus, only a part of
data path operated. Therefore, it is considered that faults
were not accidently detected by fault simulation. In other
methods, many faults in DFG based circuits could be
accidentally detected by fault simulation. In Sehwa, t2 and
the proposed method could achieve 100 % fault coverage.
This result showed that the controller augmentation was
effective. The proposed method could generate test
sequences about 30 times faster than t2. This result showed
that the easily testable functional k-TEMs could drastically
reduce the search space to generate test sequences. The
proposed method obtained the same results for Maha and
Kim. Thus, the proposed method is very effective for CDFG
based circuits. As for the length of test sequences, the
proposed method is effective for CDFG based circuits.

VI. CONCLUSION
 In this paper, we introduced easily testable functional
k-TEMs for data paths and proposed a controller
augmentation method to make easily testable functional
k-TEMs for the data path controllable. We also formulated
easily testable functional k-TEMs generation as
maximization problem. We confirmed the effectiveness of
our proposed method by experimental results using high
level synthesis benchmark circuits.

Future work includes evaluating the proposed method for
practical circuits and proposing a test generation method for
faults in controllers.

REFERENCES
[1] M.C.McFarland, A.C.Parker, R.Camposano, “The high-level
synthesis of digital systems”, Proc. IEEE, pp.301-318, 1990.
[2] M.T.-C. Lee, W. H. Wolf, and N. K. Jha, “Behavioral synthesis

for easy testability in data path scheduling”, in Proc. Int. Conf. on
Computer-Aided Design, pp.616 -619 , 1992.
[3] M.T.-C. Lee, W. H. Wolf, and N. K. Jha, “Behavioral synthesis
for easy testability in data path allocation”, in Proc. Int. Conf.
Computer Design, pp. 29 -32 , 1992.
[4] M.T.-C. Lee, N. K. Jha , and W. H. Wolf, “Behavioral synthesis
for highly testable data paths under the non-scan and partial scan
environments”, in Proc. Design Automation Conf., pp.292-297,
1993.
[5] L.M. FLottes, B. Rouzeyre, L. Volpe,” A CONTROLLER
RESYNTHESIS BASED METHOS FOR IMPROVING
DATAPATH TESTABILITY”, in Proc. Int. Symp. on Circuits and
Systems, pp. 347 -350, May 2000.
[6] W.T.Cheng, “The back algorithm for sequential test
generation” , in Proc. Int. Conf. on Computer Design, pp. 66-69,
1988.
[7] T.M. Niermann and J.H.Patel, “HITEC: A Test Generation
Package for Sequential Circuit”, in Proc. European Design
Automation Conf., pp.214-218, Feb.1991 .
[8] H. Fujiwara, H. Iwata, T. Yoneda, and C. Y. Ooi, “A Nonscan
Design-for-Testability Method for Register-Transfer-Level
Circuits to Generate Linear-Depth Time Expansion Models”, IEEE
Trans. On Computer-Aided Design of Integr. Circuits Syst.,
pp.1535-1544, Vol. 27, No. 9, 2008.
[9] T. Hosokawa, T. Hayakawa, and M. Yoshimura, “A
Comprehensive Functional Time Expansion Model Generation
Method for Datapaths Using Controllers” , in Proc. Workshop on
RTL and High Level Testing, pp.131-138, 2010.
[10] K. Sugiki, T. Hosokawa, and M. Yoshimura,”A Test
Generation Method for Datapath Circuits Using Functional Time
Expansion Models ”, in Proc. Workshop on RTL and High Level
Testing , pp.39 -44, 2008.
[11] M.T.-C.Lee, “High-Level Test Synthesis of Digital VLSI
Circuits”, Artech House Publishers, 1997.
[12] I. G. Harris and A. Orailoglu ,“Testability Improvement in
High-Level Synthesis Through Reconvergence Reduction”, in
Proc. the Asilomar Conference on Signals, Systems and
Computers, pp.1919-203 ,1996.

Table 1. Experimental results of functional k-TEM

Table 2. Experimental results of test generation

t1 t2 t3 Proposed t1 t2 t3 Proposed t1 t2 t3 Proposed

ex2 99.98 99.99 99.98 100.00 1630 1866 564 1045 940 1300 618 1036

ex4 99.27 99.91 99.86 99.59 427 344 44 55 740 620 470 331
DFCT 99.47 99.45 99.68 99.35 5261 7099 816 1959 840 1020 336 628
Sehwa 75.95 100.00 95.15 100.00 741 494 321 17 1050 3270 744 586
Maha 95.18 100.00 93.07 100.00 303 415 780 115 1260 3180 629 528
Kim 88.64 99.55 98.80 99.67 1591 347 544 20 2460 780 1807 351

Ciruits
Fault coverage（%） ATPG time（sec） Test sequence

Circuit j L m k AST AO（%）

ex2 1 6 2 4 3 0.20

ex4 1 5 2 4 1 0.12
DFCT 1 7 3 4 3 0.18
Sehwa 16 17 3 5 3 0.90
Maha 16 18 3 3 3 1.03
Kim 3 15 5 3 4 1.33

